文档库 最新最全的文档下载
当前位置:文档库 › 偏振光学实验

偏振光学实验

偏振光学实验
偏振光学实验

偏振光学实验

【实验目的】

1. 理解偏振光的基本概念,偏振光的起偏与检偏方法; 2. 学习偏振片与波片的工作原理与使用方法 【实验原理】

1.光波偏振态的描述

一个单色偏振光可以分解为两个偏振方向互相垂直的线偏振光的叠加,即

12cos cos()

x E a t

E a t ωωδ=??

=+? ① 式中δ为x 方向偏振分量相对于y 方向偏振分量的位相延迟量,12a a 、分别是两偏振分量的振幅,ω为光波的圆频率。

对于单色光,参数12a a 、、ω就完全确定了光波的偏振状态。以下讨论中取

120a a δπ≤ 、,02。

当0,δπ=时,式(1)描述的是一个线偏振光,偏振方向与x 轴的夹角

12

arctan(cos )a a αδ=称为线偏振光的方位角(如图1所示)

。 当/2,/2δππ=-且12a a =时,式(1)描述的是一个圆偏振光,其特点是电矢量以角速度ω旋转,电矢量的端点的轨迹为一圆。δ的正负决定了电矢量的旋向,/2δπ=时为右旋偏振光,/2δπ=-时为左旋偏振光(迎着光的方向观察,如图2所示)。

除了上述特殊情况,式(1)表示的是椭圆偏振光。(如图3)

偏振的一个重要应用是研究光波通过某个光学系统后偏振状态的变化来了解此系统的一些性质。

2.偏振片

偏振片主要有主透射率和消光比两个主要性能指标。记沿透射轴方向振动的光波的光强透射率和沿消光轴方向振动的光波的光强透射率分别为1,2T T ,二者之比为消光比e 。

21/e T T = ②

振动方向和透射轴方向成θ角的线偏振光经过偏振片后透射率为

2

122()cos T T T T θθ=-+ ③(即马吕斯定律)

实验中利用两个主透射率相同的偏振片来测量消光比e 。

m in 12

2

22

m ax

12

22()/2

1I T T T e e I T T T e

⊥==

=

≈++

实验中所用偏振片的消光比e 在451010-- 量级。因此光波通过偏振片后仍可近似看成是偏振光。通常把产生线偏振光的偏振片叫起偏器,用以分析光的偏振器叫检偏器。当检偏器和起偏器透射轴平行时,透射光强最大。二者垂直时,会产生消光现象。用这种方法就可以进行线偏振光的检测。

在本实验中用检偏器和光强探测器来分析。用光强探测器示值可确定出椭圆长轴方位角ψ和光强的极值比2

2

m in m ax //b a I I =。

3. 延迟器和波片

常用的延迟器是由双折射材料制成的光学元件。他有两个互相垂直的特定方向,快轴和慢轴。光线传播时,沿两个轴的偏振分量有不同的传播速度,既有不同的折射率。这样,慢轴分量相对于快轴分量将会产生位相延迟r δ。设位相延迟器厚度为d ,快,慢轴方向振动的线偏振光折射率分别为,f s n n ,则

002()/()/r s f s f n n d n n d c δπλω=-=-

式中0λ和0c 分别为真空中的光速和波长,ω为光波源频率。 线偏振光经过相延后偏振态发生变化。

12cos cos S f E a t E a t ωω=????=??12'cos '

'cos(')S f

r E a t E a t ωωδ=???

=+?? 波片是一种特殊的位相延迟器。实验中需要注意的是,沿快轴或慢轴入射的线偏振光通

过波片后其偏振状态不变。椭圆偏振光经过延迟器后的偏振状态分析可分如下步骤:①先将入射光表示成分沿快满轴方向振动的两分量,其相差为i δ,振幅为2a 和1a ;②投射光的位相差为t i r δδδ=+③由t δ,2a ,1a 就可以定出投射光的偏振状态。

如果t δ为π的整数倍,入射的椭圆偏振光就变成了线偏振光。圆偏振光经过1/4波片,或入射椭圆偏振光的长(短)轴平行于1/4波片的快(慢)轴,透射光线都是偏振光,这两种现象在偏振光学实验中很有用。

波片在使用时首先要定出波片快慢轴方向,将待测波片C 放在已正交消光的偏振器P 和A 之间,旋转波片C 使三者仍保持消光状态,这时波片的一个轴就平行于P 的透射轴的

方向。将待测1/4波片的轴和另一个1/4波片的已知快轴方向平行,这两个波片合成了一个半波片或全波片,判断出波片类型后,就可以判断出待测波片的快轴方向。

波片轴的确定

波片的相延很难做到准确等于/2π或π,通常把波片的实际相延和理想值之差叫波片相延误差。因此测量时一般让入射光的偏振方向与波片的轴成一稍小于/4π的角度。

4. 反射和折射时的起偏现象

平面电磁波以入射角i θ由空气中投射到折射率为n 的无吸收介质表面,将发生反射和折射。若将入射分解为电矢量分别平行或垂直于入射面的两个分量P 和S 。把P ,S 分量的振幅反射率,P S r r 平方就可以得到相应的光反射率,P S R R ,根据不同入射角i θ时,P S R R 曲线可以看到两分量反射率仅在0i θ=及趋近于90°时相等,所以光束斜入射是反射光,透射光的偏振态不同于入射光的偏振状态。入射偏振光方向与入射面呈45°角时,反射光的线偏振方向将随入射角i θ不同而改变,实验中能观察到这一现象。

当/2i t θθπ+=即arctan i B n θθ==时,P R =0,反射光中电矢量没有和入射面平行的分量,这一特征角B θ叫布儒斯特角。光束以B θ入射时反射光是电矢量垂直于入射面的完全线偏振光,即只有S 分量,该分量的反射率为

[]2

2

2

2

2

2

sin ()sin

(/2)(1)/(1)SB i t i i R n n θθθπθ=-=--=-+

实验中可根据布儒斯特角的上述性质判断偏振器的透射轴方向。实验中由于表面散射等原因, 的测定准确度较低。有些实验中使光束以 射入多块平行玻璃板已获得只有P 分量的线偏振透射光。经过N 块玻璃的2N 个表面后,S 分量的总透射率为

422

(1)

1(1)/2N

N

SB R n n -??-=+-??

N 值较大时其值几乎为0,这种起偏装置叫波片堆。

【实验装置】

(1)光源用波长为633nm 的氦氖激光器,为减小输出光强的波动影响,实验前激光器要预先点燃,经过20min 左右光强才较稳定;实验中不要关激光电源。暂不考虑激光束偏振特性对测量的影响。注意:不准用眼睛迎面直视激光束以免损伤眼底。

(2)起偏器P 和检偏器A 被分别固定在分光计的平行光管和望远镜上。P 和A 的方位角分别由游标盘读出,游标分度为0.1

(3)两个1/4波片中,一个波片0C 得快轴大致方向已用红点标出。另一个波片的快轴方向未知,需要通过实验步骤(12)(13)定出。 (4)分光计的小平台用以放置待测光学元件。

(5)用硅光电池、数字表和电阻箱组成光强探测器,三者成并列关系。 【实验步骤】

1.准备工作

(1)提前开启激光源,使激光器的电流为4mA 或略大。 (2)调整起偏管(平行光管)和检偏管(望远镜筒),使其轴线基本在同一水平面内,且和

分光计主轴垂直。调小平台与主轴基本垂直,起偏管和检偏管的方位角调节方法,与分光计望远镜的调节方法相同。

(3)调激光管的位置,使光束通过起偏管中心附近,由检偏管中心射出。 2.观察布儒斯特角和偏振器的特性 (4)观察布儒斯特角。 (5)定偏振器透射轴方向。 (6)测消光比e 。

(7)测量透射光强m I 和两偏振器夹角θ间的关系。 (8)选作。 1/4波片的特性研究

(9)定波片0C 的快轴方向。 (10) 线偏振光经过1/4波片。 (11) 定待测波片x C 的快轴方向。

(12) 观测偏光器通过1/2波片或全波片的现象(令0C 的快轴和x C 的某一个轴平行)。 (13) 观测偏光器通过1/2波片或全波片的现象(令0C 的慢轴和x C 的某一个轴平行)。 3.观测反射光的偏振面旋转的现象

(14) 观测反射光的偏振态改变的现象。 【实验数据及处理分析】 1 观测布儒斯特角

光束正入射棱镜表面时平台方位角0i α==0°0’;入射角为布儒斯特角时平台方位角B α=58°15’;布氏角的测量值为0B B i θαα==-=58°15’;

折射率tan B n θ==1.6160 相对偏差(n-1.668)/1.668=—3.12%

2 定偏振器透射轴方向

布氏角时起偏器P 的透射轴在水平方向,方位角为P ?;检偏器A 和P 正交时A 的方位角记作a ,即p p ?=且A 和P 消光时的a

p ?=

16(91.9°+91.7°+90.1°+89.7°+89.9°+91.6°)

=90.8°

2

1

()61

i

s p p ??=

--∑=

a =179.4°

4

460215(2)200(0.0050.00620.007) 4.81041004 6.555

I I I R e R I -+-++?=

==?? 4 按表测透射光强m I 与两偏振器夹角θ间的关系。 电阻箱示值100R =Ω,90.8P P ?==°;179.4a = °

两偏振器夹角θ为0 时,Im 最大,两偏振器夹角为90 及相互垂直时Im 最小,发生消光。 5 定波片0C 的快轴方向

90.8p ?= ;179.4a = ;波片0C 快轴在垂直方向时度盘示值090.8C =

6 线偏振光经过1/4波片 090.8C =

r δ计算公式|sin |sin(2)(1Im /Im )

r in ax δβ=

+

?计算公式1arctan(tan 2cos )2

?βδ=?

7 定待测波片x C 的轴方向。

90.8p ?=

;179.4a =

;波片x C 快轴在垂直方向时度盘示值275.9x C =

8 线偏振光通过全波片。(A 与P 的旋向相同,故为全波片,此时Cx 快轴与Co 快轴互相垂直,故可得到Cx 快轴方向)

x C 某轴在垂直方向,度盘示值:275.9°;0C 快轴在垂直方向,度盘示值

9线偏振光通过1/2波片(A 与P 旋向相反,所以为1/2波片。此时Cx 快轴与Co 快轴平行)。

x C 某轴在垂直方向,度盘示值:191.8°;0C 快轴在水平方向,度盘示值

【实验心得】

此次实验为半定量实验,由仪器或者读数造成的误差很大,所在粗调的时候应当仔细,尽量使激光处于镜筒中心以减小误差。读数的时候要注意游标应该像一个方向旋转,以避免空程引起的误差。激光的光强很强,要注意保护眼睛,用光强探测器读值。

通过本次实验我还接触到了一种新的光学器具——偏光片,学会了用光电转换装置通过观察光电流变化来观察光强变化,同时也对书本上所讲的光的性质有了更加深刻的认识,有一份不小的收获,在这里也要感谢老师的帮助。

实验报告-偏振光学实验

实验报告 姓名:班级:学号:实验成绩: 同组姓名:实验日期:2008-3-3 指导老师:助教10 批阅日期: 偏振光学实验 【实验目的】 1.观察光的偏振现象,验证马吕斯定律 2.了解1/2波片,1/4波片的作用 3.掌握椭圆偏振光,圆偏振光的产生与检测. 【实验原理】 1.光的偏振性 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为 偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种 振动状态称为平面振动态,此平面就称为振动面(见图1)。此时光矢 量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。若 光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称 为圆偏振态。如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。

2.偏振片 虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光介质的这种性质称为二向色性。)。偏振器件即可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片的透振方向之间的夹角为α,透过起偏器的线偏振光振幅为,则透过检偏器的线偏振光的振幅为A,A=ɑ,强度I=,I=ɑ= Iɑ=ɑ式中为进入检偏器前(检偏器无吸收时)线偏振光的强度。 这就是1809年马吕斯在实验中发现的,所以称马吕斯定律。显然,以光线传播方向为轴,转动检偏器时,透射光强度I将发生周期变化。

实验报告_偏振光的产生和检验 (2)

【实验题目】 偏振光的产生和检验 【实验记录与数据处理】 1.线偏振光的获得与检验 1)器件光路示意图(2分): 2)测量记录(1分) 光电流强度 光电流强度夹角光电流强度 3)贴图(3分): ~I 曲线(直角坐标)

2.椭圆偏振光的获得与检验 1)器件光路示意图(2分): ? ? ? ? ? ? 3)贴图(5分):15°和45°的θ~I 曲线图(极坐标) 光强与检偏器角度的关系(Φ=15?)

光强与检偏器角度的关系(Φ=45?) 3. 1/2波片的研究 1)器件光路示意图(2分): 3)结论(2分):θ??Φ~关系; 根据数据可得,在误差允许的范围内,△θ=2△Φ。

【结论与讨论】 实验结论: 1.在实验一中,由θ~I 曲线可得,在振动方向与透视轴夹角从0°至90°过程中,透视光强度逐渐由零增至最大值,在90°至180°逐渐减小至最小值;经过两个周期,图像大致与马吕斯定律I=I o cos θ相符合。 2.在实验二中,当入射光与玻片夹角β= 0°,透过检偏器的光强最小,可知透过1/4玻片得到的是沿玻片慢轴的线偏振光;当β=15°,旋转检偏器一周后,得到的光强呈周期性变化,且最小值与最大值差值较大,光强最大值小于实验一中线偏振光的光强,再根据θ~I 曲线图即可知透过1/4玻片得到的是椭圆偏振光;当β=45°,旋转检偏器一周后,发现得到的光强变化不大,且光强大小界于β=15°时椭圆偏振光的光强最大值和最小值之间,再根据θ~I 曲线图即可知透过1/4玻片得到的是圆偏振光。 3.在实验三中,可以得出△θ随着ΔΦ的变化呈线性关系,满足△θ=2△Φ。 实验讨论: 【课后问题】(5分) 讨论:如何利用波片与偏振光片判别圆偏振光与自然光? 答:1.已知圆偏振光经过1/4玻片后形成线偏振光,而自然光经过1/4玻片后仍为自然光,故可以用1/4玻片进行区分。 2.让光束透过1/4玻片+偏振片,旋转偏振片,透射光发生变化的为圆偏振光,透射光不发生变化的为自然光。故可用玻片+偏振片进行区分。 报告成绩(满分30分):??????????? 指导教师签名:???????????????? 日期:?????????????????

偏振光学实验-

偏 振 光 学 实验报告 力9 夏晶2009011636

偏振光学实验 实验目的 1. 理解偏振光的基本概念,偏振光的起偏与检偏方法; 2. 学习偏振片与波片的工作原理与使用方法 实验原理 1.光波偏振态的描述 一个单色偏振光可以分解为两个偏振方向互相垂直的线偏振光的叠加,即 12 cos cos()x E a t E a t ωωδ=?? =+? ① 式中δ为x 方向偏振分量相对于y 方向偏振分量的位相延迟量,12a a 、分别是两偏振分量的振幅,ω为光波的圆频率。 对于单色光,参数12a a 、、ω就完全确定了光波的偏振状态。以下讨论中取 120a a δπ≤ 、,02。 当0,δπ=时,式(1)描述的是一个线偏振光,偏振方向与x 轴的夹角 1 2 arctan( cos )a a αδ=称为线偏振光的方位角(如图1所示) 。 当/2,/2δππ=-且12a a =时,式(1)描述的是一个圆偏振光,其特点是电矢量以角速度ω旋转,电矢量的端点的轨迹为一圆。δ的正负决定了电矢量的旋向,/2δπ=时为右旋偏振光,/2δπ=-时为左旋偏振光(迎着光的方向观察,如图2所示)。 除了上述特殊情况,式(1)表示的是椭圆偏振光。(如图3) 偏振的一个重要应用是研究光波通过某个光学系统后偏振状态的变化来了解此系统的一些性质。 2.偏振片 偏振片主要有主透射率和消光比两个主要性能指标。记沿透射轴方向振动的光波的光强

透射率和沿消光轴方向振动的光波的光强透射率分别为1,2T T ,二者之比为消光比e 。 21/e T T = ② 振动方向和透射轴方向成θ角的线偏振光经过偏振片后透射率为 2122()cos T T T T θθ=-+ ③(即马吕斯定律) 实验中利用两个主透射率相同的偏振片来测量消光比e 。 min 12222 max 1222()/21I T TT e e I T T T e ⊥===≈++ 实验中所用偏振片的消光比e 在4 51010-- 量级。因此光波通过偏振片后仍可近似看成 是偏振光。通常把产生线偏振光的偏振片叫起偏器,用以分析光的偏振器叫检偏器。当检偏 器和起偏器透射轴平行时,透射光强最大。二者垂直时,会产生消光现象。用这种方法就可以进行线偏振光的检测。 在本实验中用检偏器和光强探测器来分析。用光强探测器示值可确定出椭圆长轴方位角 ψ和光强的极值比22min max //b a I I =。 3. 延迟器和波片 常用的延迟器是由双折射材料制成的光学元件。他有两个互相垂直的特定方向,快轴和慢轴。光线传播时,沿两个轴的偏振分量有不同的传播速度,既有不同的折射率。这样,慢轴分量相对于快轴分量将会产生位相延迟r δ。设位相延迟器厚度为d ,快,慢轴方向振动的线偏振光折射率分别为,f s n n ,则 002()/()/r s f s f n n d n n d c δπλω=-=- 式中0λ和0c 分别为真空中的光速和波长,ω为光波源频率。 线偏振光经过相延后偏振态发生变化。 12cos cos S f E a t E a t ωω=???? =??12'cos ' 'cos(')S f r E a t E a t ωωδ=??? =+?? 波片是一种特殊的位相延迟器。实验中需要注意的是,沿快轴或慢轴入射的线偏振光通 过波片后其偏振状态不变。椭圆偏振光经过延迟器后的偏振状态分析可分如下步骤:①先将入射光表示成分沿快满轴方向振动的两分量,其相差为i δ,振幅为2a 和1a ;②投射光的位相差为t i r δδδ=+③由t δ,2a ,1a 就可以定出投射光的偏振状态。 如果t δ为π的整数倍,入射的椭圆偏振光就变成了线偏振光。圆偏振光经过1/4波片,或入射椭圆偏振光的长(短)轴平行于1/4波片的快(慢)轴,透射光线都是偏振光,这两种现象在偏振光学实验中很有用。

光的偏振

第五章光的偏振 (Polarization of light) ●学习目的 通过本章的学习使得学生了解光通过各向异性介质时所产生的偏振现象,初步掌握自然光、线偏振光、椭圆偏振光的检测方法。 ●内容提要 1、阐明惠更斯作图法,说明光在晶体中的传播规律; 2、介绍布儒斯特定律和马吕斯定律; 3、阐明自然光、线偏振光、椭圆偏振光的概念和检测方法; 4、介绍1/4波片的功用; 5、讨论光在各向异性介质中的传播情况。 ●重点 1、偏振光的检测方法; 2、光在晶体中的传播行为。 ●难点 1、偏振光的检测方法; 2、各向异性介质光的传播行为。 ●计划学时 计划授课时间10学时 ●教学方式及教学手段 课堂集中式授课,采用多媒体教学。 ●参考书目 1、《光学》第二版章志鸣等编著,高等教育出版社,第七章 2、《光学。近代物理》陈熙谋编著,北京大学出版社,第四章

第一节 自然光与偏振光 一、光的偏振性 1、纵波:波的振动方向和波的传播方向相同的波称为纵波。 2、横波:波的振动方向和波的传播方向相互垂直的波称为纵波。 3、偏振:波的振动方向相对于传播方向的不对称性称为偏振。只有横波才有偏振现象。 4、振动面:电矢量和光的传播方向所构成的平面称为偏振光的振动面。 二、自然光和偏振光(natural light ) 1、偏振光的种类 ● 平面偏振光:光在传播过程中电矢量的振动只限于某一平面内,则这种光称为平面偏振光。 ● 线偏振光:(linearly polarized light )光在传播过程中电矢量在传播方向垂直的平面上的投影为一条直线,则这种光称为线偏振光。 线偏振光的表示法: ● 部分偏振光(partially polarized light )彼此无固定相位关系、振动方向任 意、不同方向上振幅不同的大量光振动的组合称部分偏振光。 部分偏振光可分解为两束振动方向相互垂直、不等幅、不相干的线偏振光。 ▲部分偏振光的表示: 迎着光的传播方向看 · · · · · 光振动垂直板面 光振动平行板面

清华大学偏振光学实验完整实验报告

偏振光学实验完整实验报告 工物53 李哲 2015011783 16号 1.实验目的: (1)理解偏振光的基本概念,在概念以及原理上了解线偏振光,圆偏振光以及椭圆偏振光,并了解偏振光的起偏与检偏方法。以及线偏振光具有的一些性质。 (2)学习偏振片与玻片的工作原理。 2.实验原理: (1)光波偏振态的描述: · 单色偏振光可以分解成两个偏振方向垂直的线偏振光的叠加: t a E X ωcos 1=与()δω+=t a E Y cos 1(其中δ是两个偏振方向分量的相位延迟,21,a a 为两个光的振幅),由其中的δ,,21a a 就可以确定这个线偏振光的性质。 πδ=或0=δ就为线偏振光,2 ,21π δ==a a 为圆偏振光(就是光矢量的顶点绕 其中点做圆周运动,依然是偏振光),而一般情况下是椭圆偏振光。 · 上述式子通常描述的是椭圆偏振光,而本实验通过测量椭圆的长轴方位角ψ以及椭圆的短半轴与长半轴的比值对于椭圆偏振光进行描述。其计算式是: ()δβcos 2tan arctan 2 1 ?=ψ () 12sin sin 112222-?-+=βδa b 而对于实验中的椭圆偏振光而言,其光强在短轴对应的方向最小,在长轴的对应方向最大,所以可以通过使这个椭圆偏振光通过一个偏振片,并调整偏振片的透射轴方位,测量其最大最小值,就可以知道其长轴短轴的比值。又由于光强与振幅的平方成正比,所以测得的光强的比值是长轴短轴之比的平方。 (2)偏振片: · 理想偏振片:只有电矢量振动方向与透射轴平行方向的光波分量才能通过偏振片。 · 实验中的偏振片不是理想化的,并不能达到上述的效果,当入射光波的振动方向与透射轴平行时,其透射率不能达到1,当垂直于透射轴时,其透射率不是0。所以对于偏振片有主透射率以及消光比两个量进行描述。 · 主透射率21T T ,指沿透射轴或消光轴方向振动光的光强透射率。两者的比值

大学物理实验《偏振光的观测与研究》

实验3.8 偏振光的观测与研究 偏振光的理论意义和价值是,证明了光是横波。同时,偏振光在很多技术领域得到了广泛的应用。如偏振现象应用在摄影技术中可大大减小反射光的影响,利用电光效应制作电光开关等。 【实验目的】 1.通过观察光的偏振现象,加深对光波传播规律的认识。 2.掌握偏振光的产生和检验方法。 3.观察布儒斯特角及测定玻璃折射率。 4.观测圆偏振光和椭圆偏振光。 【实验仪器】 光具座、激光器、光点检流计、起偏器、检偏器、1/4波片、1/2波片、光电转换装置、观测布儒斯特角装置、带小孔光屏、钠光灯。 【实验原理】 按照光的电磁理论,光波就是电磁波,电磁波是横波,所以光波也是横波。在大多数情况下,电磁辐射同物质相互作用时,起主要作用的是电场,因此常以电矢量作为光波的振动矢量。其振动方向相对于传播方向的一种空间取向称为偏振,光的这种偏

振现象是横波的特征。 根据偏振的概念,如果电矢量的振动只限于某 一确定方向的光,称为平面偏振光,亦称线偏振光; 如果电矢量随时间作有规律的变化,其末端在垂直于传播方向的平面上的轨迹呈椭圆(或圆),这样的光称为椭圆偏 振光(或圆偏振光);若电矢量的取向与大小都随时间作无规则变 化,各方向的取向率相同,称为自然光,如图3-26所示;若电矢 量在某一确定的方向上最强,且各向的电振动无固定相位关系, 则称为偏振光。 1.获得偏振光的方法 (1)非金属镜面的反射,当自然光从空气照射在折射率为n 的非金属镜面(如玻璃、水等)上,反射光与折射光都将成为部 分偏振光。当入射角增大到某一特定值φ0时,镜面反射光成为完 全偏振光,其振动面垂直于射面,这时入射角φ称为布儒斯特角, 也称起偏振角,由布儒斯特定律得: 0tan n φ= (3-51) 其中,n 为折射率。 (2)多层玻璃片的折射,当自然光以布儒斯特角入射到叠在 一起的多层平行玻璃片上时,经过多次反射后透过的光就近似于 线偏振光,其振动在入射面。 图3-26 自然光

光的偏振 实验报告.doc

光的偏振 实验仪器: 光具座、半导体激光器、偏振片、1/4波片、激光功率计。 实验原理: 自然光经过偏振器后会变成线偏振光。偏振片既可作为起偏器使用,亦可作为检偏器使用。 马吕斯定律:马吕斯指出:强度为I0的线偏振光,透过检偏片后,透射光的强度(不考虑吸收)为I=I0cos2。(是入射线偏振光的光振动方向和偏振片偏振化方向之间的夹角。) 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光。 实验1、2光路图: 实验5光路图: 实验步骤: 1.半导体激光器的偏振特性: 转动起偏器,观察其后的接受白屏,记录器功率最大值和最小值,以及对应的角度,求出半导体激光的偏振度。 2。光的偏振特性——验证马吕斯定律: 利用现有仪器,记录角度变化与对应功率值,做出角度与功率关系曲线,并与理论值进行比较。 5.波片的性质及利用: 将1/4波片至于已消光的起偏器与检偏器间,转动1/4波片观察已消光位置,确定1/4波片光轴方向,改变1/4波片的光轴方向与起偏器的偏振方向的夹角,对应每个夹角检偏器转动一周,观察输出光的光强变化并加以解释。

实验数据: 实验一: 实验二: 实验五: 数据处理: 实验一: 计算得半导体激光的偏振度约为 故半导体激光器产生的激光接近于全偏振光。实验二: 绘得实际与理论功率值如下:

进行重叠发现二者的图线几乎完全重合,马吕斯定律得到验证。实验五:见“实验数据”中的表格

总结与讨论: 本次实验所用仪器精度较高,所得数据误差也较小。 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光,这就是实验五中透过1/4波片的线 偏光成为不同偏振光的原因。XX大学生实习报告总结 3000字 社会实践只是一种磨练的过程。对于结果,我们应该有这样的胸襟:不以成败论英雄,不一定非要用成功来作为自己的目标和要求。人生需要设计,但是这种设计不是凭空出来的,是需要成本的,失败就是一种成本,有了成本的投入,就预示着的人生的收获即将开始。 小草用绿色证明自己,鸟儿用歌声证明自己,我们要用行动证明自己。打一份工,为以后的成功奠基吧! 在现今社会,招聘会上的大字板都总写着“有经验者优先”,可是还在校园里面的我们这班学子社会经验又会拥有多少呢?为了拓展自身的知识面,扩大与社会的接触面,增加个人在社会竞争中的经验,锻炼和提高自己的能力,以便在以后毕业后能真正的走向社会,并且能够在生活和工作中很好地处理各方面的问题记得老师曾说过学校是一个小社会,但我总觉得校园里总少不了那份纯真,那份真诚,尽管是大学高校,学生还终归保持着学生身份。而走进企业,接触各种各样的客户、同事、上司等等,关系复杂,但你得去面对你从没面对过的一切。记得在我校举行的招聘会上所反映出来的其中一个问题是,学生的实际操作能力与在校的理

偏振光的研究

偏振光的研究 2006.1.10 中国科学技术大学国家级精品课程大学物理实验讲座前言 干涉和衍射—光的波动性 偏振—光是横波 光的偏振现象 偏振元件应用 S E H =? 光的矢量性—光是横波 K为波面的法线方向,S为光波的能量传播方向。 在各向同性的介质中S与K同向。在各向异性的介质中S与K不同向。 自然光线偏振光

部分偏振光 圆偏振光 椭圆偏振光 部分偏振度 定义: min max min max I I I I P +-= 椭圆偏振光的形成(两个互相垂直的振动的合成) ) cos()cos(2010αωαω+=+=t E E t E E y y x x 椭圆方程式: 002121221002 022 022 /) (sin )cos(2 E E E E E E E E E E E y x y x y x y y x x ====--=--+ 正椭圆 πδαααααα 改变光的偏振态的方法 1、利用偏振片 2、利用反射现象 3、利用双折射晶体 光的散射 利用偏振片产生偏振光 马吕斯定律(1809年)和消光现象

菲涅耳公式 (只写出反射时的公式) ) sin()sin()tan() tan(r φθφθφθφθ+--== +-= = S S S P P P A R r A R 注:R ,A 为振幅 布鲁斯特角:12tan n n =θ 利用布儒斯特角产生偏振光

全反射时光的偏振态的改变 反射波的振幅比可以改写为: θ θθθθ θθ θ2 222222 222sin cos sin cos sin cos sin cos -+-+-=-+--=n n n n r n n r P S 1)(sin sin sin 12<=≥=n n n n n 全反射θφθ 当入射角大于或等于临界角sin-1(n)时 P S i i P i i S e e i B i B n i i n n i n r e e i A i A n i n i r δβδαββθθθααθθθθ==-= -+-+-= ==-= -+--=--22 2122 2 2 22 222) exp() exp(sin cos sin cos ) exp() exp(sin cos sin cos P S δδ?-= 全反射时的相位改变 菲涅耳棱体

马吕斯定律实验报告

竭诚为您提供优质文档/双击可除 马吕斯定律实验报告 篇一:偏振光实验报告 实验报告 姓名:高阳班级:F0703028学号:5070309013同组姓名:王雪峰 实验日期:20XX-3-3 指导老师:助教10 实验成绩:批阅日期: 偏振光学实验 【实验目的】 1.观察光的偏振现象,验证马吕斯定律 2.了解1/2波 片,1/4波片的作用 3.掌握椭圆偏振光,圆偏振光的产生与检测. 【实验原理】 1.光的偏振性 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度e称为光矢量。在垂直于光波传播方

向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面(见图1)。此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。 2.偏振片 虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用 的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光介质的这种性质称为二向色性。)。偏振器件即可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片的透振方向之间的夹角为α,透过起偏器的线偏振光振幅为A0,

偏振光的应用

偏振光的应用 ————XXX 摘要: 名称与定义 横波 纵波 偏振原理 自然光 偏振光应用: 1、汽车车灯; 2、观看立体电影; 3、生物的生理机能与偏振光; 4、LCD液晶屏; 偏振光红外偏振光在医疗范围的应用: 5、红外偏振光治疗的特点: 产生 特性 定义:光波的光矢量的方向不变,只是其大小随相位变化的光。 偏振光,光学名词。光是一种电磁波,电磁波是横波。而振动方向和光波前进方向构成的平面叫做振动面,光的振动面只限于某一固定方向的,叫做平面偏振光或线偏振光。 横波 光是一种电磁波,是由与传播方向垂直的电场和磁场交替转换的振动形成的。这种振动方向与传播方向垂直的波我们称之为横波。 纵波 声波是靠空气或别的媒质前后压缩振动传播的,它的振动方向与传播相同,这类波我们称之为纵波。

偏振原理: 通常光源发出的光,它的振动面不只限于一个固定方向而是在各个方向上均匀分布的。这种光叫做自然光。光的偏振性是光的横波性的最直接,最有力的证据,光的偏振现象可以借助于实验装置进行观察,P1、P2是两块同样的偏振片。通过一片偏振片p1直接观察自然光(如灯光或阳光),透过偏振片的光虽然变成了偏振光,但由于人的眼睛没有辨别偏振光的能力,故无法察觉。如果我们把偏振片P1的方位固定,而把偏振片P2缓慢地转动,就可发现透射光的强度随着P2转动而出现周期性的变化,而且每转过90°就会重复出现发光强度从最大逐渐减弱到最暗;继续转动P2则光强又从接近于零逐渐增强到最大。由此可知,通过P1的透射光与原来的入射光性质是有所不同的,这说明经P1的透射光的振动对传播方向不具有对称性。自然光经过偏振片后,改变成为具有一定振动方向的光。这是由于偏振片中存在着某种特征性的方向,叫做偏振化方向,偏振片只允许平行于偏振化方向的振动通过,同时吸收垂直于该方向振动的光。通过偏振片的透射光,它的振动限制在某一振动方向上,我们把第一个偏振片P1叫做“起偏器”,它的作用是把自然光变成偏振光,但是人的眼睛不能辨别偏振光。必须依靠第二片偏振片P2去检 偏振光原理 查。旋转P2,当它的偏振化方向与偏振光的偏振面平行时,偏振光可顺利通过,这时在P2的后面有较亮的光。当P2的偏振方向与偏振光的偏振面垂直时,偏振光不能通过,在P2后面也变暗。第二个偏振片帮助我们辨别出偏振光,因此它也称为“检偏器”。光是一种电磁波,电磁波是横波。而振动方向和光波前进方向构成的平面叫做振动面,光的振动面只限于某一固定方向的,叫做平面偏振光或线偏振光。 自然光 光波是横波,即光波矢量的振动方向垂直于光的传播方向。通常,光源发出的光波,其光波矢量的振动在垂直于光的传播方向上作无规则取向,但统计平均来说,在空间所有可能的方向上,光波矢量的分布可看 偏振光 作是机会均等的,它们的总和与光的传播方向是对称的,即光矢量具有轴对称性、均匀分布、各方向振动的振幅相同,这种光就称为自然光。 偏振光 偏振光是指光矢量的振动方向不变,或具有某种规则地变化的光波。按照其性质,偏振

大学物理实验报告系列之偏振光的分析

大学物理实验报告系列之 偏振光的分析 Last revision on 21 December 2020

【实验名称】偏振光的分析【实验目的】 1.观察光的偏振现象,巩固理论知识,加深对光的偏振现象的认识。 2.学习直线偏振光的产生与检验方法,了解圆偏振光和正椭圆偏振光的产生和定性检验方法。 【实验仪器】 He-Ne激光器、光具座、偏振片(两块)、的1/4波片(两块)、玻璃平板及刻度盘、白屏等。 【实验原理】 1.光的偏振状态 偏振是指振动方向相对于波的传播方向的一种空间取向作用。它是横波的重要特性。光在传播过程中,若电矢量的振动只局限在某一确定平面内,这种光称为直线偏振光,又叫平面偏振光(因其电矢量的振动在同一平面内);若光波电矢量的振动随时间作有规律的改变,即电矢量的末端在垂直于光传播方向的平面上的轨迹是圆或椭圆,这样的光称为圆偏振光和椭圆偏振光;若光波电矢量的振动只在某一确定的方向上占优势,而在和它正交的方向上最弱,各方向的振动无固定的位相关系,这种光称为部分偏振光。 2.直线光,圆偏光,椭圆偏振光的产生。直线偏振光垂直通过波片的偏振状态 3.鉴别各种偏振光的方法和步骤

【实验内容】 1.测定玻璃对激光波长的折射率 2.产生并检验圆偏振光 3.产生并检验椭圆偏振光 【数据表格与数据记录】 波长为时玻璃对于空气的相对折射率为。 现象:两次最亮,两次消光。结论:圆偏振光 如果使检偏器的透振方向与暗方向平行, 1/4波片与检偏器透振方向垂直或平行。 现象:两次亮光,两次消光 结论:椭圆偏振光 现象:两最亮,两次消光 结论:线偏振光 【小结与讨论】 1. 实验测的了时玻璃对空气的折射率 为。 2. 单色自然光经过起偏器和检偏器,旋 转检偏器一周,发现光电流相应出现两次消光现象,是分析其原因。

偏振光实验报告

实验1. 验证马吕斯定律 实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振 光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸 收o 光,通过e 光),这种对线偏振光的强烈的选择吸收性质,叫 做二向色性。具有二向色性的晶体叫做偏振片。 偏振片可作为起偏器。自然光通过偏振片后,变为振动面平行 于偏振片光轴(透振方向),强度为自然光一半的线偏振光。如图1、图2所示: 图1中靠近光源的偏振片1P 为起偏器,设经过1P 后线偏振光 振幅为0A (图2所示),光强为I 0。2P 与1P 夹角为θ,因此经2P 后 的线偏振光振幅为θcos 0A A =,光强为θθ20220cos cos I A I ==, 此式为马吕斯定律。 实验数据及图形: P 1 P 2 线偏光 单色自然光 线偏光 图1 P 1 P 2 A 0 A 0cos θ θ 图2

从图形中可以看出符合余弦定理,数据正确。 实验2.半波片,1/4波片作用 实验原理:偏振光垂直通过波片以后,按其振动方向(或振 动面)分解为寻常光(o 光)和非常光(e 光)。它们具有相同的 振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投 影到同一方向,就能满足相干条件,实现偏振光的干涉。 分振动面的干涉装置如图3所示,M 和N 是两个偏振片,C 是 波片,单色自然光通过M 变成线偏振光,线偏振光在波片C 中分 解为o 光和e 光,最后投影在N 上,形成干涉。 考虑特殊情况,当M ⊥N 时,即两个偏振片的透振方向垂直时,出射光强为:)cos 1)(2(sin 420δθ-= ⊥I I ;当M ∥N 时,即两个偏振片的透振方向平行时,出射光强为:M N 图3 分振动面干涉装置 I 0 波片 偏振片 偏振片 单色自然光

实验报告偏振光学实验

实验报告 女姓名. *****班级:*****■学号. *****实验成绩: 同组姓名:*****实验日期:*****指导教师:批阅日期: 偏振光学实验 【实验目的】 1 ?观察光的偏振现象,验证马吕斯定律; 2.了解1 / 2波片、1 / 4波片的作用; 3 ?掌握椭圆偏振光、圆偏振光的产生与检测。 【实验原理】 1 .光的偏振性 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E称为光矢量。在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面(见图1)。此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。 2.偏振片 虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光,介质的这种性质称为二向色性。)。 偏振器件即可以用来使自然光变为平面偏振光一一起偏,也可以用来鉴别线偏振光、自然光和部分偏振光一一检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3?马吕斯定律 设两偏振片的透振方向之间的夹角为a,透过起偏器的线偏振光振幅为A0,则 透过检偏器 的线偏振光的强度为I

4.物理光学-偏振

物理光学——偏振 一.填空题 1.1 偏振度最大的光是(完全偏振光 )。 1.2 同一束入射光( 折射 )时分成( 两束 )的现象称为双折射。 1.3 在双折射晶体内不遵循( 折射定律 )的光称为e 光;O 光的波面为( 球面 ),e 光的 波面为( 椭球面 )。 1.4 在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的( 速度 )相 等,这一方向称为晶体的光轴,只具有一个光轴方向的晶体称为( 单轴 )晶体。 1.5 当光线沿光轴方向入射到双折射晶体上时,不发生( 双折射 )现象,沿光轴方向寻常 光和非寻常光的折射率( 相同 );传播速度( 相同 )。 1.6 当自然光以布儒斯特角入射到非晶体界面时,反射光为( 平面偏振光 ),透射光为( 部 分偏振光 )。 1.7 马吕斯定律的数学表达式为α=20cos I I 。式中,I 为通过检偏器的透射光的强度,I 0 为入射( 线偏振光 )的强度;α为入射光矢量的(振动方向)和检偏器( 偏振化 ) 方向之间的夹角。 1.8 两个偏振片堆叠在一起且偏振化方向相互垂直,若一束强度为I 0的线偏振光入射,其 光矢量振动方向与第一偏振片偏振化方向夹角为/4π,则穿过第一偏振片后的光强为 ( 02 1I ),穿过两个偏振片后的光强为( 0 )。 1.9 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片,若以入射光束为轴旋转 偏振片,测得透射光强度的最大值是最小值的5倍,那么入射光束中自然光和线偏振光 的光强比值为( 1:2 )。 1.10 一束自然光垂直穿过两个偏振片,两个偏振片方向成450角,已知通过这两个偏振片后 的光强为I ,则入射至第二个偏振片的线偏振光强度为( 2I )。 1.11 一束自然光以布儒斯特角入射到平面玻璃上,就偏振状态来说:反射光为(线偏振光 ); 反射光矢量的振动方向( 垂直于入射面或为S 振动 );透射光为(部分偏振光)。 1.12 当一束自然光在两种介质分界面处发生反射和折射时,若反射光为完全偏振光,则折 射光为(部分偏振光 ),且反射光线和折射光线之间的夹角为( 2/π )。反射光的光 矢量振动方向( 垂直于入射面或为S 振动 )。 1.13 一束自然光从折射率为n 1的介质入射到折射率为n 2的介质界面,实验发现反射光是完 全偏振光,则折射角的值为( )a r c t a n (21 2n n -π )。 1.14 一束平行自然光以60o 角入射到平板玻璃表面上,若反射光是完全偏振的,则透射光束

大学物理实验- 光的偏振

实验27 光的偏振 一、实验目的 1、观察光的偏振现象,加深对光的偏振的理解。 2、了解偏振光的产生及其检验方法。 3、观测布儒斯特角,测定玻璃折射率。 4、观测椭圆偏振光与圆偏振光。 5、了解1/2波片和1/4波片的用途。 二、实验原理 1、光的偏振状态 光是电磁波,它是横波。通常用电矢量E表示光波的振动矢量。 (1)自然光其电矢量在垂直于传播方向的平面内任意取向,各个方向的取向概率相等,所以在相当长的时间里(10-5秒已足够了),各取向上电矢量的时间平均值是相等的,这样的光称为自然光,如图27-l所示。 (2)平面偏振光电矢量只限于某一确定方向的光,因其电矢量和光线构成一个平面而称其为平面偏振光。如果迎着光线看,电矢量末端的轨迹为一直线,所以平面偏振光也称为线偏振光,如图27-2所示。 (3)部分偏振光电矢量在某一确定方向上较强,而在和它正交的方向上较弱,这种光称为部分偏振光,如图27-3所示。部分偏振光可以看成是线偏振光和自然光的混合。 (4)椭圆偏振光迎着光线看,如果电矢量末端的轨迹为一椭圆,这样的光称为椭圆偏振光。椭圆偏振光可以由两个电矢量互相垂直的、有恒定相位差的线偏振光合成得到。 (5)圆偏振光迎着光线看,如果电矢量末端的轨迹为一个圆,则这样的光称为圆偏振光。圆偏振光可视为长、短轴相等的椭圆偏振光。 图27-4 椭圆偏振光

2、布儒斯特定律 反射光的偏振与布儒斯特定律 如图27-5所示,光在两介质(如空气和玻璃片等)界面上,反射光和折射光(透射光)都是部分偏振光。当反射光线与折射光线的夹角恰为90°时,反射光为线偏振光,其电矢量振动方向垂直于入射光线与界面法线所决定的平面(入射面)。此时的透射光中包含平行于入射面的偏振光的全部以及垂直于入射面的偏振光的其余部分,所以透射光仍为部分偏振光。由折射定律很容易导出此时的入射角 α 满足关系 1 2 tan n n = α (27-1) (27-1)式称为布儒斯特定律,入射角 α 称为布儒斯特角,或称为起偏角。若光从空气入射到玻璃(n 2约为1.5),起偏角约56°。 3、偏振片、起偏和检偏、马吕斯定律 (1)由二向色性晶体的选择吸收所产生的偏振 自然光 偏振光 偏振片 P 1P 2 I 0 起偏器 检偏器 自然光 I ' 图a 偏振片起偏 图b 起偏和检偏 图27-6 偏振片 有些晶体(如电气石)、长链分子晶体(如高碘硫酸奎宁),对两个相互垂直振动的电矢量具有不同的吸收本领,这种选择吸收性称为二向色性。在两平板玻璃间,夹一层二向色性很强的物质就制成了偏振片。自然光通过偏振片时,一个方向的电矢量几乎完全通过(该方向称为偏振片的偏振化方向),而与偏振化方向垂直的电矢量则几乎被完全吸收,因此透射光就成为线偏振光。根据这一特性,偏振片既可用来产生偏振光(起偏),也可用于检验光的偏振状态(检偏)。 (2)马吕斯定律 用强度为I 0的线偏振光入射,透过偏振片的光强为I ,则有如下关系 θ 20cos I I = (27-2) (27-2)式称为马吕斯定律。 θ是入射光的E 矢量振动方向和检偏器偏振化方向之间的夹角。以入射光线为轴转动偏振片,如果透射光强I 有变化,且转动到某位置时 I =0,则表明入射 光为线偏振光,此时θ =90°。 4、波片 (1)两个互相垂直的、同频率的简谐振动的合成 设有两各互相垂直且同频率的简谐振动,它们的运动方程分别为 )cos() cos(2211?ω?ω+=+=t A y t A x (27-3) 合运动是这两个分运动之和,消去参数t ,得到合运动矢量末端运动轨迹方程为 )(sin )cos(2122 12212 22212????-=--+A A xy A y A x (27-4) 上式表明,一般情况下,合振动矢量末端运动轨迹是椭圆,该椭圆在2122A A ?的矩形范围内。如果(27-3)式表示的是两线偏振光,则叠加后一般成为椭圆偏振光。下面讨论相位 差 12???-=?为几种特殊值的情况。 ①当π?k 2=?( k =0, ±1, ±2, …)时,(27-4)式变为

大学物理实验《偏振光的观测与研究》

实验偏振光的观测与研究 偏振光的理论意义和价值是,证明了光是横波。同时,偏振光在很多技术领域得到了广泛的应用。如偏振现象应用在摄影技术中可大大减小反射光的影响,利用电光效应制作电光开关等。 【实验目的】 1.通过观察光的偏振现象,加深对光波传播规律的认识。 2.掌握偏振光的产生和检验方法。 3.观察布儒斯特角及测定玻璃折射率。 4.观测圆偏振光和椭圆偏振光。 【实验仪器】 光具座、激光器、光点检流计、起偏器、检偏器、1/4波片、1/2波片、光电转换装置、观测布儒斯特角装置、带小孔光屏、钠光灯。 【实验原理】 按照光的电磁理论,光波就是电磁波,电磁波是横波,所以光波也是横波。在大多数情况下,电磁辐射同物质相互作用时,起主要作用的是电场,因此常以电矢量作为光波的振动矢量。其振动方向相对于传播方向的一种空间取向称为偏振,光的这种偏

振现象是横波的特征。 根据偏振的概念,如果电矢量的振动只限于某 一确定方向的光,称为平面偏振光,亦称线偏振光; 如果电矢量随时间作有规律的变化,其末端在垂直 于传播方向的平面上的轨迹呈椭圆(或圆),这样的光称为椭圆偏 振光(或圆偏振光);若电矢量的取向与大小都随时间作无规则变 化,各方向的取向率相同,称为自然光,如图3-26所示;若电矢 量在某一确定的方向上最强,且各向的电振动无固定相位关系, 则称为偏振光。 1.获得偏振光的方法 (1)非金属镜面的反射,当自然光从空气照射在折射率为n 的非金属镜面(如玻璃、水等)上,反射光与折射光都将成为部 分偏振光。当入射角增大到某一特定值φ0时,镜面反射光成为完 全偏振光,其振动面垂直于射面,这时入射角φ称为布儒斯特角, 也称起偏振角,由布儒斯特定律得: 0tan n φ= (3-51) 其中,n 为折射率。 (2)多层玻璃片的折射,当自然光以布儒斯特角入射到叠在 一起的多层平行玻璃片上时,经过多次反射后透过的光就近似于 线偏振光,其振动在入射面内。 图3-26 自然光

5光的偏振参考答案

5光的偏振参考答案 《大学物理(下)》作业 No.5 光的偏振 一选择题 1.一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I= I 0/8,已知P 1和P 3的偏振化方向相互垂直,若以入射光线为轴,旋转P 2,要使出射光的光强为零,P 2最少要转过的角度是 (A )30° (B )45° (C )60° (D )90° [ B ] [参考解] 设P 1与 P 2的偏振化方向的夹角为α ,则8 2s i n 8s i n c o s 202 0220I I I I === ααα ,所以4/πα=,若I=0 ,则需0=α或2 π α= 。可得。 2.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片,若以此入射光束为轴旋转偏振 片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为 (A )1/2 (B )1/5 (C )1/3 (D )2/3 [ A ] [参考解] 设自然光与线偏振光的光强分别为I 1与 I 2 ,则 1212 1 521I I I ?=+ ,可得。 3.某种透明媒质对于空气的全反射临界角等于45°,光从空气射向此媒质的布儒斯特角是 (A )35.3° (B )40.9° (C )45° (D )54.7° [ D ] [参考解] 由n 145sin = ,得介质折射率2=n ;由布儒斯特定律,21 t a n 0==n i ,可得。 4.自然光以60°的入射角照射到某两介质交界面时,反射光为完全偏振光,则知折射光为

(A )完全偏振光且折射角是30° (B )部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30° (C )部分偏振光,但须知两种介质的折射率才能确定折射角 (D )部分偏振光且折射角是30° [ D ] [参考解] 由布儒斯特定律可知。 二填空题 1.一束自然光从空气投射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃的折射率等于 3 。 [参考解] 由布儒斯特定律,t a n 60 1 n n == ,可得。 2.如图所示,一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射,已知反射光是完全偏振光,那么折射角r 的值为 2 1 arctan n n 。 [参考解] 由由布儒斯特定律,1 2tan n n = ?且折射光和反射光垂直,故21arctan 22n r n ππ ?=-=-。 3.在双折射晶体内部,有某种特定的方向称为晶体的光轴,光在晶体内部沿光轴传播时, o 光 和 e 光的传播速度相等。 三计算题 1. 三个偏振片P 1、P 2、P 3按此顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与 P 2的偏振化方向的夹角为α ,P 2可以入射光线为轴转动。今以强度为I 0的单色自然光垂直入射在偏振片上,不考虑偏振片对可透射分量的反射和吸收。 (1)求穿过三个偏振片后的透射光强度I 与α角的函数关系;

偏振光实验报告范文

偏振光实验报告范文 实验报告 姓名:高阳班级:F0703028 学号:5070309013 同组姓名:王雪峰 实验日期:xx-3-3 指导老师:助教10 实验成绩:批阅日期: 偏振光学实验 【实验目的】 1. 观察光的偏振现象,验证马吕斯定律 2. 了解1/2波片,1/4波片的作用 3. 掌握椭圆偏振光,圆偏振光的产生与检测. 【实验原理】

1.光的偏振性 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面(见图1)。此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。 2.偏振片 虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用 的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光介质的这种性质称为二向色性。)。偏振器件即可以用来使

自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片的透振方向之间的夹角为α,透过起偏器的线偏振光振幅为A0, 则透过检偏器的线偏振光的振幅为A,A=A0cosɑ,强度 I=A ,I=A0cosɑ= I 20 22 2 cosɑ=cosɑ式中I0为进入检偏器前(检偏器无吸收时)线偏振光的强度。 22

相关文档