文档库 最新最全的文档下载
当前位置:文档库 › 通信原理实验指导书

通信原理实验指导书

通信原理实验通信原理课程组编

中国民航大学电子信息工程学院二OO九年十二月

目录

实验箱使用简介 (1)

实验一数字基带信号 (5)

实验二数字调制 (14)

实验三模拟锁相环与载波同步 (18)

实验四数字解调与眼图 (23)

实验五数字锁相环与位同步 (28)

实验六帧同步 (34)

实验七时分复用数字基带通信系统 (38)

实验八时分复用2DPSK、2FSK通信系统 (43)

实验九PCM编译码 (45)

实验十时分复用通话与抽样定理 (53)

附录通信原理实验各单元电路原理图 (55)

·2·

·1·

实验箱使用简介

为配合《通信原理》课程的理论教学,我们采购了华中科技大学(原华中理工大学)研制的TX-5通信原理教学实验系统。

现代通信包括传输、复用、交换、网络等四大技术。《通信原理》课程主要介绍传输及复用技术。本实验系统涵盖了数字频带传输的主要内容及时分复用技术,其设计思路是如下图所示的两路PCM/2DPSK 数字电话系统。

图中STA 、STB 分别为发端的两路模拟话音信号,BS 为时钟信号,SLA 、SLB 为抽样信号,F 为帧同步码,AK 为绝对码,BK 为相对码。在收端CP 为位同步信号,FS 为帧同步信号,F 1、F 2为两个路同步信号,SRA 、SRB 为两个PCM 译码器输出的模拟话音信号。

图中发滤波器用来限制进入信道的信号带宽,提高信道的频带利用率。收滤波器用来滤除带外噪声并与发滤波器、信道相配合满足无码间串扰条件。由于系统的频率特性、码速率与码间串扰之间的关系比较适合于软件仿真实验,再考虑到收端有关信号波形的可观测性,我们在本实验系统中省略了发滤波器、信道及收滤波器,而直接将2PSK 调制器输出信号连接到载波提取单元和相干解调单元。

信道编译码实验也比较易于用软件仿真,所以本系统设计中也不考虑。 SRA SRB b

对普通语音信号进行编码而产生的PCM信号是随机信号,不适于用示波器观察信号传输过程中的变化。所以我们用24比特为一帧的周期信号取代实际的数字语音信号作为发端的AK信号,该周期信号由两路数据(每路8比特)和7比特帧同步码以及一未定义比特复接而成。在收端对两路数据进行分接,形成两路并行码和两路串行码,发端的24比特信号可根据实验需要任意设置。

由两路实际的话音信号(或两路正弦信号)形成的PCM时分复用信号则不再经过调制、解调而直接送给PCM译码器,实验者可以观察到PCM话音(或正弦信号)波形、量化噪声、过载噪声,从而理解PCM编译码原理。

HDB3码及AMI码是基带传输中的重要码型,其编码规律、位同步提取原理是课堂教学中的重点和难点,因此也是本实验系统重点考虑的内容。

目前ΔM应用不广泛且无统一的国际标准,故本实验系统中没有考虑。

TX-3B型通信原理教学实验系统由下面十一个单元构成,其印刷电路板布局图见后。

1. 数字信源单元

该单元产生码速率约为170.5KB的单极性不归零码(NRZ码),数字信号帧长为24bit,其中包括两路数字信息,每路8bit,另外8bit中的7bit为集中插入帧同步码,1bit无定义。本单元还产生了M序列信号。

2. HDB3编译码单元

本单元用CD22103芯片完成HDB3或AMI码的编译码,用带通滤波器及电荷泵锁相环提取位同步信号。

信源部分的分频器、三选一、倒相器、抽样以及(AMI)HDB3编译码专用集成芯片CD22103等电路的功能可以用一片EPLD完成,具体见附录四。

3. 数字调制单元

该单元将NRZ码对频率约为2.216MHZ的正弦载波进行调制,产生2DPSK及2ASK信号。将NRZ码对2.216MHZ及1.608MHZ的正弦信号进行调制产生2FSK信号。

4. 载波同步单元

该单元采用平方环从2DPSK信号中提取相干载波。

5. 2DPSK解调单元

该单元采用相干解调方法解调2DPSK信号。

6. 2FSK解调单元

该单元采用过零检测方法解调2FSK信号。

7. 位同步单元

该单元用全数字锁相环从信源的NRZ信号中或从2DPSK解调单元(或2FSK解调单元)的比较器输出信号中提取位同步信号。

8. 帧同步单元

该单元从信源的NRZ信号或从2DPSK解调单元(或2FSK解调单元)解调输出的NRZ 信号中提取帧同步信号。

9. 数字终端单元

该单元输入NRZ信号、位同步信号、帧同步信号,在位同步及帧同步信号控制下,将两路数字信息从时分复用NRZ信号分接出来,并用发光二极管显示。

·2·

10. PCM编译码单元

本单元采用TP3057芯片对两路模拟音频信号进行PCM编码和译码。时分复用PCM 信号码速率为2.048MB,帧结构类似于PCM基群信号,但只传输两路数字音频信号,其中一路信号放在第2个时隙,另一路可放在第1、2、5、7任何一个时隙内,第0个时隙中有7位帧同步码,其余29个时隙为全0码。

11. 两人通话单元

该单元包含音频放大和衰减电路,与PCM编译码单元连接可进行两人时分复用通话实验。话音抽样频率可选择为8K/4K/2K Hz。

用上述前8个单元可构成一个理想信道2DPSK或者2FSK通信系统,用1、6、7、8单元可构成一个理想信道数字基带通信系统。

利用TX-5型实验设备,可开设数字基带信号、数字调制、模拟锁相环与载波同步、数字解调与眼图、数字锁相环与位同步、帧同步、时分复用数字基带通信系统、时分复用2DPSK/ 2FSK通信系统、PCM编译码、时分复用通话与抽样定理等十一个实验。通过这些实验,同学们可以获得数字通信时分复用技术及传输技术的感性认识、巩固课堂上所学的理论知识。

在学习《通信原理》这门课之前,同学们已基本具备了模拟电路及数字电路的分析、设计及调试能力,通信实验的主要目的是帮助大家理解通信系统的整体概念及基本理论。因此在实验指导书中,不必详细地分析各个单元电路的工作过程,只说明了它们的作用。

TX-5型实验设备所需三输出直流稳压电源(+5V、3A,+12V、0.5A, 12V、0.5A)已内置,实验时只需将交流220V通过电源线接到实验箱左侧的插座内。电源开关在实验板左下角,开关中带指示灯。

实验其他必备20MHZ双踪示波器,万用表等。在某些实验步骤中,需用频率计、低失真度低频信号源、失真仪、频谱仪等,但无这些仪器时绝大部分实验内容仍可完成。

本实验设备还有待进一步完善,实验指导书中也难免有不当之处,期望同学们及有关老师提出宝贵意见。

·3·

·

实验一数字基带信号

一、实验目的

1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、实验内容

1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形。

三、基本原理

本实验使用数字信源模块和HDB3编译码模块。

1、数字信源

本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。发光二极管亮状态表示1码,熄状态表示0码。

本模块有以下测试点及输入输出点:

? CLK 晶振信号测试点

? BS-OUT 信源位同步信号输出点/测试点(2个)

? FS 信源帧同步信号输出点/测试点

? NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)

图1-1中各单元与电路板上元器件对应关系如下:

?晶振CRY:晶体;U1:反相器7404

?分频器U2:计数器74161;U3:计数器74193;U4:计数器40160 ?并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、

数据1、数据2相对应;发光二极管:左起分别与一帧

中的24位代码相对应

·5·

·6· ? 八选一

U5、U6、U7:8位数据选择器4512 ? 三选一

U8:8位数据选择器4512 ? 倒相器

U20:非门74HC04 ? 抽样

U9:D 触发器74HC74

图1-1 数字信源方框图

图1-2 帧结构

下面对分频器,八选一及三选一等单元作进一步说明。

(1)分频器

74161进行13分频,输出信号频率为341kHz 。74161是一个4位二进制加计数器,预置在3状态。

74193完成÷2、÷4、÷8、÷16运算,输出BS 、S1、S2、S3等4个信号。BS 为位同步信号,频率为170.5kHz 。S1、S2、S3为3个选通信号,频率分别为BS 信号频率的1/2、1/4和1/8。74193是一个4位二进制加/减计数器,当CPD= PL =1、0=MR 时,可在Q 0、Q 1、Q 2及Q 3端分别输出上述4个信号。

40160是一个二一十进制加计数器,预置在7状态,完成÷3运算,在Q 0和Q 1端分别输出选通信号S4、S5,这两个信号的频率相等、等于S3信号频率的1/3。

分频器输出的S1、S2、S3、S4、S5等5个信号的波形如图1-4(a )、(b )所示。

(2)八选一

采用8路数据选择器4512,它内含了8路传输数据开关、地址译码器和三态驱动器,其真值表如表1-1所示。U5、U6和U7的地址信号输入端A 、B 、C 并连在一起并分别接

·7· S1、S2、S3信号,它们的8个数据信号输入端x0 ~ x7分别K1、K2、K3输出的8

个并行信号连接。由表1-1可以分析出U5、U6、U7输出信号都是码速率为170.5KB 、以8位为周期的串行信号。

(3)三选一

三选一电路原理同八选一电路原理。S4、S5信号分别输入到U8的地址端A 和B ,U5、U6、U7输出的3路串行信号分别输入到U8的数据端x3、x0、x1,U8的输出端即是一个码速率为170.5KB 的2路时分复用信号,此信号为单极性不归零信号(NRZ )。

S 3

S2

S1

(a)

S5

S4

S3

(b)

图1-4 分频器输出信号波形

(4)倒相与抽样

图1-1中的NRZ 信号的脉冲上升沿或下降沿比BS 信号的下降沿稍有点迟后。在实 验二的数字调制单元中,有一个将绝对码变为相对码的电路,要求输入的绝对码信号的上升沿及下降沿与输入的位同步信号的上升沿对齐,而这两个信号由数字信源提供。倒相与抽样电路就是为了满足这一要求而设计的,它们使NRZ-OUT 及BS-OUT 信号满足码变换电路的要求。

表1-1 4512真值表

C

B A INH DIS Z 0

0 0 0 0 x0 0

0 1 0 0 x1 0

1 0 0 0 x

2 0

1 1 0 0 x3 1

0 0 0 0 x4 1

0 1 0 0 x5 1

1 0 0 0 x6 1

1 1 0 0 x7 Φ

Φ Φ 1 0 0 Φ

Φ Φ Φ 1 高阻

·8· FS 信号可用作示波器的外同步信号,以便观察2DPSK 等信号。

FS 信号、NRZ-OUT 信号之间的相位关系如图1-5所示,图中NRZ-OUT 的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111。FS 信号的低电平、高电平分别为4位和8位数字信号时间,其上升沿比NRZ-OUT 码第一位起始时间超前一个码元。

FS

NRZ-OUT

图1-5 FS 、NRZ-OUT 波形 2. HDB 3编译码

原理框图如图1-6所示。本模块内部使用+5V 和-5V 电压,其中-5V 电压由-12V 电源经三端稳压器7905变换得到。 本单元有以下信号测试点:

? NRZ 译码器输出信号

? BS-R 锁相环输出的位同步信号

?(AMI )HDB 3 编码器输出信号

? BPF 带通滤波器输出信号

? DET (AMI )HDB 3整流输出信号

图1-6 HDB 3编译码方框图

本模块上的开关K4用于选择码型,K4位于左边(A 端)选择AMI 码,位于右边(H 端)选择HDB 3码。

图1-6中各单元与电路板上元器件的对应关系如下:

? HDB 3编译码器 U10:HDB 3编译码集成电路CD22103A ? 单/双极性变换器 U11:模拟开关4052

? 双/单极性变换器 U12:非门74HC04

? 相加器 U17:或门74LS32

? 带通 U13、U14:运放UA741

?限幅放大器U15:运放LM318

?锁相环U16:集成锁相环CD4046

信源部分的分频器、三选一、倒相器、抽样以及(AMI)HDB3编译码专用集成芯片CD22103等电路的功能可以用一片EPLD(EPM7064)芯片完成,说明见附录四。

下面简单介绍AMI、HDB3码编码规律。

AMI码的编码规律是:信息代码1变为带有符号的1码即+1或-1,1的符号交替反转;信息代码0的为0码。AMI码对应的波形是占空比为0.5的双极性归零码,即脉冲宽度τ与码元宽度(码元周期、码元间隔)T S的关系是τ=0.5T S。

HDB3码的编码规律是:4个连0信息码用取代节000V或B00V代替,当两个相邻V 码中间有奇数个信息1码时取代节为000V,有偶数个信息1码(包括0个信息1码)时取代节为B00V,其它的信息0码仍为0码;信息码的1码变为带有符号的1码即+1或-1;HDB3码中1、B的符号符合交替反转原则,而V的符号破坏这种符号交替反转原则,但相邻V码的符号又是交替反转的;HDB3码是占空比为0.5的双极性归零码。

设信息码为0000 0110 0001 0000 0,则NRZ码、AMI码,HDB3码如图1-8所示。

分析表明,AMI码及HDB3码的功率谱如图1-9所示,它不含有离散谱f S成份(f S =1/T S,等于位同步信号频率)。在通信的终端需将它们译码为NRZ码才能送给数字终端机或数模转换电路。在做译码时必须提供位同步信号。工程上,一般将AMI或HDB3码数字信号进行整流处理,得到占空比为0.5的单极性归零码(RZ|τ=0.5T S)。这种信号的功率谱也在图1-9中给出。由于整流后的AMI、HDB3码中含有离散谱f S,故可用一个窄带滤波器得到频率为f S的正弦波,整形处理后即可得到位同步信号。

图1-8 NRZ、AMI、HDB3关系图

频谱

图1-9 AMI、HDB3、RZ|τ=0.5T

S

本单元用CD22103集成电路进行AMI或HDB3编译码。当它的第3脚(HDB3/ AMI)

接+5V时为HDB3编译码器,接地时为AMI编译码器。编码时,需输入NRZ码及位同步信号,它们来自数字信源单元,已在电路板上连好。CD22103编码输出两路并行信号+H-OUT 和-H-OUT,它们都是半占空比的正脉冲信号,分别与AMI或HDB3码的正极性信号及负极性信号相对应。这两路信号经单/双极性变换后得到AMI码或HDB3。

双/单极性变换及相加器构成一个整流器。整流后的DET信号含有位同步信号频率离散谱。由于位同步频率比较低,很难将有源带通滤波器的带宽做得很窄,它输出的信号BPF是一个幅度和周期都不恒定的正弦信号。对此信号进行限幅放大处理后得到幅度恒定、周期变化的脉冲信号,但仍不能将此信号作为译码器的位同步信号,需作进一步处理。当锁相环的自然谐振频率足够小时,对输入的电压信号可等效为窄带带通滤波器(关于锁相环的基本原理将在实验三中介绍)。本单元中采用电荷泵锁相环构成一个Q 值约为35的的窄带带通滤波器,它输出一个符合译码器要求的位同步信号BS-R。

译码时,需将AMI或HDB3码变换成两路单极性信号分别送到CD22103的第11、第13脚,此任务由双/单变换电路来完成。

当信息代码连0个数太多时,从AMI码中较难于提取稳定的位同步信号,而HDB3中连0个数最多为3,这对提取高质量的位同信号是有利的。这也是HDB3码优于AMI码之处。HDB3码及经过随机化处理的AMI码常被用在PCM一、二、三次群的接口设备中。

在实用的HDB3编译码电路中,发端的单/双极性变换器一般由变压器完成;收端的双/单极性变换电路一般由变压器、自动门限控制和整流电路完成,本实验目的是掌握HDB3编码规则,及位同步提取方法,故对极性变换电路作了简化处理,不一定符合实用要求。

CD22103的引脚及内部框图如图1-10所示,详细说明如下:

图1-10 CD22103的引脚及内部框图

(1)NRZ-IN 编码器NRZ信号输入端;

(2)CTX 编码时钟(位同步信号)输入端;

(3)HDB3/ AMI 码型选择端:接TTL高电平时,选择HDB3码;接TTL低电平时,

选择AMI码;

(4)NRZ-OUT HDB3译码后信码输出端;

(5)CRX 译码时钟(位同步信号)输入端;

(6)RAIS 告警指示信号(AIS)检测电路复位端,负脉冲有效;

(7)AIS AIS信号输出端,有AIS信号为高电平,无ALS信号时为低电平;(8)V SS接地端;

(9)ERR 不符合HDB3/AMI编码规则的误码脉冲输出端;

(10)CKR HDB3码的汇总输出端;

(11)+HDB3-IN HDB3译码器正码输入端;

(12)LTF HDB3译码内部环回控制端,接高电平时为环回,接低电平为正常;(13)-HDB3-IN HDB3译码器负码输入端;

(14)-HDB3-OUT HDB3编码器负码输出端;

(15)+HDB3-OUT HDB3编码器正码输出端;

(16)V DD接电源端(+5V)

CD22103主要由发送编码和接收译码两部分组成,工作速率为50Kb/s~10Mb/s。两部分功能简述如下。

发送部分:

当HDB3端接高电平时,编码电路在编码时钟CTX下降沿的作用下,将NRZ码编成HDB3码(+HDB3-OUT、-HDB3-OUT两路输出);接低电平时,编成AMI码。编码输出比输入码延迟4个时钟周期。

接收部分:

(1)在译码时钟CRX的上升沿作用下,将HDB3码(或AMI码)译成NRZ码。译码输出比输入码延迟4个时钟周期。

(2)HDB3码经逻辑组合后从CKR端输出,供时钟提取等外部电路使用;

(3)可在不断业务的情况下进行误码监测,检测出的误码脉冲从ERR端输出,其脉宽等于收时钟的一个周期,可用此进行误码计数。

(4)可检测出所接收的AIS码,检测周期由外部RAIS决定。据CCITT规定,在RAIS 信号的一个周期(500s)内,若接收信号中“0”码个数少于3,则AIS端输出高电平,使系统告警电路输出相应的告警信号,若接收信号中“0”码个数不少于3,AIS端输出低电平,表示接收信号正常。

(5)具有环回功能

四、实验步骤

本实验使用数字信源单元和HDB3编译码单元。

1、熟悉数字信源单元和HDB3编译码单元的工作原理。接好电源线,打开电源开关。

2、用示波器观察数字信源单元上的各种信号波形。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位

置的GND点均可,进行下列观察:

(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3、用示波器观察HDB3编译单元的各种波形。

仍用信源单元的FS信号作为示波器的外同步信号。

(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的(AMI)HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码和HDB3码;再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。观察AMI码时将HDB3单元的开关K4置于A端,观察HDB3码时将K4置于H端,观察时应注意AMI、HDB3码是占空比等于0.5的双极性归零码。编码输出HDB3(AMI)比输入NRZ-OUT延迟了4个码元。

(2)将K1、K2、K3置于0111 0010 0000 1100 0010 0000态,观察并记录对应的AMI码和HDB3码。

(3)将K1、K2、K3置于任意状态,K4先置A(AMI)端再置H(HDB3)端,CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的DET、BPF、BS-R和NRZ ,观察这些信号波形。观察时应注意:

?HDB3单元的NRZ信号(译码输出)滞后于信源模块的NRZ-OUT信号(编码输入)8个码元。

? DET是占空比等于0.5的单极性归零码。

?BPF信号是一个幅度和周期都不恒定的正弦信号,BS-R是一个周期基本恒定(等于一个码元周期)的TTL电平信号。

?信源代码连0个数越多,越难于从AMI码中提取位同步信号(或者说要求带通滤波的Q值越高,因而越难于实现),而HDB3码则不存在这种问题。本实验中若24位信源代码中连零很多时,则难以从AMI码中得到一个符合要求的位同步信号,因此不能完成正确的译码(由于分离参数的影响,各实验系统的现象可能略有不同。一般将信源代码置成只有1个“1”码的状态来观察译码输出)。若24位信源代码全为“0”码,则更不可能从AMI信号(亦是全0信号)得到正确的位同步信号。

五、实验报告要求

1. 根据实验观察和纪录回答:

(1)不归零码和归零码的特点是什么?

(2)与信源代码中的“1”码相对应的AMI码及HDB3码是否一定相同?为什么?

2. 设代码为全1,全0及0111 0010 0000 1100 0010 0000,给出AMI及HDB3码的代码和波形。

3. 总结从HDB3码中提取位同步信号的原理。

4. 试根据占空比为0.5的单极性归零码的功率谱密度公式说明为什么信息代码中的连0码越长,越难于从AMI 码中提取位同步信号,而HDB 3码则不存在此问题。

5. 根据公式n p n C R C K I ωζπω2,2/173617o ==,)41(82ζζ

ω+=n L B 计算环路自然谐振频率ωn ,阻尼系数ζ和等效噪声带宽B L 。式中I P =0.05A ,K o =8π×103 rad/s.v ,

R36=10Ω,C 17=100μF 。再用Q= f o /B L 计算锁相环等效带通滤波器的品质因数,式中f o =170.5KHZ 。

实验二数字调制

一、实验目的

1、掌握绝对码、相对码概念及它们之间的变换关系。

2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。

3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。

4、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。

二、实验内容

1、用示波器观察绝对码波形、相对码波形。

2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。

3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。

三、基本原理

本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2ASK、2FSK、2DPSK信号。调制模块内部只用+5V电压。

数字调制单元的原理方框图如图2-1所示,电原理图如图2-2所示(见附录)。

图2-1 数字调制方框图

本单元有以下测试点及输入输出点:

? CAR 2DPSK信号载波测试点

? BK 相对码测试点

? 2DPSK 2DPSK信号测试点/输出点,V P-P>0.5V

? 2FSK 2FSK信号测试点/输出点,V P-P>0.5V

? 2ASK 2ASK信号测试点,V P-P>0.5V

用2-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对应关系如下:

?÷2(A)U8:双D触发器74LS74

?÷2(B)U9:双D触发器74LS74

?滤波器A V6:三极管9013,调谐回路

?滤波器B V1:三极管9013,调谐回路

?码变换U18:双D触发器74LS74;U19:异或门74LS86

? 2ASK调制U22:三路二选一模拟开关4053

? 2FSK调制U22:三路二选一模拟开关4053

? 2PSK调制U21:八选一模拟开关4051

?放大器V5:三极管9013

?射随器V3:三极管9013

将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。

下面重点介绍2PSK、2DPSK。2PSK、2DPSK波形与信息代码的关系如图2-3所示。

图2-3 2PSK、2DPSK波形

图中假设码元宽度等于载波周期的1.5倍。2PSK信号的相位与信息代码的关系是:前后码元相异时,2PSK信号相位变化180?,相同时2PSK信号相位不变,可简称为“异变同不变”。2DPSK信号的相位与信息代码的关系是:码元为“1”时,2DPSK信号的相位变化180?。码元为“0”时,2DPSK信号的相位不变,可简称为“1变0不变”。

应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。实际工程中,2PSK 或2DPSK信号载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。但不管是那种关系,上述结论总是成立的。

本单元用码变换——2PSK调制方法产生2DPSK信号,原理框图及波形图如图2-4

所示。相对于绝对码AK 、2PSK 调制器的输出就是2DPSK 信号,相对于相对码、2PSK 调制器的输出是2PSK 信号。图中设码元宽度等于载波周期,已调信号的相位变化与AK 、BK 的关系当然也是符合上述规律的,即对于AK 来说是“1变0不变”关系,对于BK 来说是“异变同不变”关系,由AK 到BK 的变换也符合“1变0不变”规律。

图2-4中调制后的信号波形也可能具有相反的相位,BK 也可能具有相反的序列即00100,这取决于载波的参考相位以及异或门电路的初始状态。

2DPSK 通信系统可以克服上述2PSK 系统的相位模糊现象,故实际通信中采用2DPSK 而不用2PSK (多进制下亦如此,采用多进制差分相位调制MDPSK ),此问题将在数字解调实验中再详细介绍。

图2-4 2DPSK 调制器

2PSK 信号的时域表达式为 S(t)= m(t)Cos ωc t

式中m(t)为双极性不归零码BNRZ ,当“0”、“1”等概时m(t)中无直流分量,S(t)中无载频分量,2DPSK 信号的频谱与2PSK 相同。

2ASK 信号的时域表达式与2PSK 相同,但m(t)为单极性不归零码NRZ ,NRZ 中有直流分量,故2ASK 信号中有载频分量。

2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。时域表达式为t t m t t m t S c c 21cos )(cos )()(ωω+=,式中m(t)为NRZ 码。

图2-5 2ASK 、2PSK (2DPSK )、2FSK 信号功率谱

设码元宽度为T S,f S =1/T S在数值上等于码速率,2ASK、2PSK(2DPSK)、2FSK的功率谱密度如图2-5所示。可见,2ASK、2PSK(2DPSK)的功率谱是数字基带信号m(t)功率谱的线性搬移,故常称2ASK、2PSK(2DPSK)为线性调制信号。多进制的MASK、MPSK (MDPSK)、MFSK信号的功率谱与二进制信号功率谱类似。

本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2ASK、2PSK(2DPSK)、2FSK也具有离散谱。

四、实验步骤

本实验使用数字信源单元及数字调制单元。

1、熟悉数字调制单元的工作原理。接通电源,打开实验箱电源开关。将数字调制单元单刀双掷开关K7置于N端。

2、用数字信源单元的FS信号作为示波器的外同步信号,示波器CH1接信源单元的(NRZ-OUT)AK,CH2接数字调制单元的BK,信源单元的K1、K2、K3置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。

3、示波器CH1接2DPSK,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK信号相位变化与信源代码的关系)。注意:2DPSK信号的幅度比较小,要调节示波器的幅度旋钮,而且信号本身幅度可能不一致,但这并不影响信息的正确传输。

4、示波器CH1接AK、CH2依次接2FSK和2ASK;观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。

5、用频谱议观察AK、2ASK、2FSK、2DPSK信号频谱(条件不具备时不进行此项观察)。

五、实验报告要求

1、设绝对码为全1、全0或1001 1010,求相对码。

2、设相对码为全1、全0或1001 1010,求绝对码。

3、设信息代码为1001 1010,载频分别为码元速率的1倍和1.5倍,画出2DPSK 及2PSK信号波形。

4、总结绝对码至相对码的变换规律、相对码至绝对码的变换规律并设计一个由相对码至绝对码的变换电路。

5、总结2DPSK信号的相位变化与信息代码(即绝对码)之间的关系以及2DPSK信号的相位变化与相对码之间的关系(即2PSK的相位变化与信息代码之间的关系)。

实验三模拟锁相环与载波同步

一、实验目的

1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。

2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。

3. 了解相干载波相位模糊现象产生的原因。

二、实验内容

1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。

2. 观察环路的捕捉带和同步带。

3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。

三、基本原理

通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。本实验系统的载波同步提取模块用平方环,原理方框图如图3-1所示,电原理图如图3-2所示(见附录)。模块内部使用+5V、+12V、-12V电压,所需的2DPSK输入信号已在实验电路板上与数字调制单元2DPSK输出信号连在一起。

图3-1 载波同步方框图

本模块上有以下测试点及输入输出点:

? MU 平方器输出测试点,V P-P>1V

? VCO VCO输出信号测试点,V P-P>0.2V

? U d鉴相器输出信号测试点

? CAR-OUT 相干载波信号输出点/测试点

图3-1中各单元与电路板上主要元器件的对应关系如下:

?平方器U25:模拟乘法器MC1496

通信原理实验指导书(完整)

实验一:抽样定理实验 一、实验目的 1、熟悉TKCS—AS型通信系统原理实验装置; 2、熟悉用示波器观察信号波形、测量频率与幅度; 3、验证抽样定理; 二、实验预习要求 1、复习《通信系统原理》中有关抽样定理的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、概述 在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。因此,采取多路化制式是极为重要的通信手段。最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础的。在工作设备中,抽样过程是模拟信号数字化的第一步。抽样性能的优劣关系到整个系统的性能指标。 作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。 图1-1 单路PCM系统示意图 为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。 2、抽样定理 抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。因此,对于一个最高频率为3400Hz的语音信号m(t),可以用频率大于或等于6800Hz的样值序列来表示。抽样频率fs和语音信号m(t)的频谱如图1-2和图1-3所示。 由频谱可知,用截止频率为f H的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语音信号,通常采用8KHz抽样频率,这样可以留出1200Hz的防卫带,见图1-4。如果fs<2f H,就会出现频谱混迭的现象,如图1-5所示。 在验证抽样定理的实验中,我们用单一频率f H的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率f H,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。

通信原理心得体会

通信原理心得体会 篇一:通信原理学习心得 通信原理学习心得 一学期的通信原理课程结束了,但我对通信原理的学习永远不会结束。经过一个学期的学习我对通信原理有了深刻的认识,我知道这还远远不够,今后的日子里我要更加努力学习通信原理。学习是个艰难的过程,厌烦过,沮丧过,但同时也是充满着激情和快乐的。我想不管干什么都要自信,千万不要轻易的放弃,只要坚持不懈,一定会有结果的。 按照我的传统理解,通信就是信息的传输,在当今高度信息化的社会,信息和通信已经成为现代社会的命脉。所以我们要好好学习通信原理,可以预见,未来的通信系统对人们的生活方式和社会的发展将会产生更加重大和意义深远的影响。 通信原理是电子、通信、计算机络专业的一门理论性较强的专业基础课程,课程的重点是通信系统的性质、信号的传输、检测、处理的基本原理和方法以及信号调制,量化,编码,处理和传输的应用。该课程的特点是概念比较抽象,分析求解所用的数学知识较多。该课程的难点是理论性较强和比较抽象,然而我的数学基础并不够扎实,因此在数学分析与计算方面是一个难点,还有就是缺乏工程背景,而这门课又结合实际比较多,所以学这门课程并不容易,但我们要

好好学习通信原理。 对于通信原理这门课,一开始觉得很难,而且听学长们说通信原理是很难的课程,平时一定要好好学,不然自己学习习的日子根本就抓不到要点了。事实上好像也是如此,当然对于我这样的人,上课时 也不算是比较认真的,但是半学期的学习,我对通信原理确实有了一定的了解和认识。我知道学好通信原理需要一定的数学基础,所以我又翻阅了一下高数课本。翻阅高数课本之后,感觉轻松了一些。我认识到要完成通信,首先要对信号有一个充分的了解与认识,为了对这个信号进行传输我们要进行调制,并选择合适的信道,当然还要考虑噪声的干扰;在接收端我们通过解调把原始信号解调出来以完成我们的通信。 虽然该课程在学习上很困难,但我发现该课程在组织上遵循由特殊到一般、再由一般到特殊的符合认识规律的顺序,由通信系统性能分析到实际调制解调框图的设计等具体问题的应用的规律,后来又结合上机实验学习了MATLAB工具软件,通过Simulink或者MATLAB程序进行通信系统仿真,加深了我对通信系统的理解。 以上是我的学习心得,对于本门课程本想提出课程建议,但是老师讲的挺好的,基本没有什么建议可提。并且感觉老师讲的越来越好了,颜渊曾经这样评价自己的老师孔子,“仰

通信原理实验指导书

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验 (1) 实验二FM调制与解调实验 (5) 实验三ASK调制与解调实验 (8) 实验四FSK调制与解调实验 (11) 实验五时分复用数字基带传输 (14) 实验六光纤传输实验 (19) 实验七模拟锁相环与载波同步 (27) 实验八数字锁相环与位同步 (32)

实验一 AM调制与解调实验 一、实验目的 理解AM调制方法与解调方法。 二、实验原理 本实验中AM调制方法:原始调制信号为1.5V直流+1KHZ正弦交流信号,载波为20KHZ正弦交流信号,两者通过相乘器实现调制过程。 本实验中AM解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解AM调制方法与解调方法。

实验一参考结果

实验二 FM调制与解调实验 一、实验目的 理解FM调制方法与解调方法。 二、实验原理 本实验中FM调制方法:原始调制信号为2KHZ正弦交流信号,让其通过V/F (电压/频率转换,即VCO压控振荡器)实现调制过程。 本实验中FM解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解FM调制方法与解调方法。

通信原理实验 思考题

通信原理实验思考题 第三章数字调制技术 实验一FSK传输系统实验 实验后思考题: 1.FSK正交调制方式与传统的FSK调制方式有什么区别?有哪些特点? 答:传统的FSK调制方式采用一个模拟开关在两个独立振荡器中间切换,这样产生的波形在码元切换点的相位是不连续的。而且在不同的频率下还需采用不同的滤波器,在应用上非常不方便。采用正交调制的优点在于在不同的频率下可以自适应的将一个边带抑制掉,不需要设计专门的滤波器,而且产生的波形相位也是连续的,从而具有良好的频谱特性。 2.TPi03 和TPi04 两信号具有何关系? 答:正交关系 实验中分析: P28 2. 产生两个正交信号去调制的目的。 答:在FSK 正交调制方式中,必须采用FSK 的同相支路与正交支路信号;不然如果只采一路同相FSK 信号进行调制,会产生两个FSK 频谱信号,这需在后面采用较复杂的中频窄带滤波器。用两个正交信号去调制,可以提高频带利用率,减少干扰。 4.(1)非连续相位 FSK 调制在码元切换点的相位是如何的。 答:不连续的,当包含 N(N 为整数)个载波周期时,初始相位相同的相邻码元的波形(为整数)个载波周期时,和瞬时相位是连续的,当不是整数时,波形和瞬时相位 也是可能不连续的。 P29 1.(2)解调端的基带信号与发送端基带波形(TPi03)不同的原因? 答:这是由于解调端与发送端的本振源存在频差,实验时可根据以下方法调整:将调模块中的跳线KL01置于右端,然后调节电位器WL01,可以看到解调端基带信号与发送端趋于一致。 2.(2)思考接收端为何与发送端李沙育波形不同的原因? 答:李沙育图形的形状与两个输入信号的相位和频率都有关。 3. 为什么在全0或全1码下观察不到位定时的抖动? 答:因为在全0或全1码下接收数据没有跳变沿,译码器无论从任何时刻开始译码均能正确译码,因此译码器无须进行调整,当然就看不到位定时的抖动了。 实验二BPSK传输系统实验 实验后思考题: 1.写出眼图正确观察的方法。 答:眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。 观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”。从“眼图”上可以观察出码间串扰和噪声的影响,从而估计

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

光通信原理实验指导书

实验一模拟信号光调制实验 一、实验目的 1、了解模拟信号光纤通信原理。 2、了解不同频率不同幅度的正弦波、三角波、方波等模拟信号的系统光传输性能情况。 二、实验内容 1、测量不同的正弦波、三角波和方波的光调制系统性能。 三、实验器材 1、主控&信号源、25号模块各1块 2、双踪示波器1台 3、连接线若干 4、光纤跳线1根 四、实验原理 1、实验原理框图 光调制功率检测框图 模拟信号光调制传输系统框图 2、实验框图说明 本实验是输入不同的模拟信号,测量模拟光调制系统性能。如模拟信号光调制传输系统框图所示,不同频率不同幅度的正弦波、三角波和方波等信号,经25号模块的光发射机单元,完成电光转换,然后通过光纤跳线传输至25号模块的光接收机单元,进行光电转换处理,从而还原出原始模拟信号。实验中利用光功率计对光发射机的功率检测,了解模拟光调制系统的性能。 注:根据实际模块配置情况不同,自行选择不同波长(比如1310nm、1550nm)的25号光收发模块进行实验。 五、注意事项 1、在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。 2、不要带电插拔信号连接导线。 六、实验步骤 1、系统关电,参考系统框图,依次按下面说明进行连线。 (1)用连接线将信号源A-OUT,连接至25号模块的TH1模拟输入端。

(2)用光纤跳线连接25号模块的光发端口和光收端口,此过程是将电信号转换为光信号,经光纤跳线传输后再将光信号还原为电信号。注意,连接光纤跳线时需定位销口方向且操作小心仔细,切勿损伤光纤跳线或光收发端口。 (3)用同轴连接线将25号模块的P4光探测器输出端,连接至23号模块的P1光探测器输入端。 2、设置25号模块的功能初状态。 (1)将收发模式选择开关S3拨至“模拟”,即选择模拟信号光调制传输。 (2)将拨码开关J1拨至“ON”,即连接激光器;拨码开关APC此时选择“ON”或“OFF”都可,即APC功能可根据需要随意选择。 (3)将功能选择开关S1拨至“光功率计”,即选择光功率计测量功能。 3、进行系统联调和观测。 (1)打开系统和各实验模块电源开关。设置主控模块的菜单,选择【主菜单】→【光纤通信】→【模拟信号光调制】。此时系统初始状态中A-OUT输出为1KHz正弦波。调节信号源模块的旋钮W1,使A-OUT输出正弦波幅度为1V。 (2)选择进入主控&信号源模块的【光功率计】功能菜单,根据所选模块波长类型选择波长【1310nm】或【1550nm】。 (3)保持信号源频率不变,改变信号源幅度测量光调制性能:调节信号源模块的W1,改变输入信号的幅度,记录不同幅度时的光调制功率变化情况。 (4)保持信号源幅度不变,改变信号源频率测量光调制性能:改变输入信号的频率,自行设计表格记录不同频率时的光调制功率变化情况。 (5)拆除23号模块和25号模块之间的同轴连接线,适当调节25号模块的W5接收灵敏度旋钮,用示波器对比观察光接收机的模拟输出端TH4和光发射机的模拟输入端TH1,了解模拟光调制系统线性度。 (6)改变信号源的波形,用三角波或方波进行上述实验步骤,进行相关测试,表格自拟。 七、实验报告 1、画出实验框图,并阐述模拟信号光调制基本原理。

通信原理课程设计报告2

¥ 课程设计报告? < 课程名称通信原理 设计题目 DSB与2ASK调制与解调 专业通信工程 班级 学号 姓名 完成日期 …

课程设计任务书 设计题目:DSB与2ASK调制与解调 设计内容与要求: 设计内容: 1.根据DSB的调制原理设计线路,进行仿真模拟调制DSB的调制和解调过程,并通过仿真软件观察信号以及的调制过程中信号波形和频谱的变化。 2. 根据ASK的调制原理设计线路,进行仿真模拟调制DSB的调制和解调过程,并通过仿真软件观察信号以及的调制过程中信号波形和频谱的变化。 3.在设计过程中分析信号变化的过程和思考仿真过程的设计原理。 ; 设计要求: 1.独立完成DSB与ASK的调制与解调; 2.运用仿真软件设计出DSB与ASK的调制线路 3.分析信号波形和频谱 指导教师:范文 2012年12月16日 课程设计评语 ( 成绩: 指导教师:_______________

年月日

一.调制原理: 调制: 将各种数字基带信号转换成适于信道传输的数字调制信号(已调信号或频带信号); 时域定义:调制就是用基带信号去控制载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,而解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号。 频域定义:调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复为基带信号的反过程. 根据所控制的信号参量的不同,调制可分为: 调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。 调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。 调相,利用原始信号控制载波信号的相位。 调制的目的是把要传输的模拟信号或数字信号变换成适合信道传输的信号,这就意味着把基带信号(信源)转变为一个相对基带频率而言频率非常高的代通信号。该信号称为已调信号,而基带信号称为调制信号。调制可以通过使高频载波随信号幅度的变化而改变载波的幅度、相位或者频率来实现。调制过程用于通信系统的发端。在接收端需将已调信号还原成要传输的原始信号,也就是将基带信号从载波中提取出来以便预定的接受者(信宿)处理和理解的过程。该过程称为解调。

通信原理SystemView仿真实验指导书

实验一图符库的使用 一、实验目的 1、了解SystemVue图符库的分类; 2、掌握SystemVue各个功能库常用图符的功能及其使用方法。 二、实验内容 按照实例使用图符构建简单的通信系统,并了解每个图符的功能。 三、基本原理 SystemVue的图符库功能十分丰富,一共分为以下几个大类 1.基本库 SystemView的基本库包括信源库、算子库、函数库、信号接收器库等,它为该系统仿真提供了最基本的工具。 (信源库):SystemView为我们提供了16种信号源,可以用它来产生任意信号 (算子库)功能强大的算子库多达31种算子,可以满足您所有运算的要求 (函数库)32种函数尽显函数库的强大库容! (信号接收器库)12种信号接收方式任你挑选,要做任何分析都难不倒它 2.扩展功能库 扩展功能库提供可选择的能够增加核心库功能的用于特殊应用的库。它允许通信、DSP、射频/模拟和逻辑应用。 (通信库):包含有大量的通信系统模块的通信库,是快速设计和仿真现代通信系统的有力工具。这些模块从纠错编码、调制解调、到各种信道模型一应俱全。 (DSP库):DSP库能够在你将要运行DSP芯片上仿真DSP系统。该库支持大多DSP芯片的算法模式。例如乘法器、加法器、除法器和反相器的图标代表真正的DSP算法操作符。 还包括高级处理工具:混合的Radix FFT、FIR和IIR滤波器以及块传输等。 (逻辑运算库):逻辑运算自然离不开逻辑库了,它包括象与非门这样的通用器件的图标、74系列器件功能图标及用户自己的图标等。 (射频/模拟库):射频/模拟库支持用于射频设计的关键的电子组件,例如:混合器、放大器和功率分配器等。 3.扩展用户库

通信原理-习题及答案概要

一、填空 1、单音调制时,幅度A不变,改变调制频率Ωm,在PM中,其最大相移△θm 与Ωm_______关系,其最大频偏△?m与Ωm__________;而在FM,△θm与Ωm________,△?m与Ωm_________。 1、在载波同步中,外同步法是指____________________,内同步法是指 ________________________。 2、已知一种差错控制编码的可用码组为:0000、1111。用于检错,其检错能力 为可检;用于纠正位错码;若纠一位错,可同时检查错。 3、位同步信号用于。 1.单边带信号产生的方式有和。 2.设调制信号的最高频率为f H ,则单边带信号的带宽为,双边带信号的带宽为,残留边带信号的带宽为。 3.抽样的方式有以下2种:抽样、抽样,其中没有频率失真的方式为抽样。 4.线性PCM编码的过程为,,。 5.举出1个频分复用的实例。 6.当误比特率相同时,按所需E b /n o 值对2PSK、2FSK、2ASK信号进行排序 为。 7、为了克服码间串扰,在___________之前附加一个可调的滤波器;利用____________的方法将失真的波形直接加以校正,此滤波器称为时域均衡器。 1、某数字传输系统传送8进制信号,码元速率为3000B,则该系统的信息速 率为。 2、在数字通信中,可以通过观察眼图来定性地了解噪和对系统性 能的影响。 3、在增量调制系统中,当模拟信号斜率陡变时,阶梯电压波形有可能跟不 上信号的变化,形成很大失真的阶梯电压波形,这样的失真称 为。 4、为了防止二进制移相键控信号在相干解调时出现“倒π”现象,可以对 基带数字信号先进行,然后作BPSK调制。 1、通信系统的性能指标主要有和,在模拟通信系统中前者用有效传输带宽衡量,后者用接收端输出的衡量。 2、对于一个数字基带传输系统,可以用实验手段通过在示波器上观察该系统

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

通信原理课程设计心得体会

通信原理课程设计心得体会 、时分解复用原理 为了提高信道利用率,使多路已抽样的信号组合起来沿同一信道传输而互相不干扰,称时分多路复用。时分复用的解调过程称为时分解复用。目前采用较多的是频分多路解复用和时分多路解复用。频分多路解复用用于模拟通信,而时分多路解复用用于数字通信。为了实现TDM传输,要把传输时间分成若干个时隙,在每个时隙内传输一路信号,将若干个原始的脉冲调制信号在时间上进行交错排列,从而形成一个复合脉冲串,该脉冲串扰码后经信道传输到达接收端。时分解复用通信,是把各路信号在同一信道上占有不同时间间隙进行通信分离出原来的模拟信号。由抽样定理可知,将时间上离散的信号变成时间上连续的信号,其在信道上占用时间的有限性,为多路信号沿同一信道传输提供了条件。时分解复用是建立在抽样定理的基础上的,因为抽样定理连续的基带信号由可能被在时间上离散出现的抽样脉冲所代替.具体说,就是把时间分成一些均匀的时间间隙,将各路信号的传输时间分配在不同的时间间隙,以达到互相分开,互不干扰的目的。抽样脉冲占据时间一般较短,在抽样脉冲之间就留出间隙.利用这些空隙便可以传输其他信号的抽样,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽

样值占用的时间越短,能够传输的数据也就越多.时分解复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别互相分开,互不干扰并不失真地还原出原来的模拟信号。 在通信系统中,同步具有相当重要的地位。通信系统能否具有有效、可靠地工作,在很大程度上依赖有无良好的同步系统。同步可分为载波同步、位同步、帧同步和网同步几大类型。他们在通信系统中都具有相当重要的作用。时分解复用通信中的同步技术包括位同步和帧同步,这是数字通信的又一个重要特点。时分解复用的电路原理就是先通过帧同步信号和位同步信号把各路信号数据分开,然后通过移位寄存器构成的并/串转换电路输出串行的数据,把时分复用的调制信号不失真的分离出来。 位同步 位同步的目的是确定数字通信中的个码元的抽样时刻,即把每个码元加以区分,使接受端得到一连串的码元序列,这一连串的码元列代表一定的信息。位同步是最基本的同步,是实现帧同步的前提。位同步的基本含义是收、发两端机的时钟频率必须同频、同相,这样接收端才能正确接收和判决发送端送来的每一个码元。因此,接收端必须提供一个确定抽样判决时刻的定时脉冲序列.

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

通信原理实验指导书

通信原理实验指导书 实验准备步骤 在进行通信原理实验之前,请同学们按照下面的步骤进行实验准备: 1.通过串口线、程序下载线连接PC机与实验平台; 2.打开稳压电源,调节电压输入值为12V; 3.检查电源线连接是否正确,白黑相间线连接正极,纯黑线连接负极,切 勿接反; 4.连接无误后,打开实验板电源; 5.打开通信原理实验界面,如下图所示配置并打开串口; 6.将实验板上的拨码开关全部拨到ON; 7.下载程序到实验板上: 打开quartusⅡ5.0软件,选择Tools/programmer,设置Hardware Setup为ByteBlasterll[LPT1],Mode为Passive Serial,单击Add File,选择文件路径E:\实验平台程序与文档\通信原理实验平台程序与文档 \FPGA\toplevel.sof,文件选择完毕后,单击Start 进行程序下载,当 程序下载完毕,且在实验板下载指示灯(LED后四位)未灭时,拔掉实 验板上下载线,如果此过程中指示灯灭了,显示程序下载过程失败,请 重新单击Start进行下载。 完成以上操作步骤后,同学们可以开始进行以下实验内容。

实验一、实验平台基础实验 实验步骤: 通信原理实验界面,选择基础实验,开始以下实验步骤:串口收发及其测温实验 1.点击测温按钮,查看并分析实验结果; 2.发送两位16进制数字,观察LED的变化是否与设定值相同; 3.改变拨码开关并接收数据,查看并分析返回数值。 单片机波形发生器实验 1.填入合适的峰峰值和频率值,选择要生成的波形,单击开始; (由于实验箱问题,输入的峰峰值和示波器测出来的峰峰值有误差) 2.用示波器观察TP13点的输出波形。 语音录放实验 暂时不做 实验结果: 整理实验数据,画出各测试点的波形。 实验二、直接数字频率合成和数字调制实验 实验步骤: DDS频率合成实验 1.进入数字调制技术界面,选择直接数字频率合成; 2.在左方文本框中填入合适的频率值并发送; 3.用示波器观察TP35的DDS输出波形,修改输入值,观察DDS所产生 的频率。 FSK调制实验 1.在两个文本框中分别填写合适的频率值并发送; 2.用示波器观察TP35波形,验证是否为原输入信号相对应的FSK信号。 BPSK、DPSK、ASK调制实验操作均同FSK操作

通信原理实验报告

AM调制和解调的仿真原理:1)AM调制的原理是,发射信号的一侧将信号加到高频振荡上,然后通过天线发射出去。在此,高频振荡波是载波信号,也称为载波。调幅是通过调制信号来控制高频载波的幅度,直到其随调制信号线性变化。在线性调制系列中,第一幅度调制是全幅度调制或常规幅度调制,称为am。在频域中,调制频谱是基带调制信号频谱的线性位移;在时域中,调制包络与调制信号波形具有线性关系。设正弦载波为:C(T)= ACOS (WCT +φ0),其中a为载波幅度;WC是载波角频率;φ0是载波的初始相位(通常假设φ0 = 0)。调制信号(基带信号)为m(T)。根据调制的定义,幅度调制信号(调制信号)通常可以表示为:如果调制信号M(T)的频谱为m(W),则SM(T)= am(T)cos(WCT),则调制信号的频谱SM(T):SM(W)= a [M(W + WC)+ m(w﹥6 ﹣1wc)] /22。从高频调制信号中恢复调制信号的过程称为解调。)也称为检测。对于幅度调制信号,解调是从幅度变化中提取调制信号的过程。解调是调制的逆过程。产品类型的同步检波器可用于解调振幅。可以将调制信号与本地恢复载波信号相乘,并且可以通过低通滤波来获得解调信号。下图显示了AM解调的原理:原理图和仿真结果:参数设置:正弦波WAVE1和正弦波WAVE2

模块分别在发送器和接收器处生成载波信号,并且角频率ωC设置为60 rad / s,并且调幅系数为1;调制信号M(T)由正弦波模块产生,为正弦波信号,角频率为5rad / s,幅度为1V。直流分量A0恒定。低通滤波器模块的截止频率设置为6rad / s。承运人:sin60t;调制信号:sin(5T)sin(60t)2 2. B DSB调制和解调模拟调制原理:在幅度调制的一般模型中,如果滤波器是全通网络(= 1),则滤波器中没有DC分量。调制信号,则输出调制信号是没有载波分量(DSB)的双边带调制信号。当源信号的极性改变时,调制信号的相位将突然改变π。SDSB (T)= m(T)coswct调制的目的是将调制信号的频谱移动到所需位置,从而提高系统信息传输的有效性和可靠性。DSB调制原理的框图如图4-3所示:图1:DSB信号本质上是基带信号和载波的乘法,而卷积在频域中。表达式为:调制后,s DSB(W)= [M(W + WC)+ m (W?6?1 WC)] / 2(1),已调制信号的带宽变为原始基带信号带宽的两倍:模拟基带信号的带宽为W。则调制信号的带宽为2W;(2)在调制信号中没有离散的载波频率分量,因为原始的模拟基带信号不包含离散的DC分量。(3)(4)某个信号的频谱或随机信号的功率谱是基带信号的频谱/功率谱的线性位移。因此,它称为线性调制。解调原理:DSB只能进

通信原理实验报告

通信原理实验报告 实验一抽样定理 实验二 CVSD编译码系统实验 实验一抽样定理 一、实验目的 所谓抽样。就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 二、功能模块介绍 1.DDS 信号源:位于实验箱的左侧 (1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。 (2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010 对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。 (3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。 (4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。 2.抽样脉冲形成电路模块 它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。P09 测试点可用于抽样脉冲的连接和测量。该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。 3.PAM 脉冲调幅模块 它采用模拟开关CD4066 实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。因此,本模块实现的是自然抽样。在32TP01 测试点可以测量到已调信号波形。 调制信号和抽样脉冲都需要外接连线输入。已调信号经过PAM 模拟信道(模拟实际信道的惰性)的传输,从32P03 铆孔输出,可能会产生波形失真。PAM 模拟信道电路示意图如下图所示,32W01(R1)电位器可改变模拟信道的传输特性。

《通信原理》实验设计报告

中南大学《通信原理》 实验设计报告 学院: 专业班级: 姓名: 学号: 指导老师: 设计时间:

目录 第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 (1) 实验五:数字锁相环与位同步 (6) 实验六:帧同步 (13) 实验七:时分复用数字基带通信系统 (17) 第二部分实验设计部分 设计任务与要求 (22) 方案设计与论证 (22) 源程序与仿真结果 (24) 系统性能分析 (29) 程序调试 (29) 结论与心得 (30) 参考文献 (31)

第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 一、实验目的 1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。 2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。 3. 了解相干载波相位模糊现象产生的原因。 二、实验内容 1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。 2. 观察环路的捕捉带和同步带。 3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。 三、基本原理 通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。本实验系统的载波同步提取模块用平方环,原理方框图如图3-1所示,电原理图如图3-2所示(见附录)。模块内部使用+5V、+12V、-12V电压,所需的2DPSK输入信号已在实验电路板上与数字调制单元2DPSK输出信号连在一起。 图3-1 载波同步方框图 本模块上有以下测试点及输入输出点: ? MU平方器输出测试点,VP-P>1V ? VCO VCO输出信号测试点,VP-P>0.2V ? Ud鉴相器输出信号测试点 ? CAR-OUT 相干载波信号输出点/测试点 图3-1中各单元与电路板上主要元器件的对应关系如下: ? 平方器 U25:模拟乘法器MC1496

通信原理答案第五章

第五章 5-1 已知线性调制信号表示式如下: (1)t t c ωcos cos Ω,(2)t t c ωcos )sin 5.01(Ω+。 式中,Ω=6c ω。试分别画出它们的波形图和频谱图。 1(1)cos cos [cos()cos()] 2[cos cos ]{[()][()][()][()]} 2 1 (2)(10.5sin )cos cos [sin()sin()] 4 [(10.5sin )cos ][()(c c c c c c c c c c c c c c c t t F t t t t t F t t ωωωπ ωδωωδωωδωωδωωωωωωωπδωωδωωΩ=-Ω++Ω∴Ω= --Ω++-Ω+-+Ω+++Ω+Ω=+-Ω++Ω∴+Ω=-++Q Q 解:)]{[()][()] 4 [()[()]]} c c c c j π δωωδωωδωωδωω++-Ω---Ω+++Ω--+Ω 5-2 根据图P5-1所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比较它们分别通过包络检波器后的波形差别。

图P5-1 m(t) t 解: 从波形中可以看出,DSB 信号经过包络检波器后输出波形失真,不能恢复调制信号;而AM 信号经过包络检波器后能正确恢复调制信号。 m(t) t 0 S DSB (t) 0 t S AM (t) t 5-3已知调制信号m (t )=cos(2000πt ),载波为cos104 πt ,进行单边带调制,试确定该单边带信号的表示式,并画出频谱图。 ()sin(2000)sin(4000) 1111 ()()cos ()sin cos(12000)cos(14000) 22221111 ()()cos ()sin cos(8000)cos(6000) 2222 USB c c LSB c c m t t t s t m t t m t t t t s t m t t m t t t t ππωωππωωππ=+=-=+=+=+) ))解:则 f (kHz) S SSB (ω) 上边带 -7 –6 -4 -3 0 3 4 6 7 上边带 下边带 下边带 5-4 将调幅波通过残留边带滤波器产生残留边带信号。若此滤波器的传输函数H( ) 如图P5-2所示(斜线段为直线)。当调制信号为()[100600]m t A sin t sin t ππ=+时,试确定所得残留边带信号的表达式。 14 -14 H ( ) 1 f/kHz

相关文档