文档库 最新最全的文档下载
当前位置:文档库 › BAT54S_保护电路

BAT54S_保护电路

BAT54S_保护电路
BAT54S_保护电路

(BAT54S)关于对数据总线的保护电路

如图1是一个对TTL电平的UART数据总线保护例子,图2为对1-wire总线的保护案例

图1

图2

BAT54S是肖特基二极管,肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD 是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。

优缺点

是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。

SBD具有开关频率高和正向压降低等优点,但其反向击穿电压比较低,大多不高于60V,最高仅约100V,以致于限制了其应用范围。像在开关电源(SMPS)和功率因数校正(PFC)电路中功率开关器件的续流二极管、变压器次级用100V以上的高频整流二极管、RCD缓冲器电路中用600V~1.2kV的高速二极管以及PFC升压用600V二极管等,只有使用快速恢复外延二极管(FRED)和超快速恢复二极管(UFRD)。目前UFRD的反向恢复时间Trr 也在20ns以上,根本不能满足像空间站等领域用1MHz~3MHz的SMPS需要。即使是硬开关为100kHz的SMPS,由于UFRD的导通损耗和开关损耗均较大,壳温很高,需用较大的散热器,从而使SMPS体积和重量增加,不符合小型化和轻薄化的发展趋势。因此,发展100V以上的高压SBD,一直是人们研究的课题和关注的热点。近几年,SBD已取得了突破性的进展,150V和200V的高压SBD已经上市,使用新型材料制作的超过1kV的SBD 也研制成功,从而为其应用注入了新的生机与活力。

电路保护元器件行业技术水平及发展趋势分析

电路保护元器件行业技术水平及发 展趋势分析 1、技术水平 电路保护元器件行业存在着较高的技术壁垒,欧美、日本等发达国家的企业掌握着主导产业发展方向的核心技术和标准,韩国、中国等国家的优秀企业则拥有部分关键技术,并在产品设计和制造上有一定的优势。中国产业信息网发布的《2014-2019年中国保险元器件行业市场研究与投资战略规划报告》显示行业技术水平的主要标志如下: 其一,生产设备设计和组装的能力。虽然目前全球电路保护元器件市场年产值达到60 亿美元,但产品系列多、规格广,所需要的生产设备较难标准化,市场上专业的电路保护元器件生产设备制造商较少,因此厂商需要自己研发、设计,然后自制设备或寻找工业机床生产商定制或者根据行业经验采购相关设备进行自我组装、调试。 其二,原材料选择定制的能力。电路保护元器件作为电路保护的安全元器件,运用领域广,各运用领域对电路保护元器件的性能要求各异,因而对电路保护元器件的原材料就有着不同的要求。为满足下

游客户不同的要求,电路保护元器件生产商需要具备较强的原材料选择定制能力。 其三,产品柔性生产能力。电路保护元器件企业提供的产品具有多品种、多批次、非标准化的特征及高精度特点,因此要求生产商具有完善的品质控制体系,并具备柔性生产的能力,使生产模块化、弹性强,能在同一系统内生产尽可能多样的产品品种,满足多个行业、多个客户、不同规格产品的市场需求。 其四,绿色环保生产能力。一方面,欧盟制定了REACH 法规、RoHS 指令等对在这些国家和地区销售的产品提出了严格的环保要求;另一方面,SONY、CANON 等最终用户还制定了环保要求更为严格的绿色合作伙伴认证。因此,电路保护元器件生产商需要选择合适的材料和绿色环保制造工艺,这也是生产商占领市场的重要手段。 其五,核心生产环节技术: ①熔体加工工艺。可熔体加工工艺是管状熔断器、径向引线式熔断器、电力熔断器等过电流保护元器件的关键制造工艺,具体包括可熔体成型、绕线和点锡球三项工艺,可熔体的尺寸、绕线节距、锡球直径及一致性决定了产品的熔断特性和稳定性。 ②焊接生产工艺。焊接生产环节是指可熔体(或PPTC 芯片)与端电极的焊接。如果焊接工艺不完善,焊接部位接触电阻增大,将影响过电流保护元器件的性能,影响过电流保护元器件电路保护功能的

过电压保护电路汇总

新疆大学 课程设计报告 所属院系:科学技术学院 专业:电气工程及其自动化 课程名称:电子技术基础上 设计题目:过电压保护电路设计 班级:电气14-1 学生姓名:庞浩 学生学号:20142450007 指导老师: 常翠宁 完成日期:2016. 6. 30

1.双向二极管限幅电路

图2 经典过电压保护电路 经典过电压保护电路虽然有许多优点,但是由于Multisim 12.0中无法找到元件 MAX6495,无法进行仿真,所以不选用该方案。 3.智能家电过电压保护电路 电路原理:该装置工作原理见图,电容器C1将220V 交流市电降压限流后,由二极管1D V 、 2D V 整流,电容器2C 担任滤波,得到12V 左右的直流电压。当电网电压正常时, 稳压二极管VDW 不能被击穿导通,此时三极管VT 处于截止状态,双向可控硅VS 受到电压触发面导通,插在插座XS 中的家电通电工作。(图3) 图3 智能家电过压保护电路 如果电网电压突然升高,超过250V ,此时在RP 中点的电压就导致VDW 击穿导通,VDW 导通后,又使得三极管VT 导通,VT 导通后,其集电极—发射极的压降很小,不足以触发VS ,又导致VS 截止,因此插座XS 中的家电断电停止工作,因而起到了保护的目的。一旦电网电压下降,VT 又截止,VT 的集电极电位升高,又触发VS 导通,家电得电继续工作。 R 电阻5.1K1,RP 电位器15K 选用多圈精密电位器1,C1金属化纸介电容0.47uF 耐压≥400V1,C2电解电容100uF/25V1,1D V 、 2D V 整流二极管IN40072,VDW 稳压二极管 12V 的2CW121,VT 晶体三极管3DA87C 、3DG12等1,VS 双向可控硅6—10A 耐压≥600V1,CZ 电源插座10A 250V1 该装置的调试十分简单,当电网电压为220V 时,调整RP ,使VDW 不击穿,当电压升高至250V ,VT 饱和导通即可,调试时用一调压变压器来模拟市电的变化更方便。 优点:能够保护家用电器避免高电压的冲击带来的伤害,、 缺点:需要购买二极管,NPN 型BJT 以及双向可控硅VS ,不太经济。

直流电源过载及短路保护电路

直流电源过载及短路保护电路 保护电路的元器件只有1O个,具有电源短路保护、停电自锁、过负荷电流保护功能(过负荷电流大小可调节设定);电路原理图见附图。接通直流电源VCC。双色发光管发绿光。指示直流电源正常。电源短路保护功能:按下轻触开关K1。三极管BGI基极经限流电阻R2得到高电平,BG1饱和导通,继电器J吸合,其常开触点J闭合,OUT端正常输出直流电源,发光管发橙色光。在继电器J 吸合的同时,三极管BG2基极也被下拉成低电平,BG2导通,此时BGl保持导通,整个电路正常工作。 当OUT端发生短路时。Vcc电压被下拉成近似为零伏(其实。只要V et电压下降造成三极管BG1基极的电压低于O.7V时),三极管BG1退出饱和导通状态,继电器J释放。 停电自锁:当Vcc电源停电再来电时。由于BG2基极通过继电器J的线圈处于高电平。所以BG2截止。BG1也截止。继电器J不吸合,OUT端无直流电压输出。过负荷电流保护:由于变压器存在内阻以及线路存在线电阻,所以。 在电源带上负荷的时侯,会出现电压下降的现象。负荷越大电压下降也越大。根据这种原理。本电路由。R2和w组成了分压器,分压点电压=W÷(R2+W)xVcc。所以,当Vcc一定时,如W越小则分压点电压越低;反之。R2和w是定值。Vcc越低。同样分压点电压也越低。当分压点电压低于017V 时,三极管BGI截止。继电器J释放,起到了限制负荷电流的作用。本人采用市售1000mA/15V、800mA/12V、500mA/10V直流电源做实验。用300W电阻丝作负载(把电阻丝的一端与电源地可靠接牢,并放在一块耐热板上。然后把电流表的红表笔接在OUT输出端,再用黑表笔从电阻丝的一端贴紧。慢慢滑向中段)。调节W阻值。在100mA一800mA都可以取得满意的保护作用。 电容C1的作用: 在实验制作过程中,未接C1时。在多次关断并再接通电源Vcc的瞬间。BG1有时会出现误导通现象,这主要是干扰和BG2可能存在的微小漏电流造成的。利用电容两端电压不能突变的原理。在BG1的基极并接上C1后,连续几十次关断并再接通电源Vcc.未再出现误导通现象。另外,电位器w还起着在停电瞬间对Cl快速放电的作用。避免电源Vcc在关、开时间极短的情况下。由于c1的作用出现BG2延迟误导通的现象。

线路保护介绍

保护配置 基本配置 系统差异 接地系统和不接地系统的差异 分相保护和不分相保护的差异:不一致、单跳、单重 电压的差异:电容电流和末端过电压、网架中心和重要程度 功能介绍 距离保护: 距离元件采用比相式姆欧继电器,即由工作电压Uop 与极化电压Up 构成比相方程。 比相式距离继电器的通用动作方程为:0 09090<<-P OP U U Arg 式中:工作电压 OP set U U I Z =-?,极化电压1P U U =-。 对接地距离继电器,工作电压为: ()set OP Z I K I U U ??+-=ΦΦΦ03 对相间距离继电器,工作电压为: set OP Z I U U ?-=ΦΦΦΦΦΦ 装置中三段式接地与相间距离继电器,在正序极化电压较高时由正序电压极化否则进入三相低压程序,此时采用记忆正序电压作为极化电压。 采用非记忆的正序电压作为极化电压,故障期间,正序电压主要由健全相电压形成,正

序电压同故障前保持一致,继电器具有很好的方向性。 距离保护正方向故障动作特性 应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。接地距离偏移角会使动作特性圆向第一象限移动。 虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现象。为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。 零序电抗 工作电压: ()s e t OP Z I K I U U ??+-=ΦΦΦ03 极化电压: D P Z I U ?-=Φ0,式中D Z 为模拟阻抗,幅值为1,角度为78°。 比相方程为 ()0 00090390

2005(许生礼)简单实用的过流过压保护电路

智 能建筑 Z H I N E N G J I A N Z H U 简单实用的过流过压保护电路 2005年第19卷第2期《工程建设与档案》157  收稿日期:2005-03-04 作者简介:许生礼(1947-),男,江苏江阴人,安徽省房地产公司六安市公司工程师. 简单实用的过流过压保护电路 许生礼 (安徽省房地产公司六安市公司,安徽六安 237012) 摘 要:为了保护生活环境,目前住宅小区均要求自建污水处理系统。由于污水处理设备所用的电机都长期在地下室工作,为了延长电机的使用寿命,采用晶闸管及其控制模式实现过流过压保护。关键词:环保;晶闸管;大电流;保护 中图分类号:T M307.2 文献标识码:A 文章编号:1671-4857(2005)02-0157-02 0 引 言 根据环保要求,各住宅小区按要求均建立了自处理污水系统,由于现有设备均采用的是老式的电机保护系统(如热继电器等),导致经常发生烧毁污水泵电机及风机电机,影响了设备的正常使用,增加了运行成本。为了保护电机,现使用简单的电子过流过压保护电路。 晶闸管以其额定电流大、额定电压高、效率高、反应快以及体积小等优点,作为中频静止逆变电源中主要元件而被选用,但其缺点是过载能力低。因此,在晶闸管中频静止逆变电源中,为了使晶闸管免受大电流、高电压的冲击,均设置了过流过压保护电路。当晶闸管中频静止电源用于金属熔炼时,由于负载为时变性元件,变化大,情况比较复杂,若保护不可靠,速度慢,故障一旦出现, 晶闸管立即被损坏的现象常有发生。影响了整个设备的性能和使用,因而保护电路显得尤为重要。 1 过流过压的保护过程 如图1所示,可控硅中频静止电源主回路采用的 是AC 2DC 2AC 变换电路。从三相全控桥式整流器到单相桥式逆变器,均选用了晶闸管。保护电路是把从电流、电压采样回路中所采取的电流和电压信号,经判断后,控制或封锁整流桥触发脉冲,使得三相全控整流桥输出电压为零,切断了逆变桥电源的供给,从 而起到了保护整机的作用[1,2] 。可是,不同的保护电路控制点却往往不同,致使保护电路性能的好坏有较 大的差异。 图1 过流过压保护框图 2 过流过压保护电路 针对上述情况,结合目前国内大多数可控硅中频静止电源和整流脉冲形成的电路,大多数采用了KJ 004和KJ 041组成的触发脉冲电路,设计出了可靠性 高、线路简单的过流过压保护电路[3] ,其保护原理如 图2所示。2.1 过流保护电路 该电路由W 1、I C 1(运算放大器)组成比较电路,I C 3(D 触发器)组成双稳态记忆电路I C 5、I C 6(或门) 组成的逻辑电路及T 1、XD 1组成的显示电路4个单元构成。 当中频静止逆变电源处于正常工作时,输入比较器同相端的电流信号形成的输入电压小于反相端定值电压(即所要求的保护定值电压)I C 1输出低电平,D 触发器处于复位状态,Q 端为“0”,逻辑门输出则为 低电平,T 1反偏而截止,XD 1不亮。同理I C 6输出为“0”,KJ 041的控制端(P 7)为“0”,有整流触发脉冲输出。当电流信号形成的输入电压W 1确定的定值电

保护电路设计方法 - 过电压保护

保护电路设计方法- 过电压保护 2.过电压 保护 ⑴过电 压的产生 及抑制方 法 ①过电压产生的原因 对于IGBT开关速度较高,IGBT关断时及FWD逆向恢复时,产生很高的di/dt,由于模块周围的接线的电感,就产生了L di/dt电压(关断浪涌电压)。 这里,以IGBT关断时的电压波形为例,介绍产生原因和抑制方法,以具体电路(均适用IGBT/FWD)为例加以说明。 为了能观测关断浪涌电压的简单电路的图6中,以斩波电路为例,在图7中示出了IGBT关断时的动作波形。 关断浪涌电压,因IGBT关断时,主电路电流急剧变化,在主电路分布电感上,就会产生较高的电压。关断浪涌电压的峰值可用下式求出: V CESP=E d+(-L dI c/dt) 式中dl c/dt为关断时的集电极电流变化率的最大值;V CESP为超过IGBT的C-E间耐压(V CES)以至损坏时的电压值。 ②过电压抑制方法 作为过电压产生主要因素的关断浪涌电压的抑制方法有如下几种: 1.在IGBT中装有保护电路(=缓冲电路)可吸浪涌电压。缓冲电路的电容,采用薄膜电容,并靠近IGBT 配置,可使高频浪涌电压旁路。

2.调整IGBT的驱动电路的V CE或R C,使di/dt最小。 3.尽量将电件电容靠近IGBT安装,以减小分布电感,采用低阻抗型的电容效果更佳。 4.为降低主电路及缓冲电路的分布电感,接线越短越粗越好,用铜片作接线效果更佳。 ⑵缓冲电路的种类和特 缓冲电路中有全部器件紧凑安装的单独缓冲电路与直流母线间整块安装缓冲电路二类。 ①个别缓冲电路 为个别缓冲电路的代表例子,可有如下的缓冲电路 1.RC缓冲电路 2.充放电形RCD缓冲电路 3.放电阻止形RCD缓冲电路 表3中列出了每个缓冲电路的接线图。特点及主要用途。 表3 单块缓冲电路的接线圈特点及主电用途

保护电路1(短路保护篇)

保护电路1(短路保护篇) 特瑞士半导体株式会社 ■ 概要 用电压检测器(VD)来用作短路保护是不充分的。这是因为当VD输入端的待检测电压VIN低于VD的最低工作电压0.9V的时候,VD的输出(VOUT)变得不稳定。下面,介绍一种通过在IC周边回路增加器件,在输出完全短路的时候,能使IC停止工作的闭锁型短路保护电路。 ■ 特点 可实现完全短路保护。 配合XC9201系列(带限流机能)一起使用,可以强化电路保护的作用。 ■ 动作说明1 ●起动时(保护电路动作的延迟) 当CE_in被激活后,三极管1(Q1)会导通为了不使CE=0,设定电容1(C1)的值,使得三极管1(Q1)的VBE达到导通电压(约0.6V)的时间延迟在此期间,因为输出电压已经达到2V以上,三极管2(Q2)导通,三极管1(Q1)的基极-发射极之间短路,使得三极管1(Q1)维持在断开状态。 C1电压达到0.6V的时间设定必须比IC的软启动时间长。 <延迟时间的计算公式> ■ 动作说明2 ●输出检测时(输出短路)

输出电压(VOUT)短路时,因为电阻4-地(R4-GND)之间的电压也就是三极管2(Q2)的VBE下降到约0.6V以下,三极管2Q2)断开。这时,原本被三极管2(Q2)短路的电容1(C1)有电流流过,电容1(C1)-地(C1-GND)之间的电压缓缓上升。当电容1(C1)电压也就是三极管1(Q1)的VBE约等於0.6V 时,三极管1(Q1)打开,CE端被短路降为0V,IC停止工作。 <电压检测的常数计算> ■ 基本电路 ■ 电路使用例(降压电路)

(注意) 由於双极型三极管是电流驱动型的器件,如果达不到一定的电流就不能正常工作。 交流plc技巧,提高知识水平,尽在plc网易电气交流QQ裙——13625626,电气朋友的家园

保护电路(短路保护篇)(精)

■ 概要 ■ 动作说明 2 用电压检测器 (VD来用作短路保护是不充分的。● 输出检测时 (输出短路 这是因为当 VD 输入端的待检测电压 VIN 低于 VD 输出电压 (VOUT短路时,因为电阻 4-地 (R4-GND之间的电的最低工作电压 0.9V 的时候, VD 的输出(VOUT压也就是三极管 2(Q2的 VBE 下降到约 0.6V 以下,三极管 2变得不稳定。下面,介绍一种通过在 IC 周边回 (Q2断开。这时,原本被三极管 2(Q2短路的电容1(C1有路增加器件,在输出完全短路的时候,能使电流流过,电容 1(C1-地 (C1-GND 之间的电压缓缓上升。 IC 停止工作的闭锁型短路保护电路。当电容 1(C1电压也就是三极管 1(Q1的 VBE 约等於 0.6V 时, 三极管 1(Q1打开, CE 端被短路降为 0V , IC 停止工作。 ■ 特点 ?可实现完全短路保护。 <电压检测的常数计算 > ?配合 XC9201系列 (带限流机能一起使用, 假设以 IC2=0.1mA, CE_in=5V为条件来计算电路常数可以强化电路保护的作用。 首先, ■ 动作说明 1 ● 起动时 (保护电路动作的延迟

当 CE_in被激活后,三极管 1(Q1会导通然后计算 IB2的电流,假设 Q2的 hfe=100,为了不使 CE=0, 设定电容 1(C1的值,使得三极 管 1(Q1的 VBE 达到导通电压 (约 0.6V 的时间延迟。 在此期间,因为输出电压已经达到 2V 以上,三极管 2(Q2导通,三极管 1(Q1的基极 -发射极之假设流过 R3, R4的偏置电流 IBIAS 是基极电流的 10倍以上间短路,使得三极管 1(Q1维持在断开状态。 C1电压达到 0.6V 的时间设定必须比 IC 的软启动时间长。 设定检测电压 VDF 为 2V , <延迟时间的计算公式 > T : 三极管 Q1的延迟时间 (秒 R2:电阻 2的电阻值 (欧姆 C1:电容 C1的电容值(法拉 VBE1:三极管 Q1的 VBE(伏特 CE_in:信号电压 (伏特

过压保护电路

过压保护电路 MAX6495-MAX6499/MAX6397/MAX6398过压保护(OVP)器件用于保护后续电路免受甩负载或瞬间高压的破坏。器件通过控制外部串联在电源线上的n沟道MOSFET实现。当电压超过用户设置的过压门限时,拉低MOSFET的栅极,MOSFET关断,将负载与输入电源断开。 过压保护器件数据资料中提供的典型电路可以满足大多数应用的需求(图1)。然而,有些应用需要对基本电路进行适当修改。本文讨论了两种类似应用:增大电路的最大输入电压,在过压情况发生时利用输出电容存储能量。 图1 过压保护的基本电路 增加电路的最大输入电压 虽然图1电路能够工作在72V瞬态电压,但有些应用需要更高的保护。因此,如何提高OVP器件的最大输入电压是一件有意义的事情。图2所示电路增加了一个电阻和齐纳二极管,用来对IN的电压进行箝位。如果增加一个三极管缓冲器(图3),就可以降低对并联稳压器电流的需求,但也提高了设计成本。

图2 增大最大输入电压的过压保护电路 图3 功过三极管缓冲器增大输入电压的过压保护电路 齐纳二极管的选择,要求避免在正常工作时消耗过多的功率,并可承受高于输入电压最大值的电压。此外,齐纳二极管的击穿电压必须小于OVP的最大工作电压(72V),击穿时齐纳二极管电流最大。 串联电阻(R3)既要足够大,以限制过压时齐纳二极管的功耗,又要足够小,在最小输入电压时能够维持OVP器件正常工作。 图2中电阻R3的阻值根据以下数据计算:齐纳二极管D1的击穿电压为54V;过压时峰值为150V,齐纳二极管的功率小于3W。根据这些数据要求,齐纳二极管流过的最大电流为:3W/54V = 56mA 根据这个电流,R3的下限为: (150V - 54V)/56mA = 1.7kW

IGBT过流和短路保护

IGBT过流与短路保护 IGBT过流与短路保护 IGBT是高频开关器件,芯片内部的电流密度大。当发生过流或短路故障时,器件中流过的大于额定值的电流时,极易使器件管芯结温升高,导致器件烧坏。因此,对IGBT的过流或短路保护响应时间必须快,必须在10us以内完成。应用实践表明:过电流是IGBT电力电子线路中经常发生的故障和损坏IGBT的主要原因之一,过流保护应当首先考虑。须指出的是:过流与短路保护是两个概念,它们既有联系也有区别。过流大多数是指某种原因引起的负载过载;短路是指桥臂直通,或主电压经过开关IGBT的无负载回路,它们的保护方法也有一定区别。如过流保护常用电流检也传感器,短路保护常通过检测IGBT饱和压降,配合驱动电路来实现。不同的功率有不同的方法来实现过流或短路保护。 1、小功率IGBT模块过流保护 对于小功率IGBT模块,通常采用直接串电阻的方法来检测器件输出电流,从而判断过电流故障,通过电阻检测时,无延迟;输出电路简单;成本低;但检测电路与主电路不隔离,检测电阻上有功耗,因此,只适合小功率IGBT模块。比如:5.5KW以下的变频器。 2、中功率IGBT模块的电流检测与过流、短路保护 中功率IGBT模块的电流检测与过流、短路保护,一种方法是仍然采用电阻检测法,为了降低电阻产生功耗及发热生产的影响,可把带散热器件的取样电阻固定在散热器上,以测量更大的电流。 3、中、大功率IGBT模块的电流检测与过流、短路保护 对于大、中功率IGBT模块的电流检测与过流保护常采用电流传感器。但需注意要选择满足响应速度要求的电流传感器。由于需要配置检测电源,成本较高,但检测电路与主电路隔离,适用于大功率的IGBT模块。保护电路动作的时间须在10us之内完成。 4、通过检测IGBT饱和压降实现短路保护 IGBT通常工作在逆变桥上,并处于开关工作状态,若设计不当,易于发生短路现象。对于短路保护,常用的方法是通过检测IGBT的饱和压降Vce(sat)来实现短路保护,它往往配合驱动电路来实现,其基本原理如图所示:

过压保护及瞬态电压抑制电路设计

作者周敏捷 利用电池供电的移动设备通常需要通过外置的AC适配器对系统电池进行充电。而不同供电电压的设备间往往共用着相似的电源插座和插头,这些不同电压标准的适配器往往会给用户带来潜在的错插风险,可能导致设备因过高的电压而烧毁。另一方面,来自AC适配器前端的浪涌或者电网的不稳定也有可能导致适配器的输出电压超越设备所能承受的范围。因此,在移动设备设计中就有必要加入充电端口的过压保护电路,以避免上述情况对设备后端电路的破坏。 本文介绍的过压保护电路由过压保护开关(OVP Switch)和瞬态电压抑制器(TVS)组成(如图1),可实现完善可靠的抗持续高电压和瞬间冲击电压的功能。 图1 在整个方案中,核心部分器件为过压保护开关,以美国研诺逻辑科技有限公司(AATI)的过压保护开关AAT4684为例,过压保护开关的内部主要是由控制逻辑电路和PMOS管组成,当OVP端的检测电压高于特定电压阈值之后,逻辑电路就会通过栅极关断PMOS的沟道。由于该PMOS管拥有较高的持续性耐压(28V),因此可以保护后端的元器件不会因前端电源输入异常高压而烧毁(其内部原理如图2所示)。

图2:AAT46842 内部原理图。 通过以下实验可以说明当过压保护开关的输入端出现过高电压时它对后端电路所起到的保护作用。 图3所示为测试所用电路原理图,输入端为12V平稳直流源,电源通过一段长度为1米的导线与AAT4684的输入端相连,CH1为AAT4684输入电压的测试点,CH 2为 AAT4684输出电压的测试点,CH3为其输出电流探测点。将AAT4684的OVP保护电压设为6V(即当电压超过6V后,开关管立刻关闭,以保护输出端的电路)。为体现实际应用中AC适配器的插拔情况,对系统的上电过程通过导线和电源的机械性拔插来实现。

一个高可靠性的短路保护电路设计及其应用

一个高可靠性的短路保护电路设计及其应用 电子设计工程作者:罗志聪黄世震 一个高可靠性的线性稳压器通常需要有限流保护电路,以防止因负载短路或者过载对稳压器造成永久性的损坏。限流保护通常有限流和折返式限流2种类型。前者是指将输出电流限定在最大值,该方法最大缺点是稳压器内部损失的功耗很大,而后者是指在降低输出电压的同时也降低了输出电流,其最大优点是当过流情况发生时,消耗在功率管能量相对较小,但在负载短路时,大多数折返式限流型保护电路也没有彻底关断稳压器,依然有电流流过,进而使功率MOS管消耗能量,加快器件的老化。针对上述情况,在限流型保护电路的基础上,设计改进了一个短路保护电路,确保短路情况下,关断功率MOS管。本文分别定性和定量地分析了这种短路保护电路的工作过程和原理,同时给出基于TSMCO.18μm CMOS工艺的Spectra仿真结果。 1 短路保护电路的工作原理 高可靠性短路保护电路的实现电路如图1所示,其中VMP是线性稳压器的功率MOS管,R1、R2为稳压器的反馈电阻;VMO和VMP管是电流

镜电路,VMO管以一定的比例复制功率管的电流,通过电阻R4转化为检测电压;晶体管VM1完成电平移位功能,最后接入由VM8~VM12等MOS管组成的比较器的正输入端(Vinp),比较器的负输入端(Vinm)与输出端(0UT)相连;VM13、VM14组成二极管连接形式为负载的共源级放大电路;VM14和VMp1构成电流镜电路;晶体管VMp1完成对功率管VMP的开关控制,正常工作时,VMp1的栅级电位(Vcon)为高电平,不会影响系统的正常工作,短路发生时,Vcon将为低电平,使功率管关断。 1.1 工作原理的定性分析 当短路发生时,比较器的负输入端电位(Vinm)为0 V;同时VM1管将导通,因此比较器的正输入端电位大于0 V,最终比较器的输出节点电位(Vcom)为高电平,在MOS管VM13、VM14作用下,控制信号Vcon 将为低电平,最终VMP管的栅极电压将升高,进而关断P功率管,实

输出过压保护电路

输出过压保护电路 ① 输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。在测试与测量应用中,必须为放大器、电源以及类似部件的输出端提供过压保护。实现这一任务的传统方式是在输出节点中增加串联电阻,并在电源线路或其它阈值电压上增加箝位二极管(图1)。这个电阻大大减小了电流输出的能力,以及低阻负载的输出电压摆幅。另外一种方案是用保险丝或其它限流器件,它优于这些箝位电路的高吸能能力。当源电阻R6上的压降大于耗尽型MOSFET Q1与Q2的栅极阈值电压时,图2电路是作为一个双极电流源,从而限制了通过箝位二极管的电流。这种方案的缺点是在过载条件下,串联元件上有大的功耗。

② 有一种合理的方案是当输出端子上存在过载电压时,将放大器输出节点与输出端子断开一段时间。几十年来,工程师都在音响功率放大器中使用机电继电器完成这种串联断接,不过原因不同,他们是用于扬声器保护。SSR(固态继电器)(包括光电子、光伏电池、OptoMOS和PhotoMOS器件)适合完成中等强度电流的负载断接任务,因为其控制端与负载端之间有电流绝缘。 ③

图3中的串联保护电路使用一只串接的大电压SSR,切断放大器的输出端。当输出电压升高到正基准电压以上或低于负基准电压阈值时,就会使IC2或IC3比较器变换自己的输出状态,通过与逻辑器件IC5关断SSR IC4。图4显示了实现这种方案的简单电路。 图4中的电路只需要少量外接元件,使用一只SSR作输出过压保护。上升的过压使IC2中的两只晶体管截止,切断了流经IC3控制LED的电流。继电器IC3打开,保护放大器与箝位二极管。该电路经过了一系列Clare、Matsushita Electronic Works和Panasonic SSR的测试,它们有的带内部电流保护,有的不带。电源线路电压是±15V;R10、R11和R12设定触发电平为±16 V。省略R11可将触发电平移至±14.5V。在保护电路工作时,针对0.5V过压保护继电器,SSR的关断延迟为100μs~200μs,较高过压下延迟会更短些。注意在使用低导通电阻SSR 时,通过箝位二极管的峰值电流可能会相当大。 ④

(经典)锂电池过充电_过放_短路保护电路详解

(经典)锂电池过充电_过放_短路保护电路详解 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状

4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。 7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为(20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响?

二极管及八大电路保护元器件知识分享

二极管及八大电路保护元器件知识分享 电路保护主要有两种形式:过压保护和过流保护。选择适当的电路保护器件是实现高效、可靠电路保护设计的关键,涉及到电路保护器件的陶瓷气体放电管、半导体放电管和玻璃放电管;钳位型过压器件有瞬态抑制以下是其具体作用:1.放电管的作用放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过2.瞬态抑制二极管的作用3.压敏电阻的作用4.贴片压敏电阻的作用5.ESD静电放电二极管的作用:6.PTC 自恢复保险丝的作用:7.8.磁珠的作用再具体谈一下二极管基础知识-分类,应用,特性,原理,参数二极管的特性与应用二极管的应用1、整流二极管2、开关元件3、限幅元件4、继流二极管5、检波二极管6、变容二极管二极管的工作原理二极管的类型一、根据构造分类1、点接触型二极管二、根据用途分类1、检波用二极管三、根据特性分类1、一般用点接触型二极管 这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。 2、高反向耐压点接触型二极管 是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。 3、高反向电阻点接触型二极管 正向电压特性和一般用二极管相同。虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。 4、高传导点接触型二极管 它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。这类二极管,在负荷电阻特别低的情况下,整流效率较高。

线性稳压器的短路保护电路解析

线性稳压器的短路保护电路解析 一个高可靠性的线性稳压器通常需要有限流保护电路,以防止因负载短路 或者过载对稳压器造成永久性的损坏。限流保护通常有限流和折返式限流2 种 类型。前者是指将输出电流限定在最大值,该方法最大缺点是稳压器内部损失 的功耗很大,而后者是指在降低输出电压的同时也降低了输出电流,其最大优 点是当过流情况发生时,消耗在功率管能量相对较小,但在负载短路时,大多 数折返式限流型保护电路也没有彻底关断稳压器,依然有电流流过,进而使功 率MOS 管消耗能量,加快器件的老化。针对上述情况,在限流型保护电路的 基础上,设计改进了一个短路保护电路,确保短路情况下,关断功率MOS 管。本文分别定性和定量地分析了这种短路保护电路的工作过程和原理,同时给出 基于TSMCO.18μm CMOS 工艺的Spectra 仿真结果。 1 短路保护电路的工作原理 高可靠性短路保护电路的实现电路如 式中IDM5 为VM5 的漏电电流,RL=VOUT/Imax,CL 为负载电容,其中Imax 是系统规定的最大负载电流。要使系统能正常启动,IDM5 必须满足 IDM5VOUT/RL,因此合理选取参数,就能正常启动。 2 仿真结果与讨论 基于TSMC O.18μm CMOS 工艺,仿真结果如 图3(a)所示曲线的仿真条件是输出负载周期性地从0 Ω变化到5 Ω。仿真结果表明当输出发生短路时(即负载为0),输出电流被限制在最大电流值,这样功率MOS 管会消耗大量功耗,将加快器件的老化。 图3(b)所示曲线的仿真条件与图3(a)的条件一样。仿真结果表明当输出发生 短路时(即负载为0),输出电流被限制为O,即功率MOS 管被完全关断,同时

过电压保护

电力电子器件的保护 一 、过电压保护 电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。 内因过电压主要来自电力电子装置内部器件的开关过程,包括: (1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。 (2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。 电力电子电路常见的过电压有交流测过电压和直流测过电压。常用的过电压保护措施及配置位置如图1-1所示。 S F RV RCD T D C U M RC 1 RC 2 RC 3 RC 4 L B S DC 图9-10 过电压保护措施及装置位置 F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容 1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路

过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。由于电容两端电压不能突变,所以能有效抑制尖峰过电压。串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。 视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。 + -+ -a) b) 网侧 阀侧 直流侧 C a R a C a R a C dc R dc C dc R dc C a R a C a R a 图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相 二、过电流保护 过电流分为过载和短路两种情况。过流保护常采用的有快速熔断器、直流快速断路器、过电流继电器保护措施,以晶闸管变流电路为例,其位置配置如图2-1所示。

锂电池过充电-过放-短路保护电路详解

本文由https://www.wendangku.net/doc/6416045945.html,提供 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右

5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。 7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电 电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电 压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为 (20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度

相关文档
相关文档 最新文档