文档库 最新最全的文档下载
当前位置:文档库 › SRS-043加速老化

SRS-043加速老化

SRS-043加速老化

SRS-043 加速老化

1.0目的

为塑胶产品建立一个标准的加速老化程序。

2.0范围

2.1此测试适用于以下所有塑胶产品:在组装状态下使用的产品,和产品部

件。

注:用于加速老化测试的温度(140°F)可高于预期正常使用的温度,且不用模拟使用环境,高温只用于加速改变。

经过加速老化试验后,在因功能特点或正常使用时而产生的压力或模注压力作用下的塑胶零件尤其容易发生形状和/或尺寸上的改变。

2.2 完全由非塑胶材料构成的产品不适用于此规格。

注:当在此规格的测试条件下,下列常用塑胶材料特别容易变形和/或发生与减压相关的缺陷:

聚乙烯

PVC(聚氯乙烯)

EV A(聚烯烃)

Kraton(聚合物)

以下常用塑胶材料对本规格的测试条件有特殊的抵抗力,当受此老化测试时,几乎没有明显的尺寸变化:

聚苯乙烯

ABS

聚丙烯

聚甲醛

缩醛树脂

3.0测试设备

3.1 能保持温度在±5°F浮动范围的循环空气烤箱(如:Blue M Model

Esp-400BC-4)

4.0程序

2.1样板将在140°F(60°C)±5°F的温度中放48小时;

2.2 48小时后,将样板取出,使其达到室温(70°F±5°F)。

5.0规格

5.1 老化测试后,所有Hasbro塑胶产品必须满足有关章节各自的测试规格要

求,包括使用和滥用、功能及外观规格要求。

6.0参考文献

ASTN D 756-78 标准试验“在加速作用状态下对塑胶的重量及变形的规定”

常用三种加速老化测试模型

在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资源配置。 在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。 模型一.只考虑热加速因子的阿伦纽斯模型(Arrhenius Mode) 某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为: AF=exp{(E a/k)·[(1/T u)-(1/T t)]} 式中: AF是加速因子; E a是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385×10-5; T u是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位; T t是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。 案例:某一客户需要对产品做105℃的高温测试。据以往的测试经验,此种产品的激活能E a取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求? 已知的信息有T t、E a,使用的温度取25℃,则先算出加速因子AF:AF=exp{[0.68/(8.617385×10-5)]·【[1/(273+25)]- [1/(273+105)]】}最终: AF≈271.9518 又知其目标使用寿命: L目标=10years=10×365×24h=87600h 故即可算出: L测试= L目标/AF=87600/271.9518h=322.1159h≈323h 现在5个样品同时进行测试,则测试时长为:

塑胶类材料人工加速老化测试常用那些标准

塑胶类材料人工加速老化测试常用那些标准 塑料材料由于其组成的不同,在不同的环境情况下会存在不同程度的老化情况。了解材料或者产品耐老化的能力如何,就需要做一些人工加速老化试验,以下是一些常见的老化测试项目以及标准: 氙灯老化( Xenon-Arc Weathering)常用的测试标准: ASTM G155-05a氙灯老化测试实验; ASTM D2565户外用塑料的氙弧型曝光装置的标准实施规范; ASTM D4459室内使用塑料氙弧灯曝光加速老化试验; ASTM D3424-01印刷品氙灯老化测试; ASTM D4355土工布氙灯老化试验; ISO 4892-2:2006实验室光源曝露-氙灯; ISO 11341 涂料氙灯老化试验; GB/T 16422.2:1999 塑料实验室光源曝露试验-氙灯; GB/T 1865 色漆和清漆氙灯老化试验; AATCC 169 纺织品耐气候测试:氙弧灯曝晒法; SAE J1885、SAE J2412、SAE J1960、SAE J2527汽车内饰件氙灯老化测试. 碳弧灯老化(Carbon-Arc Weathering)测试常用的测试标准 ASTM G152,cycle 1,2,6碳弧光老化测试;

ASTM D3361涂料碳弧光老化测试; ASTM D822 涂料碳弧光老化测试; ASTM D1499碳弧光老化测试; JIS D0205-1987 汽车零件耐候性试验方法。 紫外老化( QUV Weathering)常用的测试标准 ASTM G154/G53非金属材料荧光紫外灯曝露试验操作; ASTM D4329 塑料的荧光紫外线曝露试验; ASTM D4587 涂料老化测试(紫外老化); AATCC 186 耐气候性:紫外线和湿度暴露; ISO 4892-3:2006 实验室光源曝露-荧光紫外灯; ISO 11507 涂层暴露于荧光紫外灯和水; SAE J2020汽车外饰材料UV快速老化测试; GB/T 16422.3紫外光老化试验标准。 臭氧老化(Ozone Aging)测试常用的测试标准: ASTM D1149橡胶臭氧老化测试; ASTM D1171 橡胶臭氧老化测试; ISO 10960 橡胶和塑料软管臭氧老化测试; ISO 7326 橡胶和塑料软管静态条件下抗臭氧性能评估;

加速老化实验

山东华普医疗科技有限公司 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用范围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前 包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前

阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年内和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

人工紫外加速老化和自然老化测试结果间的相关性

人工紫外加速老化和自然老化测试结果间的相关性 长期以来,人工加速老化和自然老化测试结果间的相关性问题一直是业内关注的热点。一般来说,工业上要求快速地得出老化测试结果,同时要求实验室人工加速老化和自然老化测试结果间有较好的相关性,然而实际上这两个要求是相互矛盾的。人工加速老化方法使用比实际环境更高的测试温度、更短波长光源、更大的辐照强度,在加速材料老化进程的同时,降低了与自然条件材料老化结果的相关性。 QUV加速老化设备配备的UVA-340 灯管提供了一个新的解决方案。UVA-340紫外灯光源能很好地模拟太阳光谱中短波紫外光( <365 nm部分)。由于UVA-340紫外灯光源所模拟的太阳短波紫外光通常是引起聚合物破坏的主要原因,理论上这种方法的测试结果和户外自然老化的相关性较好。为了验证这一点,我们针对户外自然曝晒和使用UVA-340 紫外光源人工加速老化的相关性进行了一系列的实验。 人工加速老化和自然老化测试结果间的相关性: 1 实验 本实验选用了环氧涂料、聚氨酯涂料以及聚酯涂料,分别进行户外自然曝晒和紫外人工加速老化实验,记录实验中样品光泽和颜色的变化。 1.1户外自然曝晒实验 由于全球各地户外自然曝晒的情况很不相同,为了准确地评价实验,这里选择了三种不同的典型气候类型:亚热带气候( 佛罗里达的迈阿密)、沙漠气候( 亚利桑那的凤凰城) 和美国北方工业型气候(俄亥俄州的克里夫兰) 。 户外自然曝晒严格按照ASTM G7《非金属材料的户外自然曝晒试验标准》执行。被测试样的背板为厚1.6mm的夹板,试样架45°,朝南。 1.2人工加速老化实验 人工加速老化测试按照ASTMG154《非金属材料的紫外老化测试方法》执行。实验设备为紫外加速老化试验机。该试验箱具有闭环反馈回路系统控制,可设定并控制UV光辐照强度。试验使用UVA-340紫外灯管,光强峰值为343nm,截止点为295nm。为了排除不同温度对实验结果的影响,测试温度统一设定在50℃。 实验分别在三种不同的循环条件下测试: 条件1 :4 h紫外光照射,4h 冷凝;UVA-340灯管的辐照点控制在0.83W/(m2·nm)@340nm;整个测试循环温度控制在50℃。本测试循环中紫外的辐照强度相当于夏天正午的太阳光照。 条件2 :4 h紫外光照射,4h 冷凝;UVA-340灯管的辐照点控制在1.35W/(m2·nm)@340 nm;整个测试循环温度控制在50℃。条件2与条件1基本类似,但辐照度更强。 条件3 :4 h紫外光照射(100 %紫外辐照,无冷凝,无暗周期);UVA-340灯管的辐照点控制在1.35W/(m 2·nm)@340 nm;整个测试循环温度控制在50℃。 2 结果与讨论 2.1环氧涂料 样板为涂覆在钢板上的高光灰色环氧涂料。 户外自然曝晒在一开始就表现出快速地失光和粉化,曝晒1年后,样板基本无光泽。此外,三个曝晒地点的样品都出现锈蚀现象,在佛罗里达的样板表面完全为锈斑所覆盖,而在亚利桑那和克里夫兰的样板有部分锈蚀。 人工加速老化测试中,样板很快失光,辐照强度越高,样板失光越快。此外带有冷凝循环时样板易粉化,单纯采用紫外辐照的则不易产生粉化。 从以上的数据可以看出,就环氧涂料的光泽和粉化的变化而言,带有冷凝循环的人工加速老化实验结果和户外自然曝晒的结果相关性较好。但由于ASTMG154标准要求测试采用纯水,因此实验结果没有产生户外自然曝晒中出现的生锈现象。如果改为使用腐蚀性溶液可能更接近户外自然曝晒,估计样板会产生生锈现象。建议实际使用中,结合采用盐雾/ 紫外人工老化测试以达到更接近自然的结果。 2.2聚氨酯涂料 样板采用涂覆在钢底材上的高光灰色聚氨酯涂料。 户外自然曝晒中佛罗里达和亚利桑那的光泽下降较快,俄亥俄州的光泽下降较慢。曝晒2年后,所有样板钢底材全部裸露。三个户外自然曝晒点的样板都发生锈蚀现象。其中佛罗里达样板的生锈面积达整个面积的20%,俄亥俄的样板仅有几个锈点,而亚利桑那样板几乎无锈蚀。 人工加速老化测试中带有冷凝循环条件的测试的样板失光较快,并伴有粉化现象。而单纯采用紫外辐照条件的测试样板失光速度较为缓慢且无粉化现象。

老年护理老化的相关理论试题及答案

第2章老化的相关理论 一、案例分析题 1、张大爷,75岁,反复髋关节、膝关节等关节疼痛5年,常于阴冷天气、下雨时发作或加重,伴有轻度红肿和晨僵,活动有时可听到关节咔嗒声,X线显示膝关节、髋关节有骨赘改变。实验室检查无特殊发现。 可用于张大爷此病解释的主要发病机制是( E ) A.遗传基因理论 B.自身免疫理论 C.神经内分泌理论 D.衰老理论 E.自身免疫理论和衰老理论 2、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg,一般用药可以控制血压在正常范围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突然心前区持续性疼痛半小时入院。体检:P 90次/分,BP 168/100mmHg,身高165cm,体重85kg,表情焦虑。 为了协助诊断,首选下列哪项检查( B ) A.心脏B超 B.心电图 C.脑CT D.心肌酶学检查 3、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg,一般用药可以控制血压在正常范围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突然心前区持续性疼痛半小时入院。体检:P 90次/分,BP 168/100mmHg,身高165cm,体重85kg,表情焦虑。 24小时内最关键的观察是( C ) A.生命体征 B.瞳孔大小 C.心电监护 D.有无恶心呕吐 4、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg,一般用药可以控制血压在正常范围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突然心前区持续性疼痛半小时入院。体检:P 90次/分,BP 168/100mmHg,身高165cm,体重85kg,表情焦虑。 医生给予扩张血管、溶栓等治疗24小时后,患者血压正常,头痛、心前区疼痛消失,自我感觉较好,于是想在病床上继续工作,声称工作离不开她,不工作活着没有意义,她这是为了满足( E ) A.生理需求 B.安全需求 C.社交需求 D.尊重需求 E.自我实现需求 5、朴总工程师,女,68岁,患高血压23年,血压最高达到过190/116mmHg,一般用药可以控制血压在正常范围。最近为某项目攻坚加班加点,每日睡眠不足5小时,轻微头痛。今天讨论时突

人工加速老化试验条件的选择

人工加速老化试验条件的选择 这个问题实际上可以理解为应该模拟哪些老化因素,高分子材料在使用过程中,气候环境里许多因素都有可能对高分子材料的老化产生作用。如果事先知道产生老化的主要因素,就可以有针对性的选择试验方法。我们可以从该材料的运输、储存、使用环境以及其老化机理等方面考虑,确定试验方法。例如硬聚氯乙烯型材,使用聚氯乙烯为原料,添加稳定剂、颜料等助剂加工而成,主要用于室外。 从聚氯乙烯的老化机理考虑,聚氯乙烯受热易分解;从使用环境考虑;空气中的氧、紫外光、热、水分都是引起型材老化的原因。 因此,国标GB/T8814-2004《门、窗用未增塑聚氯乙烯(PVC-U)型材》中,既规定了光氧老化试验方法,采用GB/T 16422.2《塑料实验室光源曝露试验方法第二部分:氙弧灯》老化4000h或6000h,模拟了室外紫外光及可见光、温度、湿度、降雨等因素,同时又规定了热氧老化项目:加热后状态,150℃放置30min,目测观察是否出现气泡、裂纹、麻点或分离现象,以考察型材的耐热性能。 又如我国在国际市场上有竞争力的一个产品:外贸出口鞋。在使用过程中,阳光中的紫外线是引起鞋子变色、褪色的主要原因,因此,有必要用紫外线试验箱对其进行耐黄变测试。常用的鞋类耐黄变试验箱

采用30WUV灯,样品离光源20cm,照射3h后观察颜色变化。同时,在运输过程中,集装箱内闷热、潮湿的恶劣环境会引起鞋面、鞋底、胶水的变色、斑点,甚至是变质。因此,在装船运输之前,有必要考虑进行耐湿热老化试验,模拟集装箱内高热、高湿环境,在70℃、95%相对湿度的条件下,进行48h试验后观察外观、颜色变化。

产品加速老化测试方案

产品加速老化测试方案 1、试验前准备 1.1 试验产品信息 样品名称: 样品型号: 样品数量: 样品序号: 1.2 试验所需的设备信息 设备名称:恒温恒湿箱 设备编号: 设备参数:温度测试范围为: 湿度测试范围为: 1.3 测试人员: 复核人员: 批准人员: 1.4 测试环境:加速老化测试在75℃、90% RH的恒温恒湿箱中进行 1.5 测试时间: 2、试验原理和步骤 2.1 使用的物理模型--最弱链条模型 最弱链条模型是基于元器件的失效是发生在构成元器件的诸因素中最薄弱的部位这一事实而提出来的。 该模型对于研究电子产品在高温下发生的失效最为有效,因为这类失效正是由于元器件内部潜在的微观缺陷和污染,在经过制造和使用后而逐渐显露出来的。暴露最显著、最迅速的地方,就是最薄弱的地方,也是最先失效的地方。 2.2 加速因子的计算 加速环境试验是一种激发试验,它通过强化的应力环境来进行可靠性试验。加速环境试验的加速水平通常用加速因子来表示。加速因子的含义是指设备在正常工作应力下的寿命与在加速环境下的寿命之比,通俗来讲就是指一小时试验相当于正常使用的时间。因此,加速因子的

计算成为加速寿命试验的核心问题,也成为客户最为关心的问题。加速因子的计算也是基于一定的物理模型的,因此下面分别说明常用应力的加速因子的计算方法。 2.2.1温度加速因子 温度的加速因子计算: ?? ???????? ???==stress normal a stress normal AF T T k E L L T 1-1exp ……………… (1) 其中,normal L 为正常应力下的寿命; stress L 为高温下的寿命; a E 为失效反应的活化能(eV ); normal T 为室温绝对温度; stress T 为高温下的绝对温度; k 为Boltzmann 常数,8.62× 10-5eV/K ; 实践表明绝大多数电子元器件的失效符合Arrhenius 模型,下表给出了半导体元器件常见的失效反应的活化能。 2.2.2 湿度的加速因子 2.3 试验方案 本试验采用最弱链条的失效模型,通过提高试验温度和湿度来考核产品电路板和显示屏的使用寿命。在75℃、90% RH 下做加速寿命测试,故其加速因子应为温度加速因子和湿度加速因子的乘积,计算如下: n normal stress stress normal a AF AF RH RH T T k E H T AF ???? ????????????? ???=?=1-1ex p (3)

老化测试标准

老化测试标准 科标检测为您提供包括橡胶、塑料、涂料、胶黏剂、建筑材料、金属材料、电芯电缆、汽车配件、化工品等多行业多种类材料产品的老化性能检测服务。 自然大气曝晒试验 直接自然大气曝晒(ASTM G7,ASTM D4141等) 黑箱曝晒(SAE J1976,ISO877等) 太阳跟踪IP/DP箱曝晒试验(ISO2810,ISO105-B03等) 玻璃下曝晒(GB/T3681,GB/T9276等) 太阳跟踪聚光加速试验(GB/T3511,GB/T15596等) 人工加速光老化试验 氙弧灯老化试验(ASTM G155,ASTM D4459,ASTM D2565,ASTM D6695,ISO4892-2,ISO11341,ISO105-B02,ISO105-B04,ISO105-B06,ISO4665,ISO3917,GB/T1865,GB/T16422.2, SAE J2412,SAE J2527等) 氙灯测试(高辐照度试验(ASTM G155,NES M0135中1-2-1A,2-2-1,NES M0141等) 荧光紫外灯老化试验(ASTM G154,ASTM D4329,ASTMD499,ASTM D5208,ASTM D4587,ISO 4892-3,ISO11507,SAE J2020,GB/T16422.3,GB/T14522等) 金属卤素灯老化试验(DIN75220,IEC60068-2-5,ISO9022-9,ISO12097-2,MIL STD810F 等) 红外灯老化试验(NES M0131,PV2005等) 阳光碳弧灯老化试验箱(GB/T16422.4、ISO4892-4、ASTM G152、JIS B7753、JIS D0205等) 紫外碳弧灯老化试验箱(JIS L08422004、AATCC16方法1、JIS A14151999,TSL0601G 等) 温湿度老化试验 高温试验(ISO188,GB/T2423.2,ASTM D573,IEC60068-2-2等) 低温试验(GB/T2423.1,IEC60068-2-1等) 恒温恒湿试验(GB/T2423.3,IEC60068-2-78等) 温度循环试验(GB/T2423.22) 温湿度循环试验(GB/T2423.4,IEC60068-2-30等)

常用三种加速老化测试模型

常用三种加速老化测试模型 在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决 的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资 源配置。 在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。 模型一.只考虑热加速因子的阿伦纽斯模型( Arrhenius Mode ) 某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为: AF=exp{(E a/k) ? [(1/T u)-(1/T t)]} 式中: AF是加速因子; E a是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385 X 10-5; T u是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值, 以K(开尔文)作单位; T t是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。 案例:某一客户需要对产品做105C的高温测试。据以往的测试经验,此种产品的激活能E a取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求? 已知的信息有T t、E a,使用的温度取25C,贝U先算出加速因子AF: 5 AF=exp{[0.68/(8.617385 X 10-)] ?【[1/(273+25)]-[1/(273+105)] 】} 最 终: AF^ 271.9518 又知其目标使用寿命: L 目标=10years=10 X 365X 24h=87600h 故即可算出: L 测试=L 目标/AF=87600/271.9518h=322.1159h ?323h 现在5个样品同时进行测试,则测试时长为: L 最终=323/5h=65h 这即是说明,若客户用5个产品同时在105C高温下测试65h后产品未发生故障,则说明产品的使用寿命已达到要求。 通过这个案例可以看出,利用阿伦纽斯模型可以提前预估测试的相关信息,指导客户该怎样进行测试才既能达到目标值而又最大限度的降低成本。本案例中,若客户急需测试结果,那么可以投入10个或者更多的样品来缩短整个测试时长;或者在允许的情况下进一步提高温度,加快完成测试。根据需求灵活的调整测试方案,这才能更完美地达到目标,提高工作效率,省去一些不必要的费用。 模型二.综合温度及湿度因素的阿伦纽斯模型(Arrhenius ModeWith Humidity )

医疗器械加速老化实验方案及报告

华普医疗科技 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验: 2012年5月20日前 包装验证实验: 2012年5月22日前 阻菌实验: 2012年5月24日前 老化实验时间: 2012年5月26日前 加速第一年验证 无菌实验: 2012年6月18日前 全能性实验: 2012年6月25日前 包装验证实验: 2012年6月25日前 阻菌实验: 2012年6月27日前 加速第二年验证 无菌实验: 2012年7月1日前 全能性实验: 2012年7月8日前 包装验证实验: 2012年7月8日前 阻菌实验: 2012年7月10日前 加速第三年验证 无菌实验: 2012年7月15日前 全能性实验: 2012年7月22日前 包装验证实验: 2012年7月22日前 阻菌实验: 2012年7月24日前 加速第四年验证 无菌实验: 2012年7月29日前 全能性实验: 2012年8月6日前 包装验证实验: 2012年8月6日前

阻菌实验: 2012年8月8日前 加速第五年验证 无菌实验: 2012年8月13日前 全能性实验: 2012年8月20日前 包装验证实验: 2012年8月20日前 阻菌实验: 2012年8月22日前 目的:在有效期三年和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

老化测试老化试验

老化测试老化试验 老化检测是可靠性检测的一部分,是模拟产品在现实使用条件中涉及到的各种因素对产品产生老化的情况进行相应条件加强实验的过程。 主要通过使用各种环境试验设备模拟气候环境中的高温、低温、高温高湿以及温度变化等情况,加速激发产品在使用环境中可能发生的失效,来验证其是否达到在研发、设计、制造中的预期的质量目标,从而对产品整体进行评估,以确定产品可靠性寿命。老化检测正是可靠性测试的重要部分。 一、主要的测试范围包括: 材料寿命推算 冷热冲击 盐雾测试 快速温变 老化检测气候老化(自然气候暴晒试验,人工气候老化) 紫外老化检测 臭氧老化检测 老化试验湿热老化检测 氙灯老化检测 碳弧灯老化检测 二、重点检测项目 1、紫外老化检测 采用荧光紫外灯为光源(有UVA,UVB不同型号灯源),通过模拟自然阳光中的紫外辐射和冷凝,对材料进行加速耐气候性试验,以获得材料耐候性的结果。 紫外老化测试,可以再现阳光、雨水和露水所产生的破坏。设备通过将待测材料曝晒放在经过控制的阳光和湿气的交互循环中,同时提高温度的方式来进行试验。试验设备采用紫外线荧光灯模拟阳光,同时还可以通过冷凝或

喷淋的方式模拟湿气影响。用来评估材料在颜色变化、光泽、裂纹、起泡、催化、氧化等方面的变化。 紫外老化试验机并不模拟全光谱太阳光,但是却模拟太阳光的破坏作用。通过把荧光灯管的主要辐射控制在太阳光谱的紫外波段来实现。这种方式是有效的,因为短波紫外线是造成户外材料老化的最主要因素。 2、盐雾老化检测 盐雾试验是一种主要利用盐雾试验设备所创造的人工模拟盐雾环境条件来考核产品或金属材料耐腐蚀性能的环境试验。 盐雾试验分为:天然环境暴露试验;人工加速模拟盐雾环境试验。 人工模拟盐雾试验: 包括中性盐雾试验、醋酸盐雾试验、铜盐加速醋酸盐雾试验、交变盐雾试验。 3、臭氧老化检测 臭氧老化就是将试样暴露于密闭无光照的含有恒定臭氧浓度的空气和恒温的试验箱中,按预定时间对试样进行检测,从试样表面发生的龟裂或其它性能的变化程度,以评定试样的耐臭氧老化性能。 臭氧老化分为静态拉伸测试和动态拉伸测试,在这个测试中臭氧浓度、温度、试样定伸比是非常重要的三个参数。 4、湿热老化检测 湿热老化检测适用于可能在温暖潮湿的环境中使用的产品,湿度试验、恒定湿热、交变湿热,是可靠性测试的一种。 试验的目的:检验产品对温暖潮湿的环境的适应能力。对塑性材料、PCB、PCBA多孔性材料或成品等而言,各种不同材料对温度与湿气有不同形态之物理反应,温度所产生效应多为塑性变形或产品过温或低温启动不良等等,多孔性材料在湿度环境下会应毛细孔效应而出现表面湿气吸附,渗入、凝结等情形,在低湿环境中会因静电荷累积效应诱发产品出现失效。 常见湿度效应:物理强度的丧失、化学性能的改变、绝缘材料性能的退化、电性短路、金属材料氧化腐蚀、塑性的丧失、加速化学反应、电子组件的退化等现象。

人工加速老化和自然老化测试结果间的相关性

人工加速老化和自然老化测试结果间的相关性: 长期以来,人工加速老化和自然老化测试结果间的相关性问题一直是业内关注的热点。一般来说,工业上要求快速地得出老化测试结果,同时要求实验室人工加速老化和自然老化测试结果间有较好的相关性,然而实际上这两个要求是相互矛盾的。人工加速老化方法使用比实际环境更高的测试温度、更短波长光源、更大的辐照强度,在加速材料老化进程的同时,降低了与自然条件材料老化结果的相关性。 QUV 加速老化设备配备的 UVA-340 灯管提供了一个新的解决方案[1] 。 UVA-340 紫外灯光源能很好地模拟太阳光谱中短波紫外光 ( < 365 nm 部分 ) ,见图 1 所示。由于 UVA-340 紫外灯光源所模拟的太阳短波紫外光通常是引起聚合物破坏的主要原因,理论上这种方法的测试结果和户外自然老化的相关性较好。为了验证这一点,我们针对户外自然曝晒和使用 UVA-340 紫外光源人工加速老化的相关性进行了一系列的实验。 1 实验 本实验选用了环氧涂料、聚氨酯涂料以及聚酯涂料,分别进行户外自然曝晒和紫外人工加速老化实验,记录实验中样品光泽和颜色的变化。 1.1 户外自然曝晒实验 由于全球各地户外自然曝晒的情况很不相同,为了准确地评价实验,这里选择了三种不同的典型气候类型:亚热带气候 ( 佛罗里达的迈阿密 ) 、沙漠气候 ( 亚利桑那的凤凰城 ) 和美国北方工业型气候 ( 俄亥俄州的克里夫 兰 ) 。 户外自然曝晒严格按照 ASTM G7 《非金属材料的户外自然曝晒试验标准》执行。被测试样的背板为厚 1.6 mm 的夹板,试样架45 °,朝南。 1.2 人工加速老化实验 人工加速老化测试按照 ASTM G154 《非金属材料的紫外老化测试方法》执行。实验设备为紫外加速老化试验机。该试验箱具有闭环反馈回路系统控制 [2] ,可设定并控制 UV 光辐照强度。试验使用 UVA-340 紫外灯管,光强峰值为 343 nm ,截止点为 295 nm 。为了排除不同温度对实验结果的影响,测试温度统一设定在50 ℃。

建筑防水材料的人工加速老化试验

建筑防水材料的人工加速老化试验 参照标准 GB250-1995 评定变色用灰色样卡 GB730-1998 纺织品色牢度试验耐光和耐气候色牢度蓝色羊毛标准(eqvI SO 105-B:1994) GB/T3511-1983 橡胶大气老化试验方法 GB/T16777-1997 建筑防水涂料试编方注 GB/T18244-2000 建筑防水材料老化试验方法 人工气候加速老化(氙弧灯) 采用设备:氙灯耐候试验箱 设备型号:CLM-SN-900A 1 原理 用人工的方法,模拟和强化在自然气候中受到的光、热、氧、湿气、降雨为主要老化破坏的环境因素,特别是光,以加速材料的老化。按标准检测评定性能变化,从而获得近似于自然气候的耐候性。 试验装置(型号:CLM-SN-900A) 1 试验箱的中心安装光源一氙弧灯,箱内有一个安装试样架的转鼓,设有氙灯功率、温度、湿度、喷水周期等指示及自控装置,干湿球温度自动记录仪及计时器。箱体有一个控制循环空气的调节器,用来调节黑板温度和排出箱内的臭氧。根据需要,箱上还设有光照周期开关。2氙弧灯 氙弧灯是试验光源,其光谱的波长从270n m以下短波紫外区,经可见光谱扩展到红外区。氙灯发出的辐射要经过滤光,滤掉较短的紫外光波并尽可能滤掉红外光波,使达到试样表面的光谱极接近太阳光的光谱,与表4的光谱能量分布一致。建议选择波长在290 nm至800 nm 间的辐照度为550 W/m'o 试验步骤 3.4.1 试样安装 除另有规定,试样一般按自由状态安装在试样架上,应避免试样受外应力的作用。试样架固定在试验箱的转鼓上时,试样的曝露面要对正光源,试样工作区面积要完全曝露在有效的光源范围,并且要方便调换试样的位置。在与氙灯轴平行的试样架上,任意两点的试样表面辐照度的变化不应超过to%,否则应定期调换试样位置,使其在每一位置都得到相等的辐照度。 3.4.2 曝露试验 开动试验箱,调好规定的试验条件,并记录开始曝露时间。在整个曝露期间要保持规定的试验条件恒定。放入或取出试样时,不要触摸或碰撞试样表面。 3.4.3 辐射量的测定 辐射量的测定有两种方式: a)连续测定:用积算照度计连续测定累计总辐射量。 b) 间断测定:用辐射计测定一段曝露时间的辐射量,再求出总的辐射量。 测定时将感光器固定在适当位置上,使感光器所测得的辐射值相当于试样位置上的辐射值。辐射量也可以用其他物质标准测定。 3.4.4 试验周期 试验期限应根据产品标准决定,以某一规定的曝露时间或辐射量,或性能降至某一规定值时的曝露时间或辐射量。通常可选720 h(累计辐射能量1 500 MJ/m')或更长。 3.4.5 性能测定 按预定试验周期从试验箱中取出试样进行各项性能的测定。 3.4.5.1 外观检测

医疗器械加速老化试验方案及报告

. . . .. .. . 华普医疗科技 加速老化试验

版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准: ... .. .s. . . . . .. .. . 加速老化实验计划 一、使用围

本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前

包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前 ... .. .s. . . . . .. .. . 阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。 ... .. .s. .

可靠性-LED加速老化寿命试验方法概论Word文档

一、可靠性理论基础 1.可靠度: 如果有N个LED产品从开始工作到t时刻的失效数为n(t),当N足够大时,产品在t时刻的可靠度可近似表示为: 随时间的不断增长,将不断下降。它是介于1与0之间的数,即。 2.累积失效概率: 表示发光二极管在规定条件下工作到t这段时间内的失效概率,用F(t)表示,又称为失效分布函数。 如果N个LED产品从开始工作到t时刻的失效数为n(t),则当N足够大时,产品在该时刻的累积失效概率可近 似表示为: 3.失效分布密度: 表示规定条件下工作的发光二极管在t时刻的失效概率。失效分布函数的导函数称为失效分布密度,其表达式如下: ?早期失效期; ?偶然失效期(或稳定使用期) ; ?耗损失效期。 二、寿命 老化:LED发光亮度随着长时间工作而出现光强或光亮度衰减现象。器件老化程度与外加恒流源的大小有关, 可描述为: B t为t时间后的亮度,B0为初始亮度。通常把亮度降到B t=0.5B0所经历的时间t称为二极管的寿命。 1. 平均寿命 如果已知总体的失效分布密度f(t),则可得到总体平均寿命的表达式如下: 2. 可靠寿命 可靠寿命T R是指一批LED产品的可靠度下降到r时,所经历的工作时间。T R可由R(T R)=r求解,假如该产品的失效分布属指数分布规律,则: 即可求得T R如下:

3. 中位寿命 中位寿命T0.5指产品的可靠度R(t)降为50%时的可靠寿命,即:对于指数分布情 况,可得: 二、LED寿命测试方法 LED寿命加速试验的目的概括起来有: ?在较短时间内用较少的LED估计高可靠LED的可靠性水平 ?运用外推的方法快速预测LED在正常条件下的可靠度; ?在较短时间内提供试验结果,检验工艺; ?在较短时间内暴露LED的失效类型及形式,便于对失效机理进行研究,找出失效原因; ?淘汰早期失效产品,测定元LED的极限使用条件 1. 温度加速寿命测试法 由于通常LED寿命达到10万小时左右,因此要测得其常温下的寿命时间太长,因此采用加速寿命的方法。 根据高温加速寿命得的结果外推其他温度下的寿命。LED温度加速老化寿命测试原理是基于Arrhenius 模型。 利用该模型可以发现由温度应力决定的反应速度的依赖关系,即 式中L为寿命,Ea为激活能,A为常数,k为玻尔兹曼常数,T为热力学温度。 因此测试温度应有两个,即还需测得另一个温度T2下器件寿命为L2。可以求得激活能Ea。样便可以求得温度 T1对某温度T3下的加速系数K3: 。有: 可见实验需要测得同一批器件在两个不同温度下的寿命,然后推得其他温度下的寿命。 这就要求被测器件的数量应足够多,才能避免个性影响,而得到共性,即得到统计寿命值才真实。 LED从正常状态进入劣化状态的过程中,存在能量势垒,跃过这个势垒所需要的能量必须由外部供给,这个能量势垒就称为激活能。

人工加速老化类型分析

人工加速老化类型分析 人工加速老化主要是为了检测材料在自然条件下的老化测试,主要模拟在满足自然条件的前提下能加快老化时间和条件测试材料老化速度和结构变化,为产品色设计和生产提供参考依据。 1、氙灯老化 由于氙灯的光谱能量分布比其他人工光源更接近于太阳光,因此成为人工加速试验的主要光源。另外氙灯的光谱能量分布还可以通过不同的滤镜组合来进行调整,以满足不同的试验要求,常用的滤镜组合有石英-硼硅酸盐滤镜组合、紫外线吸收涂层-钠钙玻璃滤镜组合等。市场上流行的氙灯暴露试验箱能量控点一般为340nm或者是整个波段,但最近美国一些厂家已经研发了全光谱监控装置,可以对任何感兴趣波段的老化作用加以研究。 氙灯暴露的试验周期主要取决于汽车制造商对于材料的质量要求。目前,氙灯老化试验已成为最为广泛有效的人工加速光老化试验方法,对于内饰件最常用的试验标准为SAE J2412《使用可控辐照度的氙灯装置对汽车内饰件进行加速曝晒》,而外饰件常用的标准为SAE J2527《使用可控辐照度的氙灯装置对汽车外饰件进行加速曝晒》。各大汽车制造商也都有自己的试验规范和要求,表3给出了桑塔纳汽车保险杠(PP/EPDM)的老化性能试验和指标。 试验标准DIN 534 97B,(90±1℃)存放24h [5]指标成型件位置不松动,无形状、颜色变化、长度尺寸方向变化≤0.5%做落球试验无损伤、无断裂不退色、不粉化、无裂纹耐寒性3905,(-40±1℃)存放24h P-VW 3902, 氙灯老化试验,耐候性喷水,1000h 2、金属卤素灯 目前,比较大型的老化测试设备一般是以金属卤素灯为光源的大型测试单元,可以进行整车以及大型建筑的人工加速试验。金属卤素灯的光谱能量分布跟太阳光谱分布非常相似,特别是在红外线区域,其紫外线的截止点为280nm,其试验标准有DIN 75 220。

人工加速老化试验方法简述

人工加速老化试验方法简述 罗宁张欣 涂料、塑料等高分子材料在使用过程中经常出现粉化、变色、起泡、裂纹、脱落等现象,严重影响产品的机械、表观等方面的性能,因此需要了解高分子材料的光老化机理并寻找合适的人工加速光老化试验方法来客观地模拟自然使用条件,为材料的研发及应用提供快速的检测与评价方面的依据。目前常用的人工加速老化试验方法主要有氙灯(Q-SUN )、荧光紫外灯(QUV )、碳弧灯、金属灯等。我们对材料的人工加速老化试验方法进行简述,以提高员工对老化的深入认识,供技术人员在研发与检测中参考。一、光老化机理 涂料、塑料等高分子材料在受日光照射时,会发生一系列反应,主要是光化学反应。根据光化学反应第一、第二定律,发生光化学反应的的物质首先要吸收太阳光,即物质的分子或原子能够吸收光能,使分子或原子处于高能状态;其次一个分子或原子吸收的能量必须大于其键能,这样才能使物质发生降解,即老化。而涂料、塑料等高分子材料往往含有在聚合过程中残留的为量杂质,聚合物本身含有的一些不归整结构等自身化学结构的老化弱点,当这些高分子材料受太阳光照射后,材料的老化弱点首先被攻破,出现原子或分子键的切断、交联、链的移动、断裂及侧链的变化等现象的单独或同时的发生。老化就是完全的解聚反应,使高分子的末端,从原子间键弱的部分断裂。老化后的高分子材料即出现表面粉化、变色、起泡、裂纹、脱落等现象。 高分子材料的波长敏感性是影响老化的一个重要因素,常见的涂料材料的敏感波长见下表。

二、光老化试验方法 1、碳弧灯光老化试验方法 碳弧灯是一种较古老的技术,碳弧仪器最初被德国合成染料化学家用来评估被染纺织品的耐光度。碳弧灯分为封闭式和开放式碳弧灯,无论哪种碳弧灯,其谱图与太阳光的谱图相差都比较大。由于该项目技术的历史较长,最初的人工模拟光老化技术都是采用该设备,因此在早些的标准中还能见到该方法,尤其是在日本的早期标准中常常采用碳弧灯技术作为人工光老化试验手段。

【加速老化实验】,加速老化试验计算公式

【加速老化实验】,加速老化试验计算公式 【加速老化实验】加速老化试验计算公式加速寿命试验 寿命试验(包括截尾寿命试验)方法是基本的可靠性试验方法。在正常工作条件下,常常采用寿命试验方法去估计产品的各种可靠性特征。但是这种方法对寿命特别长的产品来说,就不是一种合适的方法。因为它需要花费很长的试验时间,甚至来不及作完寿命试验,新的产品又设计出来,老产品就要被淘汰了。所以这种方法与产品的迅速发展是不相适应的。经过人们的不断研究,在寿命试验的基础上,找到了加大应力、缩短时间的加速寿命试验方法。 加速寿命试验是用加大试验应力(诸如热应力、电应力、机械应力等)的方法,加快产品失效,缩短试验周期。运用加速寿命模型,估计出产品在正常工作应力下的可靠性特征。 下面就加速寿命试验的思路、分类、参数估计方法及试验组织方法做一简单介绍。 1 问题 高可靠的元器件或者整机其寿命相当长,尤其是一些大规模集成电路,在长达数百万小时以上无故障。要得到此类产品的可靠性数量特征,一般意义下的载尾寿命试验便无能为力。解决此问题的方法,目前有以下几种: (1)故障数r=0的可靠性评定方法。 如指数分布产品的定时截尾试验 θL=2S(t0)

2χα(2) 22S(t)χαα00为总试验时间。为风险, =时,.1(2)=≈; 当α=时, χ(2)=≈6。 (2)加速寿命试验方法 如,半导体器件在理论上其寿命是无限长的,但由于工艺水平及生产条件的限制,其寿命不可能无限长。在正常应力水平S0条件下,其寿命还是相当长的,有的高达几十万甚至数百万小时以上。这样的产品在正常应力水平S0条件下,是无法进行寿命试验的,有时进行数千小时的寿命试验,只有个别半导体器件发生失效,有时还会遇到没有一只失效的情况,这样就无法估计出此种半导体器件的各种可靠性特征。因此选一些比正常应力水平S0高的应力水平S1,S2,…,Sk,在这些应力下进行寿命试验,使产品尽快出现故障。 (3)故障机理分析方法 研究产品的理、化、生微观缺陷,研究缺陷的发展规律,从而预测产品的故障及可靠性特征量。 2 加速寿命试验的思路 由产品故障的应力—强度模型(见图5-5) 图5-5 应力—强度模型 其中:R(t)=P(强度>应力),F(t)=P(应力≥强度) 当强度与应力均为确定型时,产品在t2故障。实际上强度与应力是概率风险型的,当均服从正态分布时,产品则可能提前在t1,以一定概率发生故障。

相关文档
相关文档 最新文档