文档库 最新最全的文档下载
当前位置:文档库 › miRNA 靶基因3’UTR 质粒载体使用说明

miRNA 靶基因3’UTR 质粒载体使用说明

miRNA 靶基因3’UTR 质粒载体使用说明
miRNA 靶基因3’UTR 质粒载体使用说明

miRNA 靶基因3’UTR 质粒载体使用说明

RN :R10032.3

产品简介

miRNA 是一类具有调控功能的非编码小RNA ,主要通过与靶基因mRNA 3’UTR 完全或不完全互补配对而调控靶基因的表达。pmiR-RB-Report ?载体是专门用来检测miRNA 作用的检测工具,将基因的3’UTR 区克隆至载体海肾荧光素酶基因(hRluc )下游位点,以海肾荧光素酶基因作为报告基因,以萤火虫荧光素酶基因(hLuc )作为内参基因,通过检测海肾荧光素酶活性的相对变化情况来鉴定miRNA 对该基因是否有调控作用。

载体图谱

hRluc :海肾荧光素酶基因,为报告基因; hLuc+:萤火虫荧光素酶基因,为内参基因; 3’UTR Region :多克隆位点,基因3’UTR 连接位点; Amp r :氨苄青霉素抗性,用于大肠杆菌筛选。

试剂(Regent )

浓度 体积

每管含量

总含量

pmiR-RB-Report? Species-GeneName

~100 ng/μl

~50μl ~5μg ~10μ

g

注:质粒可以直接用来实验,甘油菌可以进行质粒扩大提取。

运输保存

产品一般以液体的形式常温运输。收到产品后,请将载体及甘油菌于-20℃以下保存。质粒可以直接用于实验,甘油菌可直接进行质粒扩大提取。

实验方法

图2 pmiR-RB-Report TM 质粒载体使用方法

图1 pmiR-RB-Report TM 载体图谱简图

细胞转染

为了降低由于细胞密度、转染效率、试剂用量等因素导致的孔间差异,保证实验的可靠性和可重复性,一般建议:

a.转染实验中每个转染样品至少设置3个复孔;

b.接种细胞时,每孔接种的细胞数量尽量保持一致,并且细胞在各孔的表面平均分布。

1. 细胞类型与转染试剂:

由于实验需要同时转染小分子RNA和质粒载体两种物质,因此,细胞类型、细胞状态和转染试剂是决定实验成败的关键因素,建议选择转染效率较高的细胞系进行实验,如293T,Hela,A549,而转染效率较低的细胞系不适合进行本实验的检测。此外,转染试剂的选择也要考虑到两者共转的实验要求,建议采用适合共转的转染试剂如ribo FECT? CP。

2. 实验设置:

miRNA靶基因验证实验最重要的作用是确定miRNA结合位点,通常需要将野生型和突变型质粒载体与miRNA模拟物或抑制物共转,定量检测双荧光素酶的催化产生的荧光数值,鉴定miRNA作用靶点。具体实验设置请参考表1。

表1 miRNA靶基因验证实验设置参考

实验组1 实验组2 实验组3 实验组4 质粒载体3’UTR Reporter(WT) 3’UTR Reporter(WT)3’UTR Reporter(Mut) 3’UTR Reporter(Mut)研究工具Mimic Ncontrol miRNA mimic Mimic Ncontrol miRNA mimic 注:(1)WT:野生型;Mut:突变型;

(2)常用miRNA mimic进行miRNA靶基因验证实验,如采用miRNA过表达质粒载体,miRNA过表达病毒载体,使用方法需要客户研究。

3. 转染浓度:

miRNA产品最佳工作浓度因不同的细胞类型及研究目的而异。锐博生物推荐的miRNA mimic转染浓度为50nM,miRNA inhibitor转染浓度为100nM,客户可根据实验具体情况优化转染浓度,优化的范围建议为10~200nM。

注:miRNA inhibitor往往需要用到较大的用量才能观察到预期的抑制效果,相当于miRNA mimic的几倍用量,这可能与miRNA inhibitor竞争性抑制的作用机制及作用效率有关。

4. 转染步骤:

以ribo FECT? CP Reagent共转miRNA mimic和靶基因3’UTR双荧光素酶报告载体质粒于96孔板,转染浓度为50nM 为例,其他规格容器转染请参考表2。

1)接种细胞

a.贴壁细胞:转染前一天,接种1~2×104细胞至含有适量完全培养基的96孔板培养孔中,使转染时的细胞密度能够达到50~80%。

注:1)不同细胞生长速度和细胞大小不同,接种细胞的数量需依经验而定;2)每孔接种的细胞数量尽量相同,使细胞均匀分布于培养基表面。

b.悬浮细胞:

接种1×104~5×104个细胞至含有适量完全培养基的96孔板。

2)转染步骤

对于每个转染样品,请按以下步骤准备:

a. 稀释mimic:用7.5μl 1X ribo FECT?CP Buffer(v1)稀释0.25μl 20μM miRNA mimic储存液(v2)和1μl 100ng/μl

靶基因3’UTR双荧光素酶报告载体质粒(v3),轻轻混匀,室温孵育5min。

b. 混合液制备:加入0.75μl ribo FECT?CP Reagent(v4),轻轻吹打混匀,室温孵育0~15min。

注:1)请不要振荡,溶液可能会有浑浊,但不会影响转染;2)混合液可室温放置一段时间,但不宜超过24h。

c. 将ribo FECT?CP混合液加入到90.50μl细胞培养基(v5)中,轻轻混匀。

注:混合液加入原细胞培养基,无需移除或更换。

d.(可选)进行其他必要的特殊处理(如加药处理)。

e.将培养板置于37℃的CO2培养箱中培养24~96h(培养时间与实验目的相关)。

表2 使用ribo FECT? CP转染miRNA mimic用量参考

v1: ribo FECT?CP Buffer (1X); v2: 20μM miRNA mimic; v3: 3’UTR报告质粒; v4: ribo FECT?CP Reagent; v5: 细胞培养基mimic终浓度每孔体积Buffer (v1)mimic (v2)报告质粒(v3) ?Reagent(v4)培养基(v5) 96-well 100nM 100μl 7.5μl 0.5μl 1μl 0.75μl 90.25μl * 50nM 100μl 7.5μl 0.25μl 1μl0.75μl 90.50μl 30nM 100μl 7.5μl 0.15μl 1μl0.75μl 90.60μl 20nM 100μl 7.5μl 0.1μl 1μl0.75μl 90.65μl 10nM 100μl 7.5μl 0.05μl 1μl0.75μl 90.70μl 24-well 100nM 500μl 30μl 2.5μl 5μl3μl 459.50μl 50nM 500μl 30μl 1.25μl 5μl3μl 460.75μl 30nM 500μl 30μl 0.75μl 5μl3μl 461.25μl 20nM 500μl 30μl 0.5μl 5μl3μl 461.50μl 10nM 500μl 30μl 0.25μl 5μl3μl 461.75μl 12-well 100nM 1ml 60μl 5μl 10μl6μl 919.00μl 50nM 1ml 60μl 2.5μl 10μl6μl 921.50μl 30nM 1ml 60μl 1.5μl 10μl6μl 922.50μl 20nM 1ml 60μl 1μl 10μl6μl 923.00μl 10nM 1ml 60μl 0.5μl 10μl6μl 923.50μl 6-well 100nM 2ml 150μl 12.5μl 25μl15μl 1797.50μl 50nM 2ml 150μl 6.25μl 25μl15μl 1803.75μl 30nM 2ml 150μl 3.75μl 25μl15μl 1806.25μl 20nM 2ml 150μl 2.5μl 25μl15μl 1807.50μl 10nM 2ml 150μl 1.25μl 25μl15μl 1808.75μl 注:1)*为实验参考用量,对于部分细胞类型需要进一步优化;2)?转染质粒用力以100ng/μl浓度计算,可优化。

5. Luciferase荧光测定:

1)设备与试剂:

a. 荧光照度计或多功能酶标仪;

b. Dual-Glo luciferase assay system(Promage)或其他兼容试剂。

2)检测步骤:

转染完成后24~48小时均可进行miRNA效果检测,最佳检测时间与使用的细胞类型有关,可通过分时检测来优化,具体使用步骤请参考Promega的说明书。

a. 将试剂盒的luciferase底物与luciferase buffer混合后分装,-80℃贮存,使用前平衡至室温,stop & Glo buffer分装后-80℃贮存,使用前平衡至室温并取适量加入stop & Glo底物,现配现用;

b. 取出待检测的培养板,吸去培养基,加入75μl/well新鲜培养基,并加入75μl/well配置好的 luciferase底物,涡旋振荡10min,以仪器如荧光照度计测定荧光值(hLuc荧光值);

c. 加入配置好的75μl stop regent,振荡10min,以仪器如荧光照度计测定荧光值(hRluc荧光值)。

3)数据分析:

将各孔hRluc的荧光值与hLuc的荧光值比较,将比值与对照孔的比值进行统计分析。以表1的实验设置为例,结果如下图所示,统计过程中需以实验组1为参照,分析实验组2的变化,以判断miRNA对靶基因是否有影响。同时以实验组3为参照,分析实验组4的影响,以判断预测的结合位点突变是否会改变miRNA的作用。

图3 BCL2双荧光素酶检测实验结果示例

实验FAQ

1)客户特殊实验细胞系转染siRNA效果还可以,是否可以用来做这个实验?

答:不能确定,需要鉴定该细胞系是否适合RNA与3’UTR质粒共转,可通过ribo MONITOR?来进行转染效率测定实验。

2)是否可以不设置突变组,而以空载作为对照?

答:如果需要确定miRNA结合位点,则必须设置突变组,空载对照不能说明问题。

3)实验结果中荧光值很低,内参荧光的荧光值只有几百,甚至几十,是什么原因?

答:可能质粒转染效果差或表达效果差,没有表达内参荧光。建议优化转染条件,或更换细胞系进行实验。另外也需检测仪器相关,不同的检测仪器的荧光值定量方式不完全一样,需要具体问题具体分析。

维真生物-如何阅读基因载体图谱

如何阅读基因载体图谱 基因载体是基因工程的核心,也是基因治疗中强有力的生物工具,我们先来认识和阅读载体图谱吧。 一、载体分类及载体组成元件 载体分类 1、按属性分类:病毒载体和非病毒载体 病毒载体是一种常见的分子生物学工具,可将遗传物质带入细胞,原理是利用病毒具有传送其基因组进入目的细胞,进行感染的分子机制。可发生于完整活体或是细胞培养中。可应用于基础研究、基因疗法或疫苗。用于基因治疗和疫苗的病毒载体应具备以下基本条件: (1)携带外源基因并能包装成病毒颗粒; (2)介导外源基因的转移和表达; (3)对人体不致病; (4)在环境中不会引起增殖和传播。 非病毒载体一般是指质粒DNA。 2、按进入受体细胞的类型分类:原核载体、真核载体、穿梭载体(含原核和真核2个复制子,能在原核和真核细胞中复制,并可以在真核细胞中有效表达)。 3、按功能分类:克隆载体、表达载体 克隆载体:具有克隆载体的基本元件(Ori,Ampr,MCS等),可以携带DNA片段或外源基因进入受体细胞并克隆和大量扩增DNA片段(外源基因)的载体。 表达载体:克隆载体中加入一些与表达调控(具有转录/翻译所必需的DNA顺序)有关的元件即成为表达载体。 载体组成元件 1、复制起始位点Ori:即控制复制起始的位点。Ori的箭头指复制方向,其他元件标注的箭头多指转录方向(正向)。 2、抗生素抗性基因:可以便于加以检测,如Amp+ ,Kan+ (1)Ampr:水解β-内酰胺环,解除氨苄的毒性。

(2)tetr :可以阻止四环素进入细胞。 (3)camr:生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr):氨基糖苷磷酸转移酶,使G418(卡那霉素衍生物)失活。 (5)hygr:使潮霉素β失活。 3、多克隆位点:MCS克隆携带外源基因片段,它具有多个限制酶的单一切点,便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,便于筛选。决定能不能放目的基因以及如何放置目的基因。还要再看外源DNA插入片段大小。质粒一般只能容纳小于10kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 4、P/E:启动子/增强子 5、Terms:终止信号 6、加poly(A)信号:可以起到稳定mRNA作用 示例阅读载体: pENTER载体 1)human ORF + pENTER载体 2) CMV启动子,T7启动子 3) ORF的C端融合了Flag和His tag 4) 多克隆位点,常用AsisI 和 MluI(人源基因上不常见的)

TALEN靶向基因操作技术

TALEN靶向基因操作技术 技术介绍: TALE 技术(Transcription activator–like effectors)是一种崭新的分子生物学工具。科学家发现,来自植物细菌Xanthomonassp.的TAL蛋白的核酸结合域的氨基酸序列与其靶位点的核酸序列有恒定的对应关系。利用TAL的序列模块,可组装成特异结合任意DNA序列的模块化蛋白,从而达到靶向操作内源性基因的目的。目前TALE技术主要有两种应用: 1)TALEN(transcription activator-like (TAL) effector nucleases)技术构建针对任意特定核酸靶序列的重组核酸酶,在特异的位点打断目标基因DNA,进而在该位点进行DNA操作,如Knock-out、Knock-in或点突变。它克服了常规的ZFN方法不能识别任意目标基因序列,以及识别序列经常受上下游序列影响等问题,而具有ZFN相等或更好的活性,使基因操作变得更加简单、方便。 2)TALEA(transcription activator-like (TAL) effector activator)技术,针对基因启动子上游任意特定DNA序列构建转录激活因子,可提高特异内源基因的表达水平,而不需要购买或克隆 cDNA。 TALE技术已经成功应用到了细胞、植物、酵母、斑马鱼及大、小鼠等各类研究对象,日益成为功能强大的实验室工具,使得过去无法逾越的项目成为可能。 技术特点: 1.无基因序列、细胞、物种限制。

2.TAL的核酸识别单元与A、G、C、T有恒定的对应关系。实验设计简单准确、实验周期短、成本低。 3.成功率几乎可达100%。 4.毒性低、脱靶情况少。 5.克服了常规的ZFN方法不能识别任意目标基因序列,以及识别序列经常受上下游序列影响等问题,而具有ZFN相等或更好的活性。 TALE构建与应用: 1.TALE靶点识别模块构建 TAL的核酸识别单位为重复34个恒定氨基酸序列,其中的12、13位点双连氨基酸与A、G、C、T有恒定的对应关系,即NG识别T,HD识别C,NI识别A,NN识别G。为获得识别某一特定核酸序列的TALE,只须按照DNA序列将相应TAL 单元串联克隆即可。由于物种基因组大小的不同,选择的特异序列长度也不同,对于哺乳类动物包括人类,一般选取16-20bp的DNA序列作为识别靶点。 2.TALEN的基因敲除 将识别特异DNA序列的TALE与内切核酸酶FokI偶联,可构建成剪切特异DNA序列的内切酶TALEN。而且FokI需形成2聚体方能发挥活性,大大减少了随意剪切的几率。在实际操作中,需在目标基因的编码区或外显子和内显子的交界

基因工程原理讲义:基因克隆的质粒载体

第六讲基因克隆的质粒载体 中国科学院遗传与发育生物学研究所 2017年8月

基因克隆的质粒载体 一、导言 1.质粒是一类引人注目的亚细胞有机体 其结构比病毒还要简单,既无蛋白质外壳,也无细胞外生命周期,只能在寄主细胞内增殖,并随着寄主细胞的分裂而被遗传下去。2.质粒的类型多种多样 F质粒:F因子或性质粒(Sex plasmid),它能够使寄主染色体上的基因与F因子(F factor)一道转移到原先不存在该质粒的 寄主受体细胞中去。 R质粒:通称抗药性因子(Resistant factor, R factor),编码一种或数种抗菌素抗性基因,并能将此抗性转移到缺乏该质粒 的适宜的受体细胞中去。 Col质粒:所谓Col质粒,即是一种产生大肠杆菌素的因子,编码控制大肠杆菌素合成的基因。大肠杆菌素可使不带Col 质粒的亲缘关系密切的细菌菌株致死。 3.质粒载体 70年代在实验室构建的一类最普遍使用的基因克隆载体。

二、质粒的一般特性 1.质粒DNA(细菌质粒定义) *1.大肠杆菌的质粒是独立于寄主染色体以外的自主复制的共价、闭合、环形的双链DNA分子(covalently closed circular DNA, cccDNA)。除了酵母的杀伤质粒(Killer plasmid)是RNA质粒外,所有的质粒都是质粒DNA。但是质粒DNA的复制又必须依赖 于寄主提供核酸酶及蛋白质。 *2.质粒DNA分子大小 文献中有3种说法:小的仅有103KD,仅能编码2-3种蛋白质; 大的可达105KD,两者相差上百倍。 1Kb~200Kb (Sambrok et al.) 5Kb~400Kb (Lehninger) MD(megadaltons)=106D (兆道尔顿) 1.5Kb≈1MD *3.质粒DNA与寄主染色体DNA间的关系 一般情况下,质粒DNA可持续地处于寄主染色体外的游离状

基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签 蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询产品的结果列表里面看到各种推荐的蛋白标签和载体。 TrxHIS His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点: 标签的量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 可应用于多种表达系统,纯化的条件温和; 可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。 FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。

基因的克隆、表达载体构建与功能验证

基因的克隆、表达载体构建及功能验证(一般性方法) 一、基因克隆 ★事前三问 a.克隆这个基因干什么?它有什么功能? b.这个基因在哪种材料中扩增? c.材料需要怎么处理? ◎实验前准备工作 a.设计引物,准备材料, b.购置试剂:Taq酶、反转录试剂盒、凝胶回收试剂盒、质粒提取试剂盒、连接试 剂盒 c.实验试剂及用具:枪头、离心管、培养皿、滤纸灭菌;Amp+ 、Kan+等抗生素准 备 ※基本流程 提取和纯化RNA—cDNA第一条链合成—PCR—凝胶电泳—胶回收—连接—转化—涂平板—挑单菌落—摇菌—提质粒—测序 1.总RNA的提取、纯化及cDNA第一链合成 1.1叶片、根总RNA的提取 Trizol是一种高效的总RNA抽提试剂,内含异硫氰酸胍等物质,能迅速裂解植物细胞,抑制细胞释放出的核酸酶,所提取的RNA完整性好且纯度高,以利于下一步的实验。 1)实验前准备 预先配制0.1%的DEPC水(ddH2O中含0.1%DEPC,V/V,37 ℃过夜处理12 h),高温灭菌后,用DEPC水配制75%乙醇,研钵、量筒、试剂瓶等需200℃灭菌至少4 h,所用枪头和枪盒均去RNA酶处理(直接购买)。 2)Trizol 法(小麦)叶片或根的总RNA实验步骤如下: (1)提前在1.5 ml离心管中加入1 mlTrizol,然后将200 mg样品液氮中研磨成白色粉末,

移入管内,用力摇15 s,在15-30℃温育5 min,使核酸蛋白复合物完全分离。 (2)4℃,12000g离心10min,取上清,离心得到的沉淀中包括细胞外膜、多糖、高分子量DNA,上清中含有RNA。 (3)吸取上清液加0.2 ml氯仿,盖好盖,用力摇15 s,15~30 ℃温育2~3 min。(4)在≤12000g,4℃离心10 min,样品分为三层:底层为黄色有机相,上层为无色水相和一个中间层,RNA主要在水相中,水相体积约为所用TRIzol试剂的60%。 (5)将上层水相转移到新的1.5 ml离心管中,加2倍体积的无水乙醇沉淀RNA,室温静止30 min。 (6)在≤12000g,4℃离心10 min,离心前看不出RNA沉淀,离心后在管侧和管底出现胶状沉淀。 (7)用≥1 ml的75%乙醇洗RNA,涡旋振荡样品,在≤7500g,4℃离心5 min,弃上清。(8)室温放置干燥或真空抽干RNA沉淀,大约晾5-10分钟,加无RNase的水100μl用枪头吸几次,55~60℃温育10 min使RNA溶解。 (9)配制以下体系: 10×DNase buffer 5 μl DNase I (RNase-free)(40 μg/μl) 1 μl RNasin Inhibitor(40 μg/μl) 1 μl Total RNA 70 μg 加去RNase水至总体积为50 μl (10)37 ℃水浴1h,加DEPC处理的水至总体积为100 μl,加入等体积氯仿抽提一次。(11)取上清,加入10 μl的3 mol/L NaAC溶液,200 μl的无水乙醇,-80 ℃沉淀30 min。 (12)2~8 ℃,12000g离心10 min,弃清液,干燥后取50μl无RNase的水溶解RNA。3)RNA的质量及纯度检测 (1)电泳检测取2ul RNA 与1 ul 10×Loading buffer上样缓冲液混合均匀在1% 的琼脂糖凝胶上电泳,在紫外灯下观察RNA 条带并记录实验结果。 (2)分光光度计RNA纯度检测 取1ul RNA液,以DEPC水为空白对照,测定A260/ A280 比值,估测RNA质 量。 4)cDNA第一条链的合成 按照以下体系将提取的总RNA反转录成第一链cDNA: 1)在Eppendorf管中配制下列混合液:

真核细胞常见表达载体

真核细胞常见表达载体 真核细胞, 表达载体 1、pCMVp-NEO-BAN载体 特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。 插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。 2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein V ector) 特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。 亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。 3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体 特点:pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin 抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: pEGFP-Actin载体在真核细胞表达EGFP-Actin融合蛋白,该蛋白能整合到胞内正在生的肌动蛋白,因而在活细胞和固定细胞中观察到细胞内含肌动蛋白的亚细胞结构。 4、pSV2表达载体 特点:该表达质粒是以病责SV40启动子驱动在真核细胞目的基因进行表达的,克隆位点为Hind111。SV40启动子具有组织/细胞的选择特异性。此载体不含neo基因,故不能用来筛选、建立稳定的表达细胞株。 5、CMV4 表达载体 特点:该真核细胞表达载体由CMV启动子驱动,多克隆区域酶切位点选择性较多。含有氨苄青霉素抗性基因和生长基因片段以及SV40复制原点和fl单链复制原点。但值得注意的是,该表达载体不含有neo基因,转染細胞后不能用G418筛选稳定的表达细胞株。 其他常用克隆Vector: pBluscript II KS DNA 15 ug pUC18 DNA 25 ug pUC19 DNA 25 ug 说明: pBluescript II kS、pUC18 &Puc19载体适合于DNA片段的克隆、DNA测序和对外源基因进行表达等。这些载体由于在lacZ基因中含有多克隆位点,当外源DNA片段扦入,转化lacZ基因缺乏细胞,并在含有IPTG和X-gal的培养基上培养时,含有外源DNA载体的细胞

运载体与基因表达载体的区别

运载体与基因表达载体的区别 1、不同点: ⑴“运载体”泛指基因工程操作中能将目的基因送达受体细胞的工具。如细菌质粒等。 相对“基因表达载体”而言,“运载体”主要是强调它能运输目的基因这一功能,只要能运输目的基因就算是运载体,并不计较是不是真正运输了目的基因。 ⑵“基因表达载体”,是实施了运输目的基因、并且要保证目的基因到达受体细胞后能够表达的运载体。 这样看来,运载体、基因表达载体二者之间就不能完全等同。 2、联系: “基因表达载体”是在”运载体”的基础上构建成的。 基因表达载体的构成:目的基因+ 启动子+ 终止子+ 标记基因。 3、表达载体上的启动子和终止子是本身具有还是后加上去的呢? 这个问题,教科书中并没有明确说明,但我个人的观点是:这要看获取目的基因的方法,而问题的根源在于基因的结构。关于基因的结构,在新课程标准中也不再做为教学的要求了。 (人类)结构基因的基本结构:上游非编码区+ 启动子+ 编码区+ 终止子+ 下游非编码区 人类结构基因4个区域: ①前导区,位于编码区上游,相当于RNA5’末端非编码区(非翻译区); ②编码区,包括外显子与内含子; ③尾部区,位于RNA3’编码区下游,相当于末端非编码区(非翻译区); ④调控区,包括启动子和增强子等。基因编码区的两侧也称为侧翼顺序(图1-1)。 ⑴启动子:启动子(promoter)能促进转录过程。也有人将启动子称为“RNA聚合酶识别位点”。 包括下列几种不同顺序: ①TATA框(TATA box):其一致顺序为TATAATAAT。它约在基因转录起始点上游约-30-50bp 处,基本上由A-T碱基对组成,是决定基因转录始的选择,为RNA聚合酶的结合处之一,RNA聚合酶与TATA框牢固结合之后才能开始转录。 ②CAAT框(CAAT box):其一致顺序为GGGTCAATCT,是真核生物基因常有的调节区,位于转录起始点上游约-80-100bp处,可能也是RNA聚合酶的一个结合处,控制着转录起始的频率。 ③GC框(GC box):有两个拷贝,位于CAAT框的两侧,由GGCGGG组成,是一个转录调节区,有激活转录的功能。 此外,RNA聚合酶Ⅲ负责转录tRNA的DNA和5SrDNA,其启动子位于转录的DNA 顺序中,称为下游启动子。

克隆载体与表达载体教程文件

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。 克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。 是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。 表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。 表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。 (RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。根据发现者的名字,命名为Shine-Dalgarno序列,简称S-D序列。 由于它正好与30S小亚基中的16s rRNA3’端一部分序列互补,因此S-D序列也叫做核糖体结合序列。 真核生物存在于真核生物mRNA的一段序列,其在翻译的起始中有重要作用。加Kozark sequence(GCCACC), Kozak sequence是用来增强真核基因的翻译效率的。是最优化的ATG环境,避免ribosome出现leaky scan) 克隆载体目的在于复制足够多的目标质粒,所以常带有较强的自我复制元件,如复制起始位点等,往往在菌体内存在多拷贝,所以抽质粒会抽出一大堆。但不具备表达元件。而表达质粒有复杂的构成,为的是控制目标蛋白的表达,如各种启动子(T7),调节子(LacZ)等,而且以pET为代表的表达载体在菌体内都是低拷贝的,防止渗漏表达。 克隆载体只是把你要的基因片段拿到就可以了,不管读码框什么的,但是表达载体是不但要你的目的基因连在上面,而且要表达蛋白,所以就要求你的读码框不能乱了,否则就不能得到你想到的表达产物。 1.载体即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 2. 载体的分类 按功能分成:(1)克隆载体: 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs等)还具有转录/翻译所必需的DNA顺序的载体。 按进入受体细胞类型分:(1)原核载体(2)真核载体(3)穿梭载体(sbuttle vector)指在两种宿主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间). 克隆载体顾名思义就是质粒拷贝数比较高,在做上游克隆时比较方便, 其重点在于质粒的复制.

表达载体的构建方法及步骤

表达载体的构建方法及步骤 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒DNA 是一种新的非病毒转基因载体。一个合格质粒的组成要素: (1)复制起始位点Ori 即控制复制起始的位点。原核生物DNA 分子中只有一个复制起始点。而 真核生物DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ (3)多克隆位点MCS 克隆携带外源基因片段 (4)P/E 启动子/增强子 (5)Terms 终止信号 (6)加poly(A)信号可以起到稳定mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。【2】.载体的类型: (1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。(2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。

(3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。【3】载体MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。(5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切割,获得线性载体分子,以便于与目的基因片段进行连接。 如何阅读质粒图谱 第一步:首先看Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活

基因克隆的质粒载体

基因克隆的质粒载体 在大肠杆菌的各种菌体中找到了许多种不同类型的质粒,其中已经作了比较详尽研究的主要有F质粒、R质粒和Col质粒。 ①F质粒又叫F因子或性质粒(sex plasmid)。它们能够使寄主染色体上的基因和F质粒一道转移到原先不存在该质粒的受体细胞中去。 ②R质粒通称抗药性因子。它们编码有一种或数种抗菌素抗性基因,并且通常能够将此种抗性转移到缺管该质粒的适宜的受体细胞,使后者也获得同样的抗菌素抗性能力。 ③Col质粒即所谓产生大肠杆菌素因子。它们编码有控制大肠杆菌素合成的基因。大肠杆菌是一类可以使不带有Col质粒的亲缘关系密切的细菌菌株致死的蛋白质。 第一节质粒的一般生物学特性一.质粒DNA 细菌质粒是存在于细胞质中的一类独立于染色体的自主复制的遗传成份。绝大多数的质粒都是由环形双DNA组成的复制子(图4-1)。 质粒DNA分子可以持续稳定地处于染色体外的游离状,但在一定的条件下又可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 环形双链的质粒DNA分子具有三种不同的构型: 1.当其两条多核苷酸链均保持着完整的环形结构时,称之为共价闭合环形DNA(cccDNA),这样的DNA通常呈现超螺旋的SC构型; 2.如果两条多核苷酸链中只有一条保持着完整的环形结构,另一条链出现有一至数个缺口时,称之为开环DNA(ocDNA),此即OC构型; 3.若质粒DNA经过适当的核酸内切限制酶切割之后,发生双链断裂形成线性分子(IDNA),通称L构型(见图4-2)。 在琼脂糖凝胶电泳中,不同构型的同一种质粒DNA,尽管分子量相同,仍具有不同的电泳迁移就绪。其中走在最前沿的是SC DNA,其后依次是L DNA和OC DNA(图4-3)。 凡经改建而适于作为基因克隆载体的所有质粒DNA分子,都必定包括如下三种共同的组成部分,即复制基因(replicator)、选择性记和克隆位点。 二.质粒DNA编码的表型 质粒DNA仅占细胞染色体组的1%~3%左右,但却编码着一些重要的非染色体控制的遗传性状。其中对抗菌素的抗性最质粒的最重要的编码特性之一。

不同基因表达载体的优缺点 孟凡顺

不同基因表达达载体的优缺点 理化系生物技术班孟凡顺 进入21世纪以来,基因工程的发展越来越快,也越来越完整,作为新世纪生物科学前沿,基因工程的快速发展也大大的刺激了人们对科学知识的向往,走进基因工程,我们发现在基因工程的四大步骤,目的基因的获取,基因表达载体的构建,将基因表达载体打入受体细胞以及目的基因的监测与鉴定,这其中最重要的是也是最繁琐的莫过于第二步基因表达载体的构建,而在基因表达载体的构建这一过程中,最重要的无疑就是目的基因导入受体细胞,将目的基因导入受体细胞的关键就是运载体的选择,在这里,我们要对运载体的种类进行介绍。 首先我们要知道什么东西可以作为运载体,作为运载体又有哪些特征? 首先,作为运载体的物质它必须可以进行自我复制,这样才可以在它与外源基因融合后,独立在宿主细胞中复制繁殖,其次有至少一个在融合外源基因后仍未被破坏的遗传表型,这便于将载体导入受体细胞后的识别与筛选,通常表现在为抗性与显色表型反应等,再次,载体上至少有一个限制性核酸内切酶的单一识别位点,这样方便了外源基因的插入,最后,要有适当的拷贝数,理论上在一定范围内,拷贝数量越多,越利于载体的制备,所有的基因工程中的表达载体都必须具有以上四个条件。 在这里,我介绍三种载体。 1质粒载体 质粒载体是基因工程中最常用的载体之一,它源于细菌,是一种源于染色体外却可以自由复制的小型环状DNA,大小在1~200Kb之间,质粒通常含有一些编码对细菌有利生存的基因也含有抗生素的抗性基因,经科学家多年的努力,人们终于对一些质粒的生物学特征有了一些了解,进行了比较详尽的研究,比如F质粒那F基因或性质粒,R质粒即抗性因子和col质粒即大肠杆菌因子。 其实,一个质粒就是一个复制子,复制子往往有宿主专一性,但奇怪的是,人们也发现了可以在两种不同宿主内复制的复制子,即可构建的穿梭载体,这种新型载体的发现,大大的推进了克隆

运载体与基因表达载体的区别

运载体与基因表达载体地区别 、不同点: ⑴ “运载体”泛指基因工程操作中能将目地基因送达受体细胞地工具.如细菌质粒等. 相对“基因表达载体”而言,“运载体”主要是强调它能运输目地基因这一功能,只要能运输目地基因就算是运载体,并不计较是不是真正运输了目地基因.文档收集自网络,仅用于个人学习 ⑵“基因表达载体”,是实施了运输目地基因、并且要保证目地基因到达受体细胞后能够表达地运载体. 这样看来,运载体、基因表达载体二者之间就不能完全等同. 、联系: “基因表达载体”是在”运载体”地基础上构建成地. 基因表达载体地构成:目地基因启动子终止子标记基因. 、表达载体上地启动子和终止子是本身具有还是后加上去地呢? 这个问题,教科书中并没有明确说明,但我个人地观点是:这要看获取目地基因地方法,而问题地根源在于基因地结构.关于基因地结构,在新课程标准中也不再做为教学地要求了.文档收集自网络,仅用于个人学习 (人类)结构基因地基本结构:上游非编码区启动子编码区终止子下游非编码区 人类结构基因个区域: ①前导区,位于编码区上游,相当于’末端非编码区(非翻译区); ②编码区,包括外显子与内含子; ③尾部区,位于’编码区下游,相当于末端非编码区(非翻译区); ④调控区,包括启动子和增强子等.基因编码区地两侧也称为侧翼顺序(图-1). ⑴启动子:启动子()能促进转录过程.也有人将启动子称为“聚合酶识别位点”. 包括下列几种不同顺序: ① 框():其一致顺序为.它约在基因转录起始点上游约处,基本上由碱基对组成,是决定基因转录始地选择,为聚合酶地结合处之一,聚合酶与框牢固结合之后才能开始转录.文档收集自网络,仅用于个人学习 ② 框():其一致顺序为,是真核生物基因常有地调节区,位于转录起始点上游约处,可能也是聚合酶地一个结合处,控制着转录起始地频率.文档收集自网络,仅用于个人学习 ③ 框():有两个拷贝,位于框地两侧,由组成,是一个转录调节区,有激活转录地功能.文档收集自网络,仅用于个人学习 此外,聚合酶Ⅲ负责转录地和,其启动子位于转录地顺序中,称为下游启动子.文档收集自网络,仅用于个人学习 ⑵终止子:在一个基因地末端往往有一段特定顺序,它具有转录终止地功能,这段终止信号地顺序称为终止子().文档收集自网络,仅用于个人学习 终止子地共同顺序特征是在转录终止点之前有一段回文顺序,约核苷酸对.回文顺序地两个重复部分由几个不重复碱基对地不重复节段隔开,回文顺序地对称轴一般距转录终止点.文档收集自网络,仅用于个人学习

真核细胞常见的表达载体及真核细胞表达外源基因的调控

真核细胞常见表达载体 1. pCMVp-NEO-BAN载体 特点: 该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。 插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。 2. pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector) 特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。 亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。 Excitation maximum = 488 nm; Emission maximum = 507 图示为启动子分泌信号肽和多克隆位点区域: Ase1.pCMV…ccg cta gcg cta ccg gtc gcc acc atg- .EGFP…BamH1…SV40 poly A+ Nhe1 Age1 3. pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体 特点: pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV 启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。

目的基因片段与克隆载体质粒的连接操作步骤

连接反应总体积为10μL,体系组成如下: 回收纯化的PCR扩增目的基因片段 7.0μL 10×Ligation buffer 1.0μL T载体(10ng/μL) 1.0μL T4 DNA ligase 1.0μL 共10.0ul 混均后,4℃连接18-24小时,连接所得克隆载体命名为TA-VP4-STI。 转化操作方法 1)取一管-80℃保存的感受态细胞,置冰上融化; 一次转化感受态细胞的建议用量为50-100ul,应注意所用DNA体积不要超过感受态细胞悬液体积的十分之一。以100ul为例: 2)加入连接物(50ul的感受态细胞能够被1ng超螺旋质粒DNA所饱和),轻轻旋转离心管以混匀内容物,冰浴30min;

3)将离心管置于42℃热击60-90秒,然后迅速置冰浴2-3分钟,该过程不要摇动离心管; 4)向每个离心管中加入500ul液体LB培养基(不含抗生素),混匀后置于37℃摇床振荡培养45分钟(150转/分钟);目的是使质粒上相关的抗性标记基因表达,使菌体复苏。 5)将离心管内容物混匀,吸取100ul已转化的感受态细胞加到含相应抗生素的LB固体琼脂培养基上(含50 ug/ml氨苄青霉素),用无菌的弯头玻棒轻轻将细胞均匀涂开。将平板置于室温直至液体被吸收,倒置平板,37℃培养12-16小时。至红、白斑区分明显为止。 涂布用量可根据具体试验来调整:如转化的DNA总量较多,可取更少量转化产物涂布平板;反之,如转化的DNA总量较少,可取200-300ul 转化产物涂布平板。如果预计的克隆较少,可通过离心 (4000rpm,2min)后析除部分培养液,悬浮菌体后将其涂布于一个平板中。(涂布剩余的菌液可置于4℃保存,如果次日的转化菌落数过少可以将剩下的菌液再涂布新的培养板)

(完整word版)基因表达载体构建

一、简述原核生物和真核生物基因表达调控的异同点,并说明基因表达调控与基因工程表达载体构建的关系。 1.原核生物和真核生物基因表达调控的共同点: (1)结构基因均有调控序列; (2)表达过程都具有复杂性,表现为多环节。 2.不同点: 原核生物:(1)RNA聚合酶只有一种,其σ因子决定RNA聚合酶识别特异性;(2)操纵子模型的普遍性;(3)阻遏蛋白与阻遏机制的普遍性(负性调节占主导);(4)转录和翻译偶联进行;(5)转录后修饰、加工过程简单;(6)转录起始是基因表达调控的关键环节。 真核基因表达调控特点:(1)RNA聚合酶有三种,分别负责三种RNA转录,每种RNA聚合酶由约10个亚基组成;(2)活性染色质结构发生变化;(3)正性调节占主导;(4)转录和翻译分隔进行;(5)转录后修饰、加工过程较复杂;(6)转录起始是基因表达调控的关键环节。 3.由于基因的表达调控受到多种因子的影响,而构建基因工程表达载体时多是将真和生物的目的基因转入到原核生物载体上表达,所以应注意以下几点: (1)外源基因插入序列必须保持正确的方向和阅读框架。其遗传密码不得缺失、遗漏、或错位及错码。否则会导致编码错误的蛋白质分子,特别是目的基因序列内部应不含两端酶切位点的识别序列。 (2)插入的外源基因必须放在原核的启动子控制之下,也就是使原核的RNA 聚合酶能够识别插入的基因。 (3)外源基因必须能在大肠杆菌中进行有效转录(如无内含子),转录后的mRNA 在菌体必须相当稳定,并且能有效地进行翻译,转译的蛋白分子在菌体内不致于受菌体蛋白酶的降解。 二、目的基因功能和表达分析的意义是什么?目的基因功能与表达分析的主要环节有哪些?各有什么目的?这些环节与基因工程的主要环节有什么异同? 1.意义:克隆的目的基因只有通过表达才能探索和研究基因的功能及基因表达调控的机理,明了其利用价值和途径。 2.主要环节: (1)目的基因的获得和加工:将得到的目的基因通过加工以期能连接到表达载体上并稳定表达; (2)载体的选择与加工:根据不同的实验目的和实验条件选择不同的载体,并

基因表达载体的构建(2)

基因工程(2)---------基因工程的原理及技术 教学要求: (A级,课标要求:1简述基因工程基本操作程序的四个步骤;2、简述目的基因的获得、运载体的构建、目的基因的导入与检测等常用的方法及其基本原理。) 教材分析与教学构想 (1)理论分析:本课时基因工程的基本操作程序是苏教版选修3第一章基因工程中第1节内容。上节课学习了基因工程的概念含义、基因工程的诞生历程、DNA重组技术的基本工具及其作用、特点等内容,本课时要在上节内容的基础上理解基因工程基本操作程序。本课主要的学习任务是:理解基因工程每一步操作的原理、方法和过程,从整体上把握基因工程的全过程,将上节课学习的零散的知识进行归纳,把已掌握的知识系统化。 (2)学情分析:学生通过上节课的学习对基因工程的概念含义、基因工程的诞生历程、DNA 重组技术的基本工具及其作用、特点等有了深入了解,学习本课内容重要的是对基因工程每一步操作的原理、方法和过程做到了理解,同时将零散的知识进行归纳从整体上把握基因工程的全过程,这对学生的思维和方法都是很好的训练。 (3)教学设计构想: 1、巧妙运用插图及多媒体技术,化“抽象”为“形象”。对于基因工程的全过程,学生接触了解的少,只运用文字来教学会感到很抽象。如在讲授如何构建基因文库时,教师会提供一幅非常形象的插图,结合图文提出相应问题,诱导学生思考,从而把学习的注意力从简单的死记硬背引导到分析、批判、创新等有利于学生终身发展的能力上来。 2、巧妙利用概念图串联知识,化“部分”为“整体”。概念不可能单独存在,每个概念都必须根据与之有关的其他概念间的关系才能确定其准确的含义。通过分步探讨,学生已经对基因工程每一步操作的原理、方法和过程做到了理解,但并未从整体上把握到基因工程的全过程,教师可以指导学生构建概念图,将零散的知识进行归纳,把已掌握的知识显性化、可视化,实现新课程有效教与学的策略。 一、自主学习 基因工程操作步骤:. (1)获取目的基因的方法有. (3)基因表达载体的构建关键步骤是,基因表达载体的组成: 。(3)将目的基因导入受体细胞:基因工程中常用的受体细胞有大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和动植物细胞等。动物常把细胞作为受体细胞。导入植物细胞的方法有等;农杆菌转化法可以将目的基因导入细胞并把其整合到受体细胞的上,导入动物细胞的方法有;如果运载体是质粒,受体细胞是细菌,一般是将细菌用处理,以增大细菌的通透性,使含有目的基因的重组质粒进入受体细胞。目的基因导入受体细胞后,就可以随着受体细胞的繁殖而复制,由于,在很短的时间内就能够获得大量的目的基因。 (4)、检测目的基因是否进入受体细胞可以用方法,用方法检测目的基因是否转录,用免疫()法检测目的基因是否表达。另外也可进行个体水平检测。如 4、基因拼接成功的原因; 转基因表达成功的原因是生物。 基因工程的意义:

质粒载体

载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。 一、一个合格质粒的组成要素 a复制起始位点Ori 即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 b 抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ c 多克隆位点MCS 克隆携带外源基因片段 d P/E 启动子/增强子 e Terms 终止信号 f 加poly(A)信号可以起到稳定mRNA作用 二、如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活 (5)hygr 使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 启动子-核糖体结合位点-克隆位点-转录终止信号 a 启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。b增强子/沉默子-为真核基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发

相关文档
相关文档 最新文档