文档库 最新最全的文档下载
当前位置:文档库 › 一煤燃烧特性的热重分析

一煤燃烧特性的热重分析

一煤燃烧特性的热重分析
一煤燃烧特性的热重分析

实验一燃烧特性的热重分析

一、实验目的

1.了解热重分析仪的基本结构,掌握仪器操作;

2.学会应用热重法分析煤/生物质的燃烧特性。

二、实验内容及要求

1.熟悉热重分析工作原理;

2.学会处理煤/生物质燃烧热失重曲线,求解典型燃烧特性参数,并分析燃烧特性。

三、实验步骤

1.试样、气体准备,如预先干燥、磨制、筛分、称量试样等,罐装所需浓度和纯度的保护气体和反应气体。检查仪器放置平稳、管路气密性及电源连接完好等。

2.开启系统:(1)打开恒温水浴槽(温度设定:22℃);(2)接通气体(氮气流量:30ml/min;空气流量:100ml/min);(3)待恒温水浴槽达到设定温度

和气流稳定后,打开TGA 主机;(4)打开计算机进入Windows NT,双击“STAR e”

图标打开STAR e软件。

3.根据软件建立试验方法,设置升温速率10℃~30℃/min、最大温度900℃,完毕后按提示放置样品,按提示开始、结束(重新开始)试验。

4.根据随机软件进行数据处理。

5.关闭系统:(1)须在TGA 主机的炉温低于300℃后关闭恒温水浴槽;(2)关闭TGA 主机;(3)关闭气体;(4)关闭计算机。

四、实验报告

1.热重燃烧特性指标的含义和求解方法;

2.热重燃烧条件下各燃烧特性参数代表的意义;

3.求解煤/生物质燃烧特性参数;

4.结合所得数据分析燃烧特性。

瑞士Mettler-Toledo公司的TGA/SDTA851e热分析系统

图1、图2为热分析系统原理图。该系统包括热重/差热同步分析仪,热重天平和高温恒温浴槽。

具体参数如下:型号:TGA/SDTA851e;温度范围:室温~1600℃;大测试炉:直径12mm,容积900μl;温度准确度:±0.25℃;温度重复性:±0.15℃;线性升温速率:0.01~100℃/min;SDTA分辨率:0.005℃。

图1中,天平和测试炉组成的测试单元是热重/差热同步分析的核心,采用平行支架微量/超微量天平,称量不受样品支架长度变化(如热胀冷缩效应)的影响;内置砝码全自动校准;称量部件处于恒温室内(22.0±0.1℃),不受环境因素的影响。其中的测试炉采用水平结构,可最大限度地消除可能产生的气体紊流的影响,克服热气体对流上升容易产生的“烟囱效应”。该系统采用单坩埚结构,使样品处于测试炉的几何对称中心,在升温室得到均匀加热。测量样品的温度传感器直接安装于坩埚底部,能准确测取样品温度。加热炉内可通入需要的各种反应气体,同时为了保护天平免受反应气体的腐蚀,需要通入保护气体。

图1 热分析系统示意图

图2 TGA/SDTA851e原理图

1—隔热挡板;2—反应性气体毛细管;3—石英护套;4—气体排出阀门(偶联接口);5—样品温度传感器;6—加热炉;7—炉温传感器;8—电源接点;9—真空和清洁气体管;10—恒温天平室;11—平行导向超微量天平;12—样品室开启装置;13—冷却水管道;14—保护气体入口;15—反应气体入口;16—真空连接和清洁气体入口

1)热重测量法:在程序控制温度下,测量物质质量随温度变化的一种技术。

2)差热分析:在程序控制温度下,测量物质与参比物之间的温度差随温度变化的一种技术。

3)热膨胀法:在程序控制温度下,测量物质在可忽略的负荷下的尺寸随温度变化的一种技术。

4)差示扫描量热法:在程序控温下,测量加入物质在与参比物之间的能量差随温度变化的一种技术

TG(热重)、DTG(微分热重)、SDTA(同步差热分析)

Thermo-gravimetric

Differential thermo-gravimetric

simultaneous differential thermal analysis

Differential Scanning Calorimeter (DSC) 差示扫描量热分析技术

DTG 曲线是TG曲线的微分,SDTA曲线记录的是样品温度与程序温度的温度差。

1煤的热重燃烧实验和结果

取下列煤为实验物料,试验前将各种试样磨细至74 μm~89 μm,在120℃条件下烘干,存入干燥器皿中待用。热分析实验条件:样品质量:10±0.1mg;升温速率:10℃/min;

氮气保护气流量:40ml/min;空气流量:100ml/min;工作温度:室温~900℃

1.1煤的燃烧过程分析

表1.1 煤的工业分析、元素分析及硫形态分析

煤种煤样

标识

工业分析/% 元素分析/% 硫组成/% Q

net,ar

MJ·kg-1 M ad A ad V ad FC ad w(C ad)w(H ad)w(O ad)w(N ad)S t S s S p S o

邹县ZX 2.98 19.56 33.93 43.53 61.65 4.27 9.99 0.87 0.68 0.01 0.38 0.29 22.54 黄台HT 1.14 32.31 14.41 52.14 58.96 2.93 1.80 0.98 1.88 0.06 1.16 0.66 20.70 聊城OC 1.12 27.11 12.74 59.03 64.18 2.81 3.21 1.20 0.37 0.01 0.22 0.14 23.71

图1.1~图1.3为三种煤的热重TG、热重微分DTG和差热SDTA曲线。由于煤样经过干燥,内在水分较少,所以初始阶段,煤中水分析出不明显。300℃以后,煤中挥发分和固定碳剧烈燃烧,TG曲线表现出剧烈下降;在500℃~700℃的温度区间内,固定碳基本燃尽,TG曲线趋于平直,HT、LC和ZX煤的燃烧失重率分别为:66%、79%和79%。DTG一般出现较明显的两个峰,一个水分析出峰,对应于100 ℃左右;另一个为可燃质剧烈燃烧峰,该峰对应于300℃~700℃。HT、LC和ZX煤的燃烧失重速率分别为:5.5×10-31/℃、5.5×10-31/℃和5.7×10-31/℃。ZX燃烧峰出现在502℃,明显比HT(545℃)、LC(528℃)提前。由图2.3差热曲线可看出,HT、LC和ZX煤的燃烧放热峰分别为:5.29℃、4.66℃和4.54℃,对应于温度分别为:543℃、528℃和508℃。

1.2煤的燃烧特性指标

(1)着火特性温度t i

着火特性温度t i定义如图4.4所示,在DTG曲线上过燃烧峰值点A,作垂线与TG曲线的倾斜段交于一点B,过B点作TG曲线的初试水平段的延长线交于一点C,则C点所对应的温度定义为着火特性温度t i。

(2)最大燃烧平均速率(dW/dτ)80

最大平均燃烧速率(dW/dτ)80定义为DTG燃烧附近80℃温度区内煤样最大燃烧速率的平均值。其对褐煤和烟煤强调了燃烧反应强度,同时又考虑了水分和灰分的影响,对无烟煤

则强调了着火性能。因为(dW/d τ)max 除与煤质特性有关外,易受到取样均匀性和燃烧空气动力特性等因素的影响。所以采用最大燃烧平均速率(dW/d τ)80比较合理,更能准确表达煤

质燃烧特性[37、

51]。

可燃性指数可表示为:

80273

(2)1000

(/)i T i

dW d C T τ-+

=

其中T i >500 (4.1)

(3)固定碳燃尽率

固定碳燃尽率Bc 反映了原煤中固定碳的燃尽程度,其值与水分、挥发分和灰分含量无关。根据常规灰分示踪法,认为煤样在燃烧过程前后灰分质量守恒,即M 0A 0=M 1A 1,则原煤的固定碳燃尽率即实际烧掉的固定碳占原煤所含全部固定碳的百分数:

010

00010010

000

00max

()

()/100()PC PC C PC M M M FC A M FC A M M B M M FC FC FC A TG FC -+-+-==

=

+-+=

(4.2)

式中:M 0、M 1分别为原煤样在燃烧前后的质量(mg ,mg );

0PC M 和1PC M 分别为原煤样在燃烧前后的固定碳含量(mg ,mg )

; FC 0和A 0分别为原煤样在燃烧前所含固定碳和灰分的工业分析值(%,%);

(TG)max 为原煤样的最大燃烧失重率(包括水分、挥发分和已燃尽的固定碳)(%)。

100

200

300

400

500

600

700

800

900

-90

-80-70-60-50-40-30-20-10

0煤样燃烧失重率/%

炉温 /℃

HT

LC ZX

图1.1 煤的燃烧失重曲线

0100200300400500600700800900

-0.006

-0.005-0.004-0.003-0.002-0.0010.0000.001煤样燃烧失重速率 D T G /%·℃ -

1炉温 /℃

HT

LC ZX

图1.2煤的燃烧失重微分曲线

0100200300400500600700800900

-2

02468

10煤样与参考样之间的差热 S D T A /℃

炉温 T/℃

HT LC ZX

图1.3 煤的燃烧差热曲线

质量百分率/%

炉温 /℃

煤样燃烧失重速率

图1.4着火特性温度定义示意图

煤的燃烧特征参数列于表1.2中,可以看出,随挥发分增加,煤的TG 失重开始温度降低,而失重结束温度也降低,对应DTG 、SDTA 峰值温度也降低。

表1.2煤的燃烧特征参数

煤样 TG 燃烧失重开始温度 TG 燃烧失重结束温度 DTG 峰值温度 SDTA 峰值温度 (TG )max (%) DTG 峰值(10-3·1/℃)

DTA 峰值(℃) HT 361 661 545 545 66 5.5 5.29 LC 355 652 528 530 79 5.5 4.66 ZX

325

622

502

508

79

5.7

4.54

从表1.3可以看出随着煤阶增加,着火特性温度增大,最大平均燃烧速率减小,可燃性指数也相应减小。

表1.3 煤的燃烧特性指标

煤样 着火特性温度t i (℃)

最大平均燃烧速率 (dW/d τ)80(mg/min )

可燃性指数C mg/(min ·K) 固定碳燃尽率 Bc (%) HT 481 0.488 3.5×10-8 97.13 LC 452 0.501 4.8×10-8 93.80 ZX

427

0.535

6.6×10-8

97.66

1.3混煤的燃烧特性

混煤热重分析TG 、热重微分DTG 和差热SDTA 曲线分别见图1.5、图1.6和图1.7。从图中直观地看出,随着混煤配比的变化,曲线变化呈现出明显的规律性。即随着LC 煤配比增加,混煤的燃烧特性逐渐凸现LC 煤的燃烧特性,ZX 煤的燃烧特性逐渐减弱。

煤样燃烧失重率/%

炉温/℃

图4.5 混煤的燃烧失重曲线

煤样燃烧失重速率D T G /%·℃ -1

炉温/℃

图4.6混煤的燃烧失重微分曲线

-2

024681012

煤样与参考样之间的差热S D T A /℃

炉温/℃

图4.7 混煤的燃烧差热曲线

从表1.4列出燃烧特征参数可以清晰地看出,混煤配比对燃烧特性的影响。随LC 煤增加,TG 燃烧失重温度逐渐升高,其结束温度也随之升高,且在单煤燃烧特性参数范围内。说明配比与混煤燃烧特征参数间存在着密切关系。SDTA 峰值变化却与配比无明显规律。

表1.4煤的燃烧特征参数

混煤煤样TG燃烧失

重开始温度

TG燃烧失重结

束温度

DTG峰值温

SDTA峰值

温度

(TG)max

(%)

DTG峰值

(10-31/℃)

SDTA峰值

(℃)

LC15ZX85 327 635 508 511 77 5.3 4.77

LC50ZX50 340 640 520 516 77 5.6 4.95

LC70ZX30 345 643 522 520 78 5.7 4.68

LC85ZX15 357 647 526 527 82 6.0 4.86 混煤的燃烧特性指标呈现出与特征参数类似的规律性,燃烧特性指标介于组分煤的变化范围内,且随LC煤配比增加,指标靠近LC煤各项指标。说明混煤燃烧特性与组分煤燃烧特性存在一定的加和性。由于试验没有对混煤进行工业分析,使得无法计算固定碳燃尽率,所以无法看出掺混过程对煤的燃尽特性的影响。程军[51]在研究中得到混煤燃尽率与掺配比没有明显的规律性,但没有给出机理性解释,这还需在以后的研究工作中进行试验证实和机理探讨。

表1.5 煤的燃烧特性指标

混煤煤样着火特性温度t i(℃)

最大平均燃烧速率

(dW/dτ)80(mg/min)

可燃性指数C

mg/(min·K)

LC15ZX85 429 0.490 5.97×10-8

LC50ZX50 438 0.507 5.70×10-8

LC70ZX30 445 0.507 5.30×10-8

LC85ZX15 451 0.526 5.20×10-8

2、生物质热重燃烧实验与结果

试验样品选择玉米秸、麦秸、杨木屑、花生壳为实验物料。试验前将各种试样磨细至74 μm~89 μm,在120℃条件下烘干,存入干燥器皿中待用。实验具体方案:称取10 mg生物质样品放人氧化铝坩埚内,将坩埚置于热重分析仪的分析室内。热分析仪通入燃烧氧气流量:20 mL/min,高纯氮气保护气流量:80 mL/min。程序升温速率分别30 ℃/min,温度范围为:25℃~1000℃。

表2.1 生物质分析

试样标识

工业分析/% 元素分析/%Q net,ar

MJ·kg-1 M ad A ad V ad FC ad C ad H ad O ad N ad S ad

木屑poplar 2.71 0.92 84.04 12.33 47.28 6.29 41.4 1.4 0.01 17.106 玉米秸cornstalk 5.95 17.61 62.62 13.82 41.38 4.92 28.74 1.40 0.00 15.055 麦秸straw 7.56 7.36 67.96 17.12 41.20 5.10 37.27 1.39 0.12 16.582 花生壳peanut shell 2.38 4.14 73.74 19.74 47.26 6.10 38.7 1.37 0.05 18.965

4种生物质的热重-同步差热分析曲线见图2.1。可以看出4种生物质在着火温度、燃烧速率和燃烧放热量等存在较大差异。根据文献[生物质燃烧模式及燃烧特性的研究]分析方法所得燃烧特性参数列于表2。其中着火温度T i采用外推法求得。T v、T c分别为生物质挥发分和固定碳燃烧速率最大时对应的温度。T o为燃尽温度,对应于TG(热重)和DTG(微分热重)曲线不再有质量变化。V v、V c分别为生物质挥发分和固定碳最大燃烧速率,分别对应于DTG曲线上各自峰顶值。ΔT v、ΔT c分别为生物质挥发分和固定碳燃烧放热时与参比物间的最大温度差,对应于生物质

燃烧SDTA (同步差热分析)曲线峰顶值,它反映了燃烧反应放热量的大小和剧烈程度。

W

T , K

V , m g ·s -1

(a ) ?T , K

T , K

(b ) 图2.1 生物质燃烧TG 、DTG 和SDTA 曲线

根据燃烧特性参数可看出玉米秸和麦秸的着火温度较低,挥发分燃烧速率大,燃烧温度低,挥发分燃烧放热大,而花生壳着火温度稍高,对应挥发分燃烧速率较小,放热较大。杨木着火温度最高,虽然挥发分燃烧速率较大,但对应燃烧温度较高,放热小。杨木和花生壳固定碳含量相对较高,两者对应固定碳燃烧放热较大,而玉米秸和麦秸的固定碳燃烧放热较小。

表1.2 生物质燃烧特性参数

Table 1.2 Combustion characteristics parameters of biomass

试样 T i / K T v /K T c /K T o /K V v /mg·s -1 V c /mg·s -1 ΔT v /K ΔT c /K cornstalk 537 559 725 736 0.090 0.022 17.6 9.6 straw 544 554 715 724 0.110 0.007 20.3 7.3 poplar 579 602 668 700 0.106 0.032 15.6 17.4 peanut shell

561

588

690

724

0.066

0.026

18.4

14.5

参考文献:闵凡飞,张明旭,朱惠臣,煤工业分析和燃烧特性的TG-DTG-DTA 研究,煤炭科学技术

热重分析法

热重法,是在程序控制温度下,测量物质的质量与温度或时间的关系的方法。进行热重分析的仪器,称为热重仪,主要由三部分组成,温度控制系统,检测系统和记录系统。 通过分析热重曲线,我们可以知道样品及其可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物等与质量相联系的信息。 从热重法可以派生出微商热重法,也称导数热重法,它是记录TG曲线对温度或时间的一阶导数的一种技术。实验得到的结果是微商热重曲线,即DTG曲线,以质量变化率为纵坐标,自上而下表示减少;横坐标为温度或时间,从左往右表示增加。 DTG曲线的特点是,它能精确反映出每个失重阶段的起始反应温度,最大反应速率温度和反应终止温度;DTG曲线上各峰的面积与TG曲线上对应的样品失重量成正比;当TG曲线对某些受热过程出现的台阶不明显时,利用DTG曲线能明显的区分开来。 热重法的主要特点,是定量性强,能准确地测量物质的质量变化及变化的速率。根据这一特点,可以说,只要物质受热时发生质量的变化,都可以用热重法来研究。图中给出可用热重法来检测的物理变化和化学变化过程。我们可以看出,这些物理变化和化学变化都是存在着质量变化的,如升华、汽化、吸附、解吸、吸收和气固反应等。但象熔融、结晶和玻璃化转变之类的热行为,样品没有质量变化,热重分析方法就帮不上忙了。 热重法测定的结果与实验条件有关,为了得到准确性和重复性好的热重曲线,我们有必要对各种影响因素进行仔细分析。影响热重测试结果的因素,基本上可以分为三类:仪器因素、实验条件因素和样品因素。 仪器因素包括气体浮力和对流、坩埚、挥发物冷凝、天平灵敏度、样品支架和热电偶等。对于给定的热重仪器,天平灵敏度、样品支架和热电偶的影响是固定不变的,我们可以通过质量校正和温度校正来减少或消除这些系统误差。 气体浮力和对流的影响 气体浮力的影响:气体的密度与温度有关,随温度升高,样品周围的气体密度发生变化,从而气体的浮力也发生变化。所以,尽管样品本身没有质量变化,但由于温度的改变造成气体浮力的变化,使得样品呈现随温度升高而质量增加,这种现象称为表观增重。表观增重量可用公式进行计算。式中p为气体在273K时的密度,V为样品坩埚和支架的体积。 对流的影响:它的产生,是常温下,试样周围的气体受热变轻形成向上的热气流,作用在热天平上,引起试样的表观质量损失。措施:为了减少气体浮力和对流的影响,试样可以选择在真空条件下进行测定,或选用卧式结构的热重仪进行测定。 坩埚的影响 大小和形状:坩埚的大小与试样量有关,直接影响试样的热传导和热扩散;坩埚的形状则影响试样的挥发速率。因此,通常选用轻巧、浅底的坩埚,可使试样在埚底摊成均匀的薄层,有利于热传导、热扩散和挥发。 坩埚的材质:通常应该选择对试样、中间产物、最终产物和气氛没有反应活性和催化活性的惰性材料,如Pt、Al2O3等。 挥发物冷凝的影响 样品受热分解、升华、逸出的挥发性物质,往往会在仪器的低温部分冷凝。这不仅污染仪器,而且使测定结果出现偏差。若挥发物冷凝在样品支架上,则影响更严重,随温度升高,冷凝物可能再次挥发产生假失重,使TG曲线变形。 为减少挥发物冷凝的影响,可在坩埚周围安装耐热屏蔽套管;采用水平结构的天平;在天平灵敏度范围内,尽量减少样品用量;选择合适的净化气体流量。实验前,对样品的分解情况有初步估计,防止对仪器的污染。 实验条件因素包括升温速率和气氛的影响升温速率的影响: 升温速率对热重曲线影响的较大,升温速率越高,产生的影响就越大。因为样品受热升温是

混煤燃烧KAS动力学分析_李姣

延安职业技术学院学报2012年6月高炉大量喷煤是我国钢厂炼铁系统节能减排和降低生产成本的重要措施,实现200kg/t 以上高煤比操作是各厂家高炉努力的目标。配煤混合喷吹是现阶段最大限度提高煤比可行而又有效的方法。配煤混合喷吹就是将种类不同的煤(如烟煤和无烟煤)进行适当选配,再混合制粉、喷吹。根据研究 [1,2] ,配煤混合喷吹具有某种催化燃烧 的混合效应。在同样的喷吹条件下,采用配煤混合喷吹可以改善煤粉的燃烧性能,提高燃烧率。因此,采用实验的方法研究燃烧特性相差较大的煤进行掺混的燃烧特性,具有重要的工程实际价值和理论研究意义。 热分析法具有试样量少、速度快并且能在测量温度范围内研究原料受热发生热反应的全过程等优点,是实验室研究燃料燃烧性能的常规方法[3]。本文通过模式匹配的方法,以Kissinger-Akah-Sunose (KAS )模型为基础,讨论了无烟煤和烟煤组成的混合煤粉燃烧动力学特性,为生产过程选配煤种提供理论基础。 1实验1.1原料分析 实验所用烟煤及无烟煤样品为山东某钢铁企业提供,单煤种的煤质分析数据如表1所示。 表1煤粉工业分析、元素分析及发热值 煤粉水分(Mad)、灰分(Aad)、固定碳(FCad)和挥发分 (Vad)含量具有线性加权性[4],因此可以通过计算得到煤粉 煤质分析数据,如表2所示。 表2煤粉工业分析计算结果 1.2实验设备和程序 采用德国耐驰公司综合热分析仪(STA409PC)可获得试样的热重曲线(TG)、微熵热重曲线(DTG)。主要技术数据如下:热天平精度1μg ;最大试样量1000mg ;温度范围为室温-1400℃;实验气氛为空气、氮气;升温速率范围 0.1-30.0K?min-1;样品粒度小于80目。 实验过程中,以无烟煤为基准,分别配加0%、20%、 40%、60%、80%、100%的烟煤,按要求均匀混合后取样,在 空气气氛下,从室温加热至900℃,观察热重曲线变化,分析煤粉的燃烧特性,确定过程的动力学参数。升温速率分别控制为5K.min-1、10Komin-1、20Komin-1,每次称 混煤燃烧KAS 动力学分析 李 姣,万 航 (1.延安职业技术学院,陕西延安716000;2.中冶陕压重工设备有限公司,陕西西安710000) [摘要]利用热重分析(TGA )方法系统研究了配加烟煤对无烟煤燃烧特性的影响,采用非等温模型Kissinger-Akah-Sunose (KAS )对主要燃烧过程进行动力学分析。结果表明,煤粉燃烧主要包含三个过程,烟煤配加量和升温速率对燃烧 过程有重要影响,当烟煤配加量从0%到100%时,煤粉燃烧活化能从128.5kJ?mol-1降低到53.6kJ?mol-1,且烟煤的配加量低于60%时,能够显著降低煤粉燃烧的活化能。 [关键词]热重法;燃烧;煤粉[中图分类号]TK6 [文献标识码]A [文章编号]1674-6198(2012)03-0084-03 煤种 无烟煤烟煤工业分析,% 元素分析,% 弹筒发热值 /Jog-1 Mad1.343.13Aad13.228.33FCad76.0945.40Vad9.3242.59Cad79.1766.58Had3.453.82Oad3.5119.10Nad1.011.06Sad 0.981.0529172.6225867.58 加入量(%) 0%20%40%60%80%100% FCad76.0969.9563.8157.6851.5445.40 Aad13.2212.2411.2610.299.318.33 Vad9.3215.9722.6329.2835.9442.59 Mad1.341.702.062.412.773.13 [收稿日期]2012-04-23 [作者简介]李姣(1982-),女,陕西榆林人,延安职业技术学院教师;万航(1983-),重庆市人,中冶陕压重工设备有限公 司助理工程师,硕士。 延安职业技术学院学报Journal of Yan ’an Vocational &Technical Institute 第26卷第3期 Vol.26No.3 2012年6月 June 2012 84--

热重分析

高聚物的差热热重分析DTA/TG原理 高聚物的差热热重分析DTA/TG原理 差热分析,简称DTA,是将被测试样加热或冷却时,由于温度导致试样内部产生物理或化学变化,追踪热量变化的一种分析方法。热重分析,简称TG,是将被测试样加热,由于温度导致试样重量变化的分析方法。综合热分析仪是具有微机数据处理系统的热重—差热联用热分析仪器,是一种在程序温度(等速升降温、恒温和循环)控制下,测量物质的质量和热量随温度变化的分析仪器。常用以测定物质在熔融、相变、分解、化合、凝固、脱水、蒸发、升华等特定温度下发生的热量和质量变化,广泛应用于无机、有机、石化、建材、化纤、冶金、陶瓷、制药等领域,是国防、科研、大专院校、工矿企业等单位研究不同温度下物质物理、化学变化的重要分析仪器。差热分析作为一种重要的热分析手段已广为应用,它可以研究高聚物对热敏感的各种化学及物理过程,物理变化如:玻璃化转变、晶型转变、结晶过程、熔融、纯度变化等;化学变化如:加聚反应、缩聚反应、硫化、环化、交联、固化、氧化、热分解、辐射变化等。需指出,由于高聚物的物理或化学变化对热敏感的特性是很复杂的,所以常需要结合其它实验方法如动态力学试验、气质联用等对差热分析热谱图进行深入研究,从而进一步探讨高聚物的结构和性能间的关系。 仪器由热天平主机、加热炉、冷却风扇、微机温控单元、天平放大单元、微分单元、差热放大单元、接口单元、气氛控制单元、PC微机、打印机等组成。 实验时,将试样和惰性参比物(在测定的温度范围内不产生热效应的热惰性物质,常用?-氧化铝、石英粉、硅油等)置于温度均匀分布的坩埚(样品池)的适当位置,将坩埚(样品池)组合于加热炉中,控制其等速升温或降温。在此变温过程中,若试样发生物理或化学变化,则在对应的温度下吸收或放出热量改变其温度,使试样和参比物之间产生一定的温度(ΔT)。将ΔT 放大,记录试样与参比物的温度ΔT随温度T的变化,即ΔT~T曲线。此曲线通常称为差热曲线或差热热谱。 刚开始加热时,试样和参比物以相同温度升温,不产生温度差ΔT=0,差热曲线上为平直的基线。当温度上升到试样产产玻璃化转时,大分子的链段开始运动。试样的热容发生明显的变化,由于热容增大需要吸收更多的热量,因而试样的温度落后于参比物的温度,产生了温度差,于是差热曲线上方出现一个转折,该转折对应的温度,即玻璃化转变温度(Tg)若试样是能结晶的并处于过冷的无定形状态,则在玻璃温度以上的适当温度进行结晶,同时放出大量的热量,此时试样温度较参比物上升快,差热曲线上表现为放热峰。再进一步加热,晶体开始熔融面需要吸收热量,试样温度暂时停止上升,与参比物之间产生了温度差,其差热曲线在相反方向出现吸热峰。当熔融完成后,加于试样的热能在使试样温度升高,直到等于参比物的温度,于是二者的温度差又为零,回复到基线位置,将熔融峰顶点对应的温度记作熔点(T m);继续加热试样可能发生其他变化,如氧化、分解(氧化是放热反应,分解是吸热反应)。因此,根据差热曲线可以确定高聚物的转变和特征温度。

煤及其燃烧的介绍

.煤及其燃烧的介绍(资料) 煤的组成 煤由碳、氢、氧、氮、硫等元素组成,还含有一定水分,灰分和其它杂质。煤的燃烧部分:一是碳,二是挥发分。 碳是煤的主要成分,含碳量越高的,其发热量亦越高。由于碳的燃点较高(约700℃左右)故含碳量越高的煤越难点燃。 挥发分包括氢(H2)、氧(O2)、硫化氢(H2S)、甲烷(CH4)、乙烯(C 2H4)等。挥发分含量较高的煤燃点较低,容易点燃,但碳量相应减少,发热量也较低。 水分是煤的杂质之一,其含量以小于10%为好。 灰分是混入煤中的沙、石、灰土等杂质,一般应小于30%,其含量高的,将使炉渣增多,降低煤质,影响燃烧。但含量过少,在燃烧时又容易出现“流炉”漏炭。 2.煤的种类 煤有褐煤、烟煤、无烟煤、半无烟煤等几种。云南常用的是褐煤、烟煤、无烟煤三种。煤的种类不同,其成分组成与质量不同,发热量也不相同(表4-15)。单位重量燃料燃烧时放出的热量称为发热量,人为规定以每公斤发热量7000千卡的煤作为标准煤,并以此标准折算耗煤量。 (1)褐煤:多为块状,呈黑褐色,光泽暗,质地疏松;含挥发分40%左右,燃点低,容易着火,燃烧时上火快,火焰大,冒黑烟;含碳量与发热量较低(因产地煤级不同,发热量差异很大),燃烧时间短,需经常加煤。

(2)烟煤:一般为粒状、小块状,也有粉状的,多呈黑色而有光泽,质地细致,含挥发分30%以上,燃点不太高,较易点燃;含碳量与发热量较高,燃烧时上火快,火焰长,有大量黑烟,燃烧时间较长;大多数烟煤有粘性,燃烧时易结渣。 (3)无烟煤:有粉状和小块状两种,呈黑色有金属光泽而发亮。杂质少,质地紧密,固定碳含量高,可达80%以上;挥发分含量低,在10%以下,燃点高,不易着火;但发热量高,刚燃烧时上火慢,火上来后比较大,火力强,火焰短,冒烟少,燃烧时间长,粘结性弱,燃烧时不易结渣。应掺入适量煤土烧用,以减轻火力强度。 3.煤的燃烧 (1)煤燃烧需要的条件:煤的燃烧是碳和其它可燃物剧烈氧化的反应。为了把煤炭所含有的热量尽量释放出来,就应充分满足煤对燃烧的要求,以达到使煤尽可能完全燃烧的目的。煤的燃烧需要以下条件: ①维持足够的炉膛温度。煤只有加热到一定温度时才能着火燃烧,而且炉膛内温度越高,煤的燃烧越快,越充分。所以应防止炉膛温度降低,影响煤的燃烧。 ②供给充足的氧气。通风供氧不足,煤不能燃尽。通风供氧过多,导致炉膛温度下降。适当偏多的通风,是保证充分燃烧的条件。在烘烤时,可根据火焰颜色判断通风量进行调节。通常,火焰呈黑红色的表示通风供氧不足,火焰呈亮白色的表示通风供氧过多,火焰呈麦黄色的表示通风供氧适当。 ③需有足够的燃烧时间。煤的燃烧要经过蒸发、分解、碳燃烧、燃尽等阶段。各阶段都需要

农业废弃物混煤燃烧特性及污染物排放特性研究

农业废弃物混煤燃烧特性及污染物排放特性研究农业废弃物是重要的生物质资源,由于它具有资源丰富和利用过程环境友好等特点受到了世界各国的广泛关注。然而在目前的技术条件下农业废弃物混煤燃烧是大规模利用农业废物的方法之一,农业废弃物混煤燃烧不仅可以降低污染物的排放,并且可以高效的利用低热值的农业废弃物物,是一种高效且环保的获取能源的方法。由于农业废弃物混煤燃烧的现在技术条件限制和对燃烧特性认识的欠缺以及国内没有相关的扶植政策,使得混燃技术在中国并没有普及。 本文以此为背景,选用麦秆、玉米秆和稻壳三种典型的农业废弃物,研究农业废弃物混煤(无烟煤和褐煤)燃烧时的燃烧特性和污染物排放特性。使用德国NETZSCH公司的STA409C型热重分析仪对农业废弃物和煤样单独燃烧和混合燃烧时的燃烧特性进行了研究,考察了在不同混合比例和不同升温速率下的混合物的燃烧特性。结果表明,当农业废弃物掺混比为20%的时候混合物整体表现出煤样的特性,当掺混比升高到50%的时候混合物整体表现出生物质的特性。 升温速率的升高有利于混合物的燃烧。运用Coats-Redfern积分法求得动力学特性参数,结果表明农业废弃物挥发分燃烧阶段所需的活化能明显低于焦炭燃烧阶段更低于煤燃烧所需的活化能,当农业废弃物混煤燃烧时能明显降低煤燃烧所需的活化能,提高煤的燃烧性能。总的来说农业废弃物混煤燃烧能明显提高煤的燃烧特性使用管式炉进行燃烧过程中污染物排放的实验研究,主要针对SO2、NO和HCl这三种污染物进行了研究,实验中对农业废弃物和煤单独燃烧时的污染物排放特性进行了研究并考察了不同掺混比和不同炉温条件下的污染物排放特性。 结果表明相对于煤单独燃烧而言,农业废弃物混煤燃烧能降低SO2和NO的排

热重分析仪方法

热重分析仪方法 当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质,(如CuSO4·5H2O中的结晶水)。从热重曲线上我们就可以知道CuSO4·5H2O 中的5个结晶水是分三步脱去的。通过TGA 实验有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析通常可分为两类:动态(升温)和静态(恒温)。热重法试验得到的曲线称为热重曲线(TG曲线),TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。 热重分析仪的工作原理 热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。 最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 影响热重分析的因素 试样量和试样皿 热重法测定,试样量要少,一般2~5mg。一方面是因为仪器天平灵敏度很高(可达0.1μg),另一方面如果试样量多,传质阻力越大,试样内部温度梯度大,甚至试样产生热效应会使试样温度偏离线性程序升温,使TG曲线发生变化,粒度也是越细越好,尽可能将试样铺平,如粒度大,会使分解反应移向高温。 试样皿的材质,要求耐高温,对试样、中间产物、最终产物和气氛都是惰性的,即不能有反应活性和催化活性。通常用的试样皿有铂金的、陶瓷、石英、玻璃、铝等。特别要注意,不同的样品要采用不同材质的试样皿,否则会损坏试样皿,如:碳酸钠会在高温时与石英、陶瓷中的SiO2反应生成硅酸钠,所以像碳酸钠一类碱性样品,测试时不要用铝、石英、玻璃、陶瓷试样皿。铂金试样皿,对有加氢或脱氢的有机物有活性,也不适合作含磷、硫和卤素的聚合物样品,因此要加以选择。 升温速率

实验一煤燃烧特性的热重分析

实验一燃烧特性的热重分析 一、实验目的 1.了解热重分析仪的基本结构,掌握仪器操作; 2.学会应用热重法分析煤/生物质的燃烧特性。 二、实验内容及要求 1.熟悉热重分析工作原理; 2.学会处理煤/生物质燃烧热失重曲线,求解典型燃烧特性参数,并分析燃烧特性。 三、实验步骤 1.试样、气体准备,如预先干燥、磨制、筛分、称量试样等,罐装所需浓度和纯度的保护气体和反应气体。检查仪器放置平稳、管路气密性及电源连接完好等。 2.开启系统:(1)打开恒温水浴槽(温度设定:22℃);(2)接通气体(氮气流量:30ml/min;空气流量:100ml/min);(3)待恒温水浴槽达到设定温度 和气流稳定后,打开TGA 主机;(4)打开计算机进入Windows NT,双击“STAR e” 图标打开STAR e软件。 3.根据软件建立试验方法,设置升温速率10℃~30℃/min、最大温度900℃,完毕后按提示放置样品,按提示开始、结束(重新开始)试验。 4.根据随机软件进行数据处理。 5.关闭系统:(1)须在TGA 主机的炉温低于300℃后关闭恒温水浴槽;(2)关闭TGA 主机;(3)关闭气体;(4)关闭计算机。 四、实验报告 1.热重燃烧特性指标的含义和求解方法; 2.热重燃烧条件下各燃烧特性参数代表的意义; 3.求解煤/生物质燃烧特性参数; 4.结合所得数据分析燃烧特性。

瑞士Mettler-Toledo公司的TGA/SDTA851e热分析系统 图1、图2为热分析系统原理图。该系统包括热重/差热同步分析仪,热重天平和高温恒温浴槽。 具体参数如下:型号:TGA/SDTA851e;温度范围:室温~1600℃;大测试炉:直径12mm,容积900μl;温度准确度:±0.25℃;温度重复性:±0.15℃;线性升温速率:0.01~100℃/min;SDTA分辨率:0.005℃。 图1中,天平和测试炉组成的测试单元是热重/差热同步分析的核心,采用平行支架微量/超微量天平,称量不受样品支架长度变化(如热胀冷缩效应)的影响;内置砝码全自动校准;称量部件处于恒温室内(22.0±0.1℃),不受环境因素的影响。其中的测试炉采用水平结构,可最大限度地消除可能产生的气体紊流的影响,克服热气体对流上升容易产生的“烟囱效应”。该系统采用单坩埚结构,使样品处于测试炉的几何对称中心,在升温室得到均匀加热。测量样品的温度传感器直接安装于坩埚底部,能准确测取样品温度。加热炉内可通入需要的各种反应气体,同时为了保护天平免受反应气体的腐蚀,需要通入保护气体。 图1 热分析系统示意图 图2 TGA/SDTA851e原理图 1—隔热挡板;2—反应性气体毛细管;3—石英护套;4—气体排出阀门(偶联接口);5—样品温度传感器;6—加热炉;7—炉温传感器;8—电源接点;9—真空和清洁气体管;10—恒温天平室;11—平行导向超微量天平;12—样品室开启装置;13—冷却水管道;14—保护气体入口;15—反应气体入口;16—真空连接和清洁气体入口

热重分析

第三节 热重分析(TG ) 一、基本原理 热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种技术,简称TG 。如熔融、结晶和玻璃化转变之类的热行为,试样确无质量变化,而分解、升华、还原、解吸附、吸附、蒸发等伴有质量改变的热变化可用TG 来测。如果在程序升温的条件下不断记录试样的重量的变化,即可得到TG 曲线。 如图1所示。一般可以观察到二到三个台阶,第一个失重台阶W 0—W 2多数发生在100℃以下,这多半是由于试样的吸附水或试样内残留的溶剂挥发所致。第二个台阶往往是试样内添加的小分子助剂,如高聚物增塑剂、抗老剂和其他助剂的挥发(如纯物质试样则无此部分)。第三个台阶发生在高温是属于试样本体的分解。为了清楚地观察到每阶段失重最快的温度。经常用微分热重曲线DTG (如图1b )。这种/dW dt 曲线可以利用电子微分电路在绘制TG 曲线的同时绘出。对于分解不完全的物质常常留下残留物W R 。 在某种特殊的情况下还会发生增重现象,这可能是物质与环境气体(如空气中的氧)进行了反应所致。另外目前又出现了一种等温TG 曲线。这是在某一定温度条件下,观察试样的重量随时间的变化,所以又称“等温热失重法”即: W=f (t )(温度为定值) W 0 W 1 W 2 W 3 重 量 图1 热重分析曲线(a )与微商热重曲线(b )

炉子 它能提供很多有用的信息,如在某温度下物体的分解速度或某成分的挥发速度等。 二、基本结构 热重法的仪器称为热天平,给出的曲线为热重曲线。热重曲线以时间t 或炉温T 为横坐标,以试样的质量变化(损失)为纵坐标。热天平的基本单元是微量天平、炉子、温度程序器、气氛控制器以及同时记录这些输出的仪器。热天平的示意图如图2-1所示。通常是先由计算机存储一系列质量和温度与时间关系的数据完成测量后,再由时间转换成 温度。 三、影 响因素 虽然由于技术的进步,在设计TG 仪器时进行了周密的考虑,尽量减少各种因素的影响,但是客观上这些因素还不同程度在存在着,为了数据的可靠性,有必要分述如下: 1.坩埚的影响 坩埚是用来盛装试样的,坩埚具有各种尺寸、形状并由不同材质制成。坩埚和试样间必须无任何化学反应。一般来说坩埚是由铂、铝、石英或陶瓷制成的。石英和陶瓷将与碱性试样反应而改变TG 曲线,聚四氟乙烯在一定条件下与之生成四氟化硅。铂对某些物质有催化作用,而且不适合于含磷、硫和卤素的高聚物。因此坩埚的选择对实验结果尤为重要。 2.挥发物冷凝的影响 样品在升温加热时,分解或升华产生的挥发物可能会产生冷凝的现象,而使实验结果产生偏差。为此试样用量尽可能少,并使气体流量合适。 3.升温速率的影响 由于试样要从外面炉体和容器等传入热量,所以必然形成温差。升温速率过快,有时会掩盖相邻的失重反应,甚至把本来应出现平台的曲线变成折线,同时TG 曲线有向高温推移的现象。但速度太慢又会降低实验效率。一般以5℃/min 为宜,有时需要选择更民的速度。

煤的燃烧过程及燃烧条件讲课讲稿

煤的燃烧过程及燃烧 条件

煤的燃烧过程及燃烧条件 煤的燃烧是复杂的物理化学过程,煤进入炉内,收到高温烟气的加热,温度逐渐升高,在此期间经历干燥、干馏、挥发分着火燃烧、焦炭燃烧、焦炭燃尽等各个阶段。 1、干燥: 煤被加热时,首先是水分不断蒸发,煤被干燥,显然,煤中水分多,干燥多消耗的热量也多,时间也长。 2、干馏: 煤被干燥后,继续被加热,达到一定温度就开始析出挥发分,同时生成焦炭,即是煤的干馏过程,每种挥发分越多,开始析出挥发分的温度越低,加热的温度越高,时间越长,析出的挥发分越多,因此,测定挥发分时规定了加热的温度和时间。 挥发分多,其中碳氢化合物也越多,重碳氢化合物在高温、缺氧的条件下,会进行热分解,形成微笑的碳粒,称为炭黑。由于碳粒很小很轻,在炉内不易烧掉而随烟排走,形成黑烟,为了使燃烧充分,不冒黑烟,必须保证挥发分燃烧所需足够高的温度和充足的空气,例如加装二次风。 只有当挥发分达一定浓度,而且到一定温度时,才能着火燃烧,干馏阶段为燃烧前的准备阶段。 煤在燃烧的准备阶段中,非但不放热而且要吸收热量,所以必须组织好热量供应,其热源来自炉膛火焰或高温烟气、炽热的炉墙和炉拱等。热量供应情况就决定了准备阶段的时间长短。 3、挥发分着火燃烧:

煤继续被加热,挥发分不断析出,而且温度也随之提高,挥发分中可燃物质与氧气的化学反应也在逐渐加快,当挥发分达到一定温度和浓度时,化学反应速度急速加快,着火燃烧,形成明亮的黄色火焰,这里,挥发分要加热到一定的温度时个重要条件。 不同的煤的挥发分着火温度时不一样的,通常我们将挥发分着火温度看成煤的着火温度,挥发分燃烧时放出热量,将焦炭加热到赤红程度(已达到能够着火的温度),但是焦炭并不会立刻燃烧,因为挥发分包围了焦炭,挥发分首先遇氧将氧耗掉了,氧气不能扩散到焦炭的表面,焦炭只能被加热而不能燃烧。 挥发分多,着火温度低,着火容易;挥发分少,着火温度高,着火困难。 4、焦炭的燃烧: 当挥发分基本烧完以后,氧气不能扩散到焦炭表面上,焦炭开始着火燃烧,并发出较短的蓝色火焰。 焦炭时煤的主要可燃物,燃烧时能发出很多热量,例如:无烟煤的焦炭燃烧发热量占总发热量的95%左右,挥发分很多,碳含量较小的褐煤,其焦炭燃烧发热量也占总发热量的一半以上。 焦炭的燃烧时固体(焦炭)与气体(氧气)之间的反应,化学反应速度很慢,因此燃烧时间较长,所以组织好焦炭的燃烧往往煤燃烧的关键。 5、焦炭燃尽: 焦炭燃烧时,在其表面形成灰壳,阻碍空气与焦炭接触,同时焦炭被燃烧形成的二氧化碳和一氧化碳所包围,又妨碍空气向焦炭表面的扩散。因此,焦炭燃尽往往需要很长的时间,为了及时排掉燃烧产生的气体,还应保证空气有适当的速度,但也应注意供应太多的空气量,不利于保证一定的炉膛温度。

热重分析仪

热重分析仪 热重分析仪 热重分析仪(Thermo Gravimetric Analyzer)是一种利用热重法检测物质温度-质量变化关系的仪器。热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质,(如CuSO4·5H2O中的结晶水)。从热重曲线上我们就可以知道CuSO4·5H2O中的5个结晶水是分三步脱去的。通过TGA 实验有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析通常可分为两类:动态(升温)和静态(恒温)。 热重法试验得到的曲线称为热重曲线(TG曲线),TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。 热重分析仪原理 热重分析仪的工作原理 热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。 最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记

录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 影响热重分析的因素 试样量和试样皿 热重法测定,试样量要少,一般2~5mg。一方面是因为仪器天平灵敏度很高(可达0.1μg),另一方面如果试样量多,传质阻力越大,试样内部温度梯度大,甚至试样产生热效应会使试样温度偏离线性程序升温,使TG曲线发生变化,粒度也是越细越好,尽可能将试样铺平,如粒度大,会使分解反应移向高温。 试样皿的材质,要求耐高温,对试样、中间产物、最终产物和气氛都是惰性的,即不能有反应活性和催化活性。通常用的试样皿有铂金的、陶瓷、石英、玻璃、铝等。特别要注意,不同的样品要采用不同材质的试样皿,否则会损坏试样皿,如:碳酸钠会在高温时与石英、陶瓷中的SiO2反应生成硅酸钠,所以象碳酸钠一类碱性样品,测试时不要用铝、石英、玻璃、陶瓷试样皿。铂金试样皿,对有加氢或脱氢的有机物有活性,也不适合作含磷、硫和卤素的聚合物样品,因此要加以选择。 升温速率 升温速度越快,温度滞后越严重,如聚苯乙烯在N2中分解,当分解程度都取失重10%时,用1℃/min测定为357℃,用5℃/min测定为394℃相差3 7℃。升温速度快,使曲线的分辨力下降,会丢失某些中间产物的信息,如对含水化合物慢升温可以检出分步失水的一些中间物。 气氛的影响 热天平周围气氛的改变对TG曲线影响显著,CaCO3在真空、空气和CO 2三种气氛中的TG曲线,其分解温度相差近600℃,原因在于CO2是CaCO 3分解产物,气氛中存在CO2会抑制CaCO3的分解,使分解温度提高。 聚丙烯在空气中,150~180℃下会有明显增重,这是聚丙烯氧化的结果,在N2中就没有增重。气流速度一般为40ml/min,流速大对传热和溢出气体扩散有利。 挥发物的冷凝 分解产物从样品中挥发出来,往往会在低温处再冷凝,如果冷凝在吊丝式

混煤燃烧特性研究

第25卷第18期中国电机工程学报V ol.25 No.18 Sep. 2005 2005年9月Proceedings of the CSEE ?2005 Chin.Soc.for Elec.Eng. 文章编号:0258-8013(2005)18-0097-07 中图分类号:TK227 文献标识码:A 学科分类号:470·40 混煤燃烧特性研究 王春波1,李永华2,陈鸿伟1 (1.华北电力大学能源与动力工程学院,河北省保定市071003; 2.LTNT能源技术研究中心,瑞士苏黎世) STUDY ON COMBUSTION CHARACTERISTICS OF BLENDED COALS WANG Chun-bo 1, LI Yong-hua 2, CHEN Hong-wei 1 (1. Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei Province, China; 2. Inst. f. Energietechnik/LTNT, ETH Zentrum/ML J14, CH-8092, Zurich/Switzerland) ABSTRACT: Power Plants in China have to burn blended coal instead of design coal,so it is necessary to investigate the combustion of blended coals. Using the test rig with a capacity of 640MJ/h with an absolute milling system and flue gas online analysis system, the characteristics of some blended coals, such as burning out, slagging and pollution were investigated. The ratio of coke and slag as a method to distinguish coal slagging characteristic was introduced. Some kinds of blending of coal have some effect on NO x but there is no obvious rule. The emission of SO x can be reduced to blend coal, especially for the low sulfur coal in this investigation. KEY WORDS:Blended coals; Combustion characteristic; Slag; NO x; SO x 摘要:由于国内电厂大量燃用混煤,因此,从技术经济角度出发,对混煤燃烧特性进行研究具有很大的必要性。文中利用一个具有在线烟气成分分析的640MJ/h热试验台,进行了几种混煤的燃尽、结渣和污染特性试验。焦炭和渣的比例被引入以区分煤的结渣特性。NO x的释放没有特别明显的规律,但研究中发现几种低硫煤混合后,SO x释放有所减少。关键词:混煤;燃烧特性;结渣;NO x;SO x 1 INTRODUCTION Because of decrease of washing coal, shortage of transport capability and the policy of bad coal combustion in power plant in China, power plant can 基金项目:国家“九·五”重点科技攻关项目(96-A19-01-05)。 Key Project of the National Ninth-Five Year Research Programme of China(96-A19-01-05). not burn one coal and have to burn blended coals. According to the reports of power plant of Water and Electricity Ministry, blending ratio of power plant is 44% in 1982. In 1987, Harbin Whole Set Equipment Research Institute found that most of power plants are very difficult to burn design coal when they investigate the basic instance of 428 main power plants. At present, blended combustion is very common, even the design coal of some power plants are blended coals. However, the blended coal is not a simple mechanical process—only some kinds of coal were blended. Because the difference of fractional coal constitution and combustion characteristic, the combustion condition can not be satisfied at one time. This may be lead to combustion instability and low efficiency etc[1-8]. In this paper, the burnout, slag and NO x, SO x emission of blended coals have been researched in a semi-industrial combustion facility. The blended coals are composed of four brown coals, namely Huolinhe coal, Yangcaogou coal, Fengguang coal and Meihe coal, which are often used by Shuangliao Power Plant. The characteristics of the four brown coals are shown in table 1. The blending ratio of blended coals is shown in table 2. The size of coal particles is limited to about R90=35%.

混煤燃烧反应动力学参数的实验研究

第22卷第2期电站系统工程V ol.22 No.2 2006年3月Power System Engineering Mar., 2006 文章编号:1005-006X(2006)02-0007-02 混煤燃烧反应动力学参数的实验研究* 刘亮1周臻1 李录平1彭锦2刘陆军2 (1.长沙理工大学,2.株洲华银火力发电有限公司) 摘要:采用热天平,在20 /min ℃的升温速率下,对六枝化处煤和娄底煤焦两种单煤及这两煤种之间9种不同掺混比的混煤的燃烧反应动力学参数进行了实验研究。分析特性温度发现,掺混少量的六枝化处煤就能明显降低混煤的着火温度;计算所得的混煤活化能E 比由父本煤种的活化能按比例加权的平均值E′小,混煤的着火性能更加接近活化能小的单煤。 关键词:混煤;动力学参数;热重分析;实验研究 中图分类号:TK16 文献标识码:A Experimental Study of Kinetic Parameters of Combustion Reaction of Blended Coals LIU Liang, ZHOU Zhen, LI Lu-ping, PENG Jin, LIU Lu-jun Abstract: An experimental investigation on kinetic parameters of combustion reaction of blended coal from Liuzhihua’s coal and Loudi’s coal is conducted. The assays of 11 kinds of coals were performed in thermogravimetric analysis, using a heating rate of 20℃/min. Research on characteristic temperatures of coal combustion showed that the ignition temperatures of blended coals evidently became lower for a small quantity of Liuzhihua’s coal mix. It would be readily seen that the activation energy (E) of the blended coals would be less than a weighted average value (E′) calculated by the activation energy of two parent coals, but ignition property is obviously near to that of the coal, whose activation energy is lower (Liuzhihua’s coal). Key words: blended coal; kinetic parameter; thermogravimetric analysis; experimental research 近年来,混煤燃烧在世界范围内得到广泛应用。燃用混煤时,若煤种选择恰当、混合均匀、配比合理,则能发挥各煤种的优越性,弥补单一煤种自身燃烧特性的缺陷,给锅炉的安全和经济性带来良好的影响。然而,混煤的燃烧与着火特性较为复杂,掺混不当会导致着火困难,燃烧不稳,燃烧损失增大,锅炉效率下降及污染物排放增加等一系列的问题,因此,有必要对混煤的燃烧特性进行研究。 本文主要以六枝化处煤(A)和娄底煤焦(B)两煤种之间的不同比例的混煤为研究对象,利用热天平等实验装置对两种单煤和两组分之间9种不同比例的混煤,进行燃烧反应动力学参数的研究。 1 实验装置及条件 本实验采用北京光学仪器厂生产的WCT-2型热天平。 煤样采用空气干燥基,煤样粒度过100目筛。热重实验采用φ5×1.5 mm氧化铝坩埚。测试条件为:升温速率为20 /min ℃,试样质量10±0.1 mg,试验测温范围为30~1200 ℃,实验在空气介质中进行。 2 热重试验结果 试验煤样为六枝化处煤和娄底煤焦及其混煤,其工业分析见表1,各煤样的热分析曲线如图1~4所示。 对图1~4进行分析和处理,可得到上述两种煤及其混收稿日期: 2006-01-05 刘亮(1967-),男,副教授。能源与动力工程学院,410076 *湖南省自然科学基金资助项目(04JJ40033)煤的着火温度T i、最大燃烧速率对应温度T max、燃尽温度T h[1]等参数,见表2,其着火、燃烧特性的分析见文献[2]。 M ( m g ) D T G ( % . m i n - 1 ) T 温度(℃) 图1 单煤的热分析曲线 D T G ( % / m i n ) M ( m g ) T 温度(℃) 图2 混煤的热分析曲线(1)

实验七 热重分析及综合热分析

实验七热重分析及综合热分析 一、实验目的与任务 1. 了解热重分析的仪器装置及实验技术。 2. 熟悉综合热分析的特点,掌握综合热曲线的分析方法。 3. 测绘矿物的热重曲线和综合热曲线,解释曲线变化的原因。 二、热重分析的仪器结构与分析方法 热重分析法是在程序控制温度下,测量物质的质量随温度变化的一种实验技术。 热重分析通常有静态法和动态法两种类型。 静态法又称等温热重法,是在恒温下测定物质质量变化与温度的关系,通常把试样在各给定温度加热至恒重。该法比较准确,常用来研究固相物质热分解的反应速度和测定反应速度常数。 动态法又称非等温热重法,是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。该法简便,易于与其他热分析法组合在一起,实际中采用较多。 热重分析仪的基本结构由精密天平、加热炉及温控单元组成。图16示出了上海天平仪器厂生产的PRT-1型普通热天平结构原理图;加热炉由温控加热单元按给定速度升温,并由温度读数表记录温度,炉中试样质量变化可由人工开启天平并记录。自动化程度高的热天平由磁心和差动变压器组成的位移传感器检测和输出试样质量变化引起天平失衡的信号,经放大后由记录仪记录。 图16 PRT-1型热天平结构原理图 由热重分析记录的质量变化对温度的关系曲线称热重曲线(TG曲线)。曲线的纵坐标为质量,横坐标为温度。例如固体热分解反应A(固)→B(固)+C(气)的典型热重曲线如图17所示。

图17 固体热分解反应的热重曲线 图中T i 为起始温度,即累计质量变化达到热天平可以检测时的温度。T f 为终止温度,即累计质量变化达到最大值时的温度。 热重曲线上质量基本不变的部分称为基线或平台,如图17中ab 、cd 部分。 若试样初始质量为W 0,失重后试样质量为W 1,则失重百分数为(W 0-W 1)/W 0×100%。 许多物质在加热过程中会在某温度发生分解、脱水、氧化、还原和升华等物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随着物质的结构及组成而异,因而可以利用物质的热重曲线来研究物质的热变化过程,如试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等。例如含有一个结晶水的草酸钙(CaC 2O 4·H 2O )的热重曲线如图18,CaC 2O 4·H 2O 在100℃以前没有失重现象,其热重曲线呈水平状,为TG 曲线的第一个平台。在100℃和200℃之间失重并开始出现第二个平台。这一步的失重量占试样总质量的12.3%,正好相当于每molCaC 2O 4·H 2O 失掉1molH 2O ,因此这一步的热分解应按 O H O CaC O H ·O CaC 242℃ 200℃100242 ~ +????→? 进行。在400℃和500℃之间失重并开始呈现第三个平台,其失重量占试样总质量的18.5%,相当于每molCaC 2O 4分解出1molCO ,因此这一步的热分解应按 CO CaCO O CaC 3℃500 ℃40042~ +????→? 进行。在600℃和800℃之间失重并出现第四个平台,其失重量占试样总质量的30%,正好相当于每molCaC 2O 4分解出1molCO 2,因此这一步的热分解应按 2℃800 ℃60042CO CaO O CaC ~ +????→? 进行。 可见借助热重曲线可推断反应机理及产物。

相关文档