文档库 最新最全的文档下载
当前位置:文档库 › 雷达原理大作业

雷达原理大作业

雷达原理大作业
雷达原理大作业

雷达目标识别技术综述

1引言

目标识别是现代雷达技术发展的一个重要组成部分。对雷达目标识别的研究,在国内外已经形成热点,但由于问题本身的复杂性,以及多干扰信号,特别是多噪声干扰源存在的复杂电磁环境,雷达目标识别问题至今还没有满意的答案,尚无成熟的技术和方法。因此,对雷达目标识别技术的研究具有极其重要的军事应用价值。

本文将对雷达自动目标识别技术进行简要回顾,讨论目前理论研究和应用比较成功的几类目标识别方法,以及应用于雷达目标识别中的模式识别技术,分析和讨论问题的可能解决思路。

2雷达目标识别模型

雷达目标识别需要从目标的雷达回波中提取目标的有关信息标志和稳定特征并判明其属性。它根据目标的后向电磁散射来鉴别目标,是电磁散射的逆问题。利用目标在雷达远区所产生的散射场的特征,可以获得用于目标识别的信息,回波信号的幅值、相位、频率和极化等均可被利用。对获取的目标信息进行计算机处理,与已知目标的特性进行比较,从而达到自动识别目标的目的。识别过程分成三个步骤:目标的数据获取、特征提取和分类判决。相应模型如图"所示。

整个识别过程可以分为两个阶段:训练(或设计)阶段和识别阶段。前者用一定数量的训练样本进行分类器的设计或训练,后者用所设计或训练的分类器对待识别的样本进行分类决策。

训练数据获取是对各已知目标进行测量,取得目标的训练数据。测试数据获取是获得未知种类目标的测量数据;测量数据的获得可采用目标的靶场动态测量、外场静态测量、微波暗室缩比模型等。特征提取模块从目标回波数据中提取出对分类识别有用的目标特征信息。特征空间压缩与变换模块对特征信息进行特征空间维数压缩与变换,得到具有高同类聚合性的训练样本进行分类器的设计。类间可分离性的特征。分类器设计模块根据已知类别目标分类模块完成对未知目标的分类判决。

3雷达目标识别技术回顾

雷达目标识别的研究始于"#世纪$#年代。早期雷达目标特征信号的研究工作主要是研究雷达

目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射截面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。近年来理论研究和实际应用比较成功的目标识别方法有以下4类。

3.1基于目标运动的回波起伏和调制谱特性的目标识别

这类方法大都基于目前广泛使用的雷达时域一维目标回波波形,抽取波形序列中包含的目标特征信息来实现目标分类。这类研究已获得一些成功应用。

(1)利用目标回波起伏特性的识别

空中目标对低分辨力雷达来讲可以看作点目标,其运动过程中,目标回波的幅度相位随目标对雷达的相对姿态的不同而变化,根据目标回波的幅度与相位的变化过程,判断其形状,对复信息数据进一步分析,可以判断目标的运动情况

(2)利用动态目标的调制谱特性的识别

动态目标如飞机的螺旋桨或喷气发动机旋转叶片、直升机的旋翼等目标结构的周期运动,产生对雷达回波的周期性调制。不同目标的周期性调制谱差异很大,因而可用于目标识别。详细分析了喷气发动机的调制现象,并建立了相应的数学模型,为利用JEM效应进行目标识别奠定了理论基础。

3.2基于极点分布的目标识别

目标的自然谐振频率又称为目标极点,“极点”和“散射中心”分别是在谐振区和光学区建立起来的基本概念。目标极点分布只决定于目标形状和固有特性,与雷达的观测方向(目标姿态)及雷达的极化方式无关,因而给雷达目标识别带来了很大方便。

除了直接求目标的极点外,由于目标的极点与目标的频率响应存在一一对应的关系,人们还研究了由目标的频域响应来识别目标的方法,典型方法有,从目标的频域响应来识别目标的方法;获取目标极点的频域Prony法;由于频域法的目标极点估算精度同样受到噪声和杂波的限制,具有改善作用的数据多重组合法被提出。

为避开需要实时地直接从含噪的目标散射数据中提取目标的极点,基于波形综合技术的目标识别方法被得到广泛重视。它将接收到的目标散射信号回波与综合出来的代表目标的特征波形进行数字卷积,再根据卷积输出的特征来判别目标。E-脉冲法、频域极大极小拟合匹配法等,都避开了直接提取目标极点,减小了运算量。

3.3基于高分辨力雷达成像的目标识别

借助高分辨力雷达对目标进行一维或二维距离成像,或采用合成孔径雷达或逆合成孔径雷达对目标成像得到二维雷达图像,可获取目标的形状结构信息。

由于一维距离像的获取相对简单,利用一维距离像进行目标识别的方法在;#年代以后被得到广泛重视和深入研究。基于一维距离像的目标识别方法,在舰船目标、坦克、车辆等地面目标、飞机目标识别中分别获得了较高的正确识别率。由于目标的一维距离像常会受目标之间、目标各散射点之间的相互干涉、合成等交叉项的影响,限制了识别率的提高,因而双距离像方法被提出并获得了较高的识别率。为改善目标识别的性能,可以将目标一维距离像与其它目标特征(如极化特征)相结合。

对于基于二维雷达图像的目标识别,可利用图象识别技术来进行,这是目标识别领域中最为直观的识别方法,但是如何获得高质量的目标二维图像是进行目标识别的首先要解决的问题。

3.4基于极化特征的目标识别

极化是描述电磁波的重要参量之一,它描述了电磁波的矢量特征。极化特征是与目标形状本质有密切联系的特征。任何目标对照射的电磁波都有特定的极化变换作用,其变换关系由目标的形状、尺寸、结构和取向所决定。测量出不同目标对各种极化波的变极化响应,能够形成一个特征空间,就可对目标进行识别。极化散射矩阵(复二维矩阵)完全表征了目标在特定姿态和辐射源频率下的极化散射特性。对目标几何形状与目标极化特性的关系的研究结果表明,光学区目标的极化散射矩阵反映了目标镜面曲率差等精密物理结构特性。

经过近20年的发展,已经出现了许多种利用极化信息进行雷达目标识别的方法,其主要方法分为:

1)根据极化散射矩阵识别目标根据极化散射矩阵来识别目标是利用极化信息识别目标的基本方法。具体分为:根据不同极化状态下目标截面积的对比来识别目标;根据从目标极化散射矩阵中导出的目标极化参数集(极化不变量)来识别目标;根据目标的最佳极化或极化叉来识别目标。

由于不同姿态角下目标极化特性的改变,限制了根据极化散射矩阵及其派生参数识别目标的有效性,使之只能应用于简单几何形体目标,或与其它识别方法结合使用。

2)利用目标形状的极化重构识别目标对低分辨力雷达,不能区分目标上各个散射中心的回波,只能从它们的综合信号中提取极化特征,因而只能从整体上对简单形体的目标加以粗略的识别。

对高分辨力雷达,目标回波可分解为目标上各个主要散射中心的回波分量。对复杂形状目标的极化重构,就是利用高分辨力雷达区分出各个散射中心的回波,分别提取其极化信息。在对各个散射中心分别作出形状判断(可以利用目标的极化散射矩阵,或利用目标的缪勒矩阵中各个元素同目标形状的关系)后,依据其相对位置关系,组合成目标的整体形状。最后同已知目标数据库相比较,得到识别结果。

3)与成像技术相结合的目标识别结合SAR和ISAR成像,在相应雷达上加装变极化装置,从而可以利用极化信息或将极化信息与已有的图象识别技术相结合,对每一像素进行更有效的识别。

3.5各种特征识别方法对雷达的要求

不同的识别方法对雷达系统有着不同的要求。基于目标运动的回波起伏和调制谱特性的目标识别方法对雷达没有特殊的要求,它是在现有雷达的基础上,利用目标运动所引起的回波起伏特性和动态目标的调制谱特性,并结合雷达所能获取的目标空间坐标及运动参数(如目标高度、速度、航迹等)来进行目标识别,因而主要用于低分辨雷达的目标识别。

基于极点分布的目标识别方法可分为时域和频域方法。时域方法提取目标极点要求雷达的发射信号带宽足够宽,以保证由目标的瞬态响应中能够获得正确的目标极点;频域方法则要求雷达能够发射多种频率的电磁波以获取目标的频率响应。

基于高分辨力雷达成像的目标识别方法要求雷达不仅具有高的距离分辨力(对于一维距离像方法)而且具有高的角分辨力(对于二维距离像方法),这就要求采用宽带高分辨、合成孔径或逆合成孔径雷达。

基于目标极化特征的目标识别方法要求雷达能够测量目标对不同极化方向的入射电磁波的极化散射特性、雷达具有变极化特性,这增加了雷达系统的复杂性,限制了其应用。

4用于雷达目标识别中的模式识别技术

进行雷达目标识别,必须依靠有效的目标特征分类技术(模式识别技术)。模式识别技术的发展为雷达目标识别的研究提供了有利的条件。统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法等在雷达目标识别中均有成功的应用。

4.1统计模式识别方法

统计模式识别是传统的模式识别方法,也是雷达目标识别中最常用到的特征分类方法,它是一种根据已知样本的统计特性来对未知类别样本进行分类的方法。其基本思想是用"维特征矢量表征目标模式,并通过对样本的学习,估计出特征矢量的概率分布密度函数,在某种最优准则下,利用特征矢量的统计知识来构造判别函数,从而在保证分类误差概率最小的条件下,对目标进行分类。

4.2模糊模式识别方法

在雷达目标识别中,由于噪声对目标背景的污染,目标信息转换过程中特征信息的随机交迭,目标信息随时间、距离、方位和姿态等因素的变化都可引起信息的模糊及目标特征的畸变,影响目标识别的效果。

在模糊集理论基础上发展起来的模糊模式识别技术,适于描述目标特征存在不同程度的不确定性。在目标识别过程中,模糊模式识别技术通过将数值变换提取的目标特征转换成由模糊集及隶属函数表征,再通过模糊关系和模糊推理等对目标的所属关系加以判定。

因此,模糊模式识别技术可以有效地完成一些传统模式识别中遇到的难题,近年来得到了广泛的研究。

4.3基于模型和基于知识的模式识别方法

基于模型的模式识别方法是用一种数学模型来表示从目标样本空间或特征空间中获取的、描述目标固有特性的各种关系准则。在建模过程中,除了利用目标的物理特性外,还运用了特征之间的符号关系准则,如特征随姿态角变化的规律等,因此,基于模型的的模式识别方法在一定程度上改善了传统的统计模式识别方法中信息利用率不高的缺点。目前也有不少人在致力于基于模型的目标识别方法的研究.基于知识的模式识别方法是结合人工智能技术的识别方法。它把人们在实践中逐步积累的知识和经验用简单的推理规则加以表述,并转换为计算机语言,利用这些规则可以获得与专家有同样识别效果的模式识别结果。

基于模型的方法常与基于知识的方法相结合,通过建立的目标模型库与相应的推理规则相结合完成目标的分类识别。

4.4神经网络模式识别方法

人工神经网络ANN和生物神经系统之间有着内在的联系,能够在有限领域内模拟人脑

加工、存储与搜索信息的机制来解决某些特定的问题。它具有自适应、自组织、自学习能力,可以处理一些环境信息十分复杂、背景知识不清楚的问题,通过对样本的学习建立起记忆,然后将未知模式判为其最为接近的记忆。由于其自身的上述特点,模式识别是神经网络技术应用得最为广泛的领域之一。

由于雷达目标特征信息在模式空间中的分布常常极为复杂,要获得其先验统计知识并用传统的模式识别方法来实现目标识别很困难。ANN可以通过学习获得目标特征信号在模式空间中的分布,因此在目标识别的预处理、特征提取、模式分类的整个过程中均有初步的应用。近%1年来,ANN用于雷达目标识别得到了广泛的重视。

总之,先进的模式识别方法对于提高、改善雷达自动目标识别系统的性能将起到至关重要的作用,对它的进一步研究将具有重要的意义。

雷达运动目标检测大作业

非均匀空时自适应处理 摘要 本文首先依次介绍了在非均匀环境下的STAP处理法,包括降维、降秩以及LSMI方法,接着重点分析了直接数据域(DDD)方法的原理及实现过程,最后针对直接数据域方法进行了仿真实验。 引言 机载雷达对运动目标检测时, 面临的主要问题是如何抑制强大的地面杂波和各种类型的干扰,空时自适应处理(STAP)是解决该问题的关键技术。STAP 技术通过对杂波或干扰训练样本分布特性的实时学习来来形成空域—时域二维自适应权值,实现对机载雷达杂波和干扰的有效抑制。 STAP技术在形成自适应权值时,需要计算杂波协方差矩阵R。实际系统的协方差矩阵是估计得到的,即先在待检测距离单元的临近单元测得K个二维数 据矢量样本V i(i=1,2…K),再计算R的估计值?=Σ i=1K V i V i H∕K,然后可得自 适应权值W=μR^-1S,其中μ为常数,S为空时导向矢量。临近训练样本的选择必须满足独立同分布(IID)条件。同时,为了使由杂波协方差矩阵估计引起的性能损失控制在3dB内,要求均匀训练样本数K至少要2倍于其系统自由度(DOF)。如果所选样本非均匀,则形成的权值无法有效对消待检测单元中所含有的杂波和干扰,从而大大降低对运动目标的检测性能。 在实际应用中, 机载雷达面临的杂波环境往往是非均匀的, 这对经典的S T A P 技术带来了极大的挑战。针对这一难题, 许多新的适用于非均匀杂波环境的S T A P 方法不断被提出。 1、解决非均匀样本的方法 1.1、降维方法 降维方法的最初目的是为了减少空时自适应处理时所需的巨大运算量, 但后来发现该类方法同时大大减少了对均匀训练样本数的需求, 对非均匀情况下杂波抑制起到了积极的作用。降维方法将每次自适应处理所需要抑制的杂波范围限制在某一个较小杂波子空间内, 根据RMB准则和Brennan定理, 自适应处理时所需要的均匀训练样本数由2 倍于整体系统自由度减至降维后2 倍于子空间系统自由度。降维程度越高, 对均匀训练样本的需求就越少。降维方法属固定结构方法, 无法充分利用杂波的统计特性。当辅助波束与杂波谱匹配很好时, 处理性能往往很好。反之, 则性能下降。 1.2、降秩方法 与固定结构降维方法相反, 降秩方法充分利用回波中杂波的分布特性, 每次处理选取完备杂波空间来形成自适应权值对消杂波分量, 可看作依赖回波数据的自适应降维方法。该类方法在形成权值过程中利用的信息中不含噪声分量, 所以避免了小样本情况下噪声发散带来的性能下降问题, 故减少了对均匀训练样本数的需求。同样, 该类方法在满足信杂噪比损失不超过 3 d B 条件时所需的训练样本数约为 2 倍的杂波子空间的维数。从处理器结构上来看, 降秩方法可

机械原理大作业

机械原理大作业 This model paper was revised by the Standardization Office on December 10, 2020

机械原理大作业三 课程名称:机械原理 设计题目:齿轮传动设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间: 1、设计题目 机构运动简图 机械传动系统原始参数

2、传动比的分配计算 电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =, min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数: 35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=* a h ,径向间 隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

数据库大作业设计题目分析

《数据库原理及技术》大作业大纲 类同卷,网上抄袭,大作业格式不正确一律0分处理 一、课程设计的目的和要求 (1)培养学生运用所学课程《数据库原理及技术》的理论知识和技能,深入理解《数据库原理及技术》课程相关的理论知识,学会分析实际问题的能力。 (2)培养学生掌握用《数据库原理及技术》的知识设计计算机应用课题的思想和方法。 (3)培养学生调查研究、查阅技术文献、资料、手册以及编写技术文献的能力。 (4)通过课程大作业,要求学生在教师的指导下,独立完成大作业要求的相关内容,包括: ①通过调查研究和运用Internet,收集和调查有关资料、最新技术信息。 ②基本掌握撰写小论文的基本步骤和写作方法。 ③根据课题的要求基本理解和掌握E-R图的设计方法和关系模式的转换。 ④根据课题的要求基本理解和掌握数据流图(DFD)和数据字典(DD)的设计方法。 ⑤创建数据库及各种数据库对象。 二、课程设计题目 要求: (1)任选下列一个题目,调查分析一个具体的或模拟的实例; (2)描述该实例的业务信息和管理工作的要求; (3)列出实体、联系; (4)指出实体和联系的属性; (5)画出E-R图; (6)将E-R图转换成关系模式,并注明主码和外码; (7)建立数据字典; (8)创建数据库; (9)根据题目的要求写查询、存储过程、触发器等。 题目: (1)学校图书借阅管理系统 功能要求: ●实现图书信息、类别、出版社等信息的管理; ●实现读者信息、借阅证信息的管理; ●实现图书的借阅、续借、归还管理; ●实现超期罚款管理、收款管理; ●创建触发器,分别实现借书和还书时自动更新图书信息的在册数量;

雷达大作业---振幅和差角度测量及仿真

雷达原理大作业 单脉冲自动测角的原理及应用 学院:电子工程学院 作者: 2016年5月21日

单脉冲自动测角的原理及应用 一.摘要 单脉冲测角法是属于振幅法测角中的等信号法中的一种,其测角精度高,抗干扰能力强,在现实中得到了广泛的应用。而其中对于接收支路要求不太严格的双平面振幅和差式单脉冲雷达,更是备受青睐。 本文首先讲述了单平面振幅和差式单脉冲雷达自动测角的原理,再简述了双平面振幅和差式单脉冲雷达自动测角的结构框图,接着简述了本文仿真所用的一些原理和公式推导,包括天线方向图函数及其导数的推导,最后做了基于高斯形天线方向图函数的单脉冲自动测角,基于辛克函数形天线方向图函数的单脉冲自动测角,和基于高斯形天线方向图函数的双平面单脉冲自动测角。源代码在附录里。 二.重要的符号说明 三.单平面振幅和差式单脉冲自动测角原理 单脉冲测角法是属于振幅法测角中的等信号法中的一种。在单平面内,两个相同的波束部分重叠,交叠方向即为等信号轴的方向。将这两个波束接收到的回波信号进行比较就可以在一定范围内,一定精度要求下测到目标的所在角度。因为两个波束同时接到回波,故单脉冲测角获得目标角误差信息的时间可以很短,理论上只要分析一个回波脉冲即可,所以称之为“单脉冲”。 因取出角误差的具体方式不同,单脉冲雷达种类很多,其中应用最广的是振幅和差式单脉冲雷达,其基本原理说明如下: 1.角误差信号 雷达天线在一个平面内有两个重叠的部分,如下图1所示: 图1.振幅和差式单脉冲雷达波束图

(a)两馈源形成的波束 (b)和波束 (c)差波束 振幅和差式单脉冲雷达取得角误差信号基本方法是将这两个波束同时收到的信号进行和差处理,分别得到和信号和差信号。其中差信号即为该角平面内角误差信号。 若目标处在天线轴方向(等信号轴),误差角0ε=,则两波束收到的回波信号振幅相同,差信号等于0。目标偏离等信号轴而有一个误差角ε时,差信号输出振幅与ε成正比而其符号则由偏离方向决定。 2.和差比较器 这里主要使用双T 插头,示意图如下图2(a )所示。它有四个端口:和端,差端和1, 2端。假定四个端都是匹配的,则从和端输出信号时,1,2端输出等幅同相的信号,差端无输出;从1,2端输入同相信号时,和端输出两信号之和,差端输出两信号之差。 图2.双T 接头和差比较器示意图 (a)双T 接头 (b) 和差比较器示意图 在发射信号时,从发射机来的信号加在和端,故1,2端输出等幅同相的信号,两波束在空间各点产生的场强同相相加,形成发射和波束的天线方向性函数为()F θ∑。 接收时,回波脉冲同时加到1,2端,此时在和端,输出两个回波信号同相相加之和,记为E ∑;在差端,输出两信号反相相加之和,记为E ?。 假设两个波束方向性函数完全相同,记为()F θ,两波束衰减倍数为k ,两波束相对天线轴线的偏角为δ,则对于θ方向的目标来说: 和信号振幅为:2 ()()()()()E kF F kF F kF θδθθδθθ∑∑∑∑=-++= 差信号振幅为:()()()()()()E kF F kF F kF F θδθθδθθθ?∑∑∑?=--+= 其中:()()()F F F θδθδθ∑=-++,()()()F F F θδθδθ?=--+。 实际情况下,θ是很小的,可以对()F δθ-和()F δθ+在δ附近做一阶泰勒展开:

哈工大机械原理大作业凸轮 - 黄建青

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 院系:能源学院 班级: 1302402 设计者:黄建青 学号: 1130240222 指导教师:焦映厚陈照波 设计时间: 2015年06月23日

凸轮机构设计说明书 1. 设计题目 设计直动从动件盘形凸轮机构,机构运动简图如图1,机构的原始参数如表1所示。 图1 机构运动简图 表1 凸轮机构原始参数

计算流程框图: 2. 凸轮推杆升程,回程运动方程及推杆位移、速度、加速度线图 2.1 确定凸轮机构推杆升程、回程运动方程 设定角速度为ω=1 rad/s (1) 升程:0°<φ<50° 由公式可得 )]cos(1[20 ?π Φh s -=

)sin( 20 1 ?π ωπΦΦh v = )cos(20 2 2 12?π ωπΦΦh a = (2) 远休止:50°<φ<150° 由公式可得 s = 45 v = 0 a = 0 (3) 回程:150°<φ<240° 由公式得: ()()22 0000200000002200000 0,2(1)(1)1,12(1)(1),2(1)s s s s s s s s s Φhn s h ΦΦΦΦΦΦn Φn ΦΦn h n s h ΦΦΦΦΦΦn Φn n ΦΦΦn hn s ΦΦΦΦΦn Φn ??????'?=---+<≤++?'-? ???''-? =----++ <≤++???'-??? ?'---?'=-++<≤++'-?? 201 00000010002001 000 00n (),(1)(1)n ,(1)(1)n (1),(1)s s s s s s s s Φh v ΦΦΦΦΦΦn Φn ΦΦn h v ΦΦΦΦn Φn n ΦΦΦn h v ΦΦΦΦΦn ΦΦn ω??ω??ω??'=- --+<≤++?'-? ?''-? =- ++<≤++?'-? ?'---'?=--++<≤++''-??

数据库原理大作业

2012级网络工程专业《数据库原理》大作业 一、作业要求: 1.按照《数据库大作业小组分配名单》,选择各自的题目,要求每小组各自独 立完成。(不少于20页) 2.按照大作业评分标准和报告格式,给出完整的数据库设计过程; 3.数据库中的数据表不得少于三张,否则认为设计失败; 4.对每张数据表输入不少于10条的样本数据用于测试,样本数据要有代表性; 5.写出相应的SQL脚本,数据库可选用SQL Server或MySQL等; 6.提交结果时应包括电子版的报告和源代码,报告中说明各小组成员的分工; 7.如果还能在设计的基础,将应用系统开发出来,将根据开发的结果给以5-10 分的加分; 8.大作业检查时间:期末考试前一星期 9.作业参看模板格式,每步都有要求,每小组最后交一份作业。 二、评分标准 1.需求分析(数据流图、数据字典):20分 2.数据库设计。 2.1概念结构设计(E-R模型):20分 2.2逻辑结构设计(关系模式、函数依赖,码等)20分 2.3物理结构设计10分 3.数据库实现(定义表格和索引等,录入数据)10分 4.数据库运行(数据库操作的SQL语句,包括查询、增加、删除、修改)20分 三、选题 题目一:零件交易中心管理系统 零件交易中心管理系统主要提供顾客和供应商之间完成零件交易的功能,其中包括供应商信息、顾客信息以及零件信息。供应商信息包括供应商号、供应商名、地址、电话、简介;顾客信息包括顾客号、顾客名、地址、电话;零件信息包括零件号、零件名、重量、颜色、简介等。此系统可以让供应商增加、

删除和修改所提供的零件产品,还可以让顾客增加、删除和修改所需求的零件。交易员可以利用顾客提出的需求信息和供应商提出的供应信息来提出交易的建议,由供应商和顾客进行确认后即完成交易。 题目二药店管理系统 主要功能: 员工录入:录入药店全部员工的基本资料,指定记录人、验收人及营业员。资料包括:员工编号、姓名、年龄、性别、学历、职称、职位、身份证号、联系电话等。 药品入库登记:完成药品各项参数的入库登记工作。参数包括:货号、品名、类型、规格、单位、生产厂家、批准文号、注册商标、进货日期、有效期、无效期、供货商、生产批号、记录人、数量、批发价、进价、零售价等。 药品出库登记:将库房药品出库到柜台或者调拨对象等,可对当天或一定时间段内的出库单进行查询并打印出库单,由库房记录人和柜台领货人在出库单上共同签字确认。 药品进价查询:对在一定时间段之内某一药品的进价及其相应的供货商进行查询,为订购该药品提供价格依据。 库存药品查询: 供货商管理:将已停止使用的或错误的供货商名称从数据库中删除;可录入、查询及修改供货商的基本资料。 药品销售录入:统计某一营业员当日销售金额、统计全店当日销售金额、收款对帐功能。 药品销售查询:可对当天或一定时间段内的销售记录,按照全部、货号或品名(单一药品)、营业员、药品类型、进行查询,并统计销售数量、营业额和利润及利润率。可对查询结果打印,并可按每种药品的销售金额或销售数量和销售进价从大到小进行排序。 药品入柜记录:可按照全部、货号、助记符、记录人分别查询在当天或一定时间段内的药品入柜记录。 柜台药品查询:可分别以全部柜存、货号、结款状态、品名(单一药品)、柜台

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮线图 本题目采用Matlab编程,写出凸轮每一段的运动方程,运用Matlab模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回 程的运动方程 输入凸轮基圆偏 距等基本参数 输出ds,dv,da图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

(完整版)雷达系统导论第3-4章作业答案

雷达系统导论作业 [1] 3.1沿圆轨道绕地球飞行的卫星高度为5000海里,速度为2.7海里/秒。(a )如果UHF (450MHz )雷达位于轨道平面内,当卫星 刚出现在地平线上时观察到的多普勒频移是多少(地球半径为3440海里,忽略大气折射和地面反射的影响)?(b)当卫星处于天顶时多普勒频移是多少? 解答:(a )当卫星刚出现在地平线上时 径向速度为 )(1.15000 344034407.2cos 节=+?=+?==h R R v v v r α (注:1节=1海里/小时,1海里=1.852公里) 故多普勒频移)(7.1)45.01.143.343.32)(Hz GHz f v v Hz f t r r d =??===((节)λ (b)当卫星处于天顶时径向速度为)(7.2节=r v 故多普勒频移)(17.4)45.07.243.343.3)(Hz GHz f v Hz f t r d =??==((节) [2] 3.2. 220MHz VHF 雷达的最大非模糊距离为180海里。(a )第一盲速(单位为节)是多少?(b) 重复习题(a ),但雷达工作在1250MHz 的L 波段。(c) 重复习题(a ),但雷达工作在9375MHz 的X 波段。(d)为了获得与(a )中的VHF 雷达一样的盲速,(c) 中X 波段雷达的非模糊距离(海里)为多少?(e)如果需要第一盲速为(a )中盲速的雷达,你愿意选择VHF 雷达还是X 波段雷达?请解释你的回答(有可能没有唯一解)。 解答:(a )Hz R c f c R T un p un p 450010852.11802103223 8 =????==?=, (节)5950450010 22010397.097.0)()(97.0)(68 1=????=??==p p f f c Hz f m kt v λ (b )Hz f p 4500=,(节)1047450010 125010397.0)()(97.068 1=????==Hz f m v p λ (c )Hz f p 4500=,(节)140450010937510397.0)()(97.06 8 1=????==Hz f m v p λ (d )海里)公里(8.1)(33.34500 21032228 ==??===?=p p un un p f c cT R c R T (e )如果需要第一盲速为(节)5950)()(97.01==Hz f m v p λ,从上面的计算可以 看出,随着雷达工作频率的升高(波长的减小),要求p f 升高,则最大非模糊距

机械原理大作业

机械原理大作业 二、题目(平面机构的力分析) 在图示的正弦机构中,已知l AB =100 mm,h1=120 mm,h2 =80 mm,W1 =10 rad/s(常数),滑块2和构件3的重量分别为G2 =40 N和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。试用解析法求机构在Φ1=60°、150°、220°位置时各运动副反力和需加于构件1上的平衡力偶M 。 b Array 二、受力分析图

三、算法 (1)运动分析 AB l l =1 滑块2 22112112/,/s m w l a s m w l v c c == 滑块3 21113113/cos ,sin s m l w v m l s ??== 212 113/sin s m w l a ?-= (2)确定惯性力 N w l g G a m F c 2 1122212)/(== N w l g G a m F 121133313sin )/(?-== (3)受力分析 i F F i F F x R D R x R C R 43434343,=-= j F j F F R R R 232323-==

j F i F j F i F F R x R y R x R R 2121121212--=+= j F F F y R x R R 414141+= 取移动副为首解副 ① 取构件3为分离体,并对C 点取矩 由0=∑y F 得 1323F F F r R -= 由0=∑x F 得 C R D R F F 4343= 由 ∑=0C M 得 2112343/cos h l F F R D R ?= ②取构件2为分离体 由0=∑x F 得 11212cos ?R x R F F = 由0 =∑y F 得 1123212sin ?F F F R y R -= ③取构件1为分离体,并对A 点取矩 由0=∑x F 得 x R x R F F 1241= 由0 =∑ y F 得 y R y R F F 1241= 由0=A M 得 1132cos ?l F M R b = 四、根据算法编写Matlab 程序如下: %--------------已知条件---------------------------------- G2=40; G3=100; g=9.8; fai=0; l1=0.1; w1=10; Fr=400; h2=0.8; %--------分布计算,也可将所有变量放在一个矩阵中求解------------------- for i=1:37 a2=l1*(w1^2); a3=-l1*(w1^2)*sin(fai); F12=(G2/g)*a2;

数据库大作业

华南理工大学数据库原理与设计大作业报告 专业:计算机科学与技术 班级: 2015春 学号: 20 学生姓名:陈亮 完成时间:

目录 目录 (2) 1、概述 (4) 2、需求分析 (6) 零售前台(POS)管理系统 (6) 后台管理系统 (7) 数据需求 (7) 3、数据库逻辑设计 (9) 概念结构设计 (9) 4、软件功能设计 (13) 逻辑结构设计 (13) 物理结构设计 (15) 完整性设计 (20) 安全性设计 (22) 5、界面设计 (24) 系统功能结构图 (24) 模块设计与实现(部分界面) (24) 6、结束语 (31)

7、参考文献 (33)

1、概述 超市管理信息系统是针对超级市场的销售而开发的。应用超市管理信息系统能够转变超市的工作方式,有效提高销售速度和服务水平,提高客户对超市的信任度和满意度,改善客户关系。运用超市管理信息系统,在销售商品时实行出口一次性付款,可以实现超市内部现代化管理,能够准确把握每一种商品的销售动态,防止商品断档或过量储备,商品开发方向、进货的适时化都可通过超市管理信息系统来完成。 超市管理信息系统将手工编制好的销售账目或根据原始超市销售记录直接在系统内制作超市销售信息,同时可对输入的超市销售信息进行修改、查询等操作。这种集约化的销售管理模式既便于对超市销售信息的收集、整理和加工,又便于操作员的需求信息在最短的时间内得到反馈,同时超市管理信息系统可自动分析各种商品销售变化规律,商品销售结构、居民消费变化等,从而为合理进货、经营、加工、库存、销售等提供科学的决策依据。 超市管理信息系统充分运用计算机管理信息技术,建立数据库,对超市的进销存过程进行详细分析,实现了对超市的进货、销售和库存的科学管理。

数字正交 雷达原理大作业

数字正交采样及实现 姓名:杨宁 学号:14020181051 专业:电子信息工程 学院:电子工程学院

一. 基本原理 带通信号: 以 采样,可得: 也就是说: (1)可直接由采样值交替得到信号的同相分量I (n )的偶数项和正交分量 Q (n )的奇数项,不过在符号上需要进行修正 (2)I、Q两路输出信号在时间上相差一个采样周期 。在信号处理中,要求得到的是同一时刻的I 和Q 之值,所以需要对其进行时域的插值或进行频域的滤波,二者是等效的。 ()()()()()000cos cos sin I Q x t a t t t x t t x t t ωφωω=+=-????041,2;B M 21s s s s s f f f f B t f M ?? =>= ?-? ? 其中为信号带宽,为整数,

二.实现方式 实现框图如图一。 图一数字正交采样系统实现框图 实现方法主要有3种,分别是:低通滤波法、Bessel插值法、多相滤波法。 2.1、低通滤波法 图二低通滤波法框图

将A/D采样放在混频之前,采用数字混频与低通滤波,提高了精度与稳定性。 以fs=4 f0/3=2 fs2=4 fs1 , f0=3 fs1 为例,采样后信号的频谱、数字混频后的信号频谱、输出信号的频谱分别如图三(a)、(b)、(c)。 图三(a) 图三(b) 图三(c) 这种做法的优点是:对双路信号同时作变换,所用的滤波器系数一这样两路信号通过低通滤波器时由于非理想滤波所引起的失真是一致的,对I、Q双路信号的幅度一致性和相位正交性没有影响,从而具有很好的负频谱对消功能,可以

数据库原理与应用-大作业

数据库大作业 课题名称数据库大作业 专业物联网 班级2班 学号13180211 姓名丁艺铭 教师任国芳 成绩 2015年12月20日

1. 需求分析 本系统的最终用户为学生,由于学生在校友通讯录的身份不同,因此根据我们日常生活中的经验,根据我们所做的其他询问和调查,得出用户的下列实际要求。 1.1 数据流图(DFD) 图1-1 1.2 数据字典(DD) 学校信息表(Sch_id primary key) 学校信息表

2. 概念结构设计 主要是对以上功能的整合,更清晰的将整个数据库的关系表示出来,总ER 图见2-1 2-1总图 3. 逻辑结构设计 关系模式((在Powerdesigner中由概念模型转化为物理数据模型,粘图))

4. 建表SQL语句 由物理数据模型生成SQL Server 2008数据库的建表语句。DELIMITER | CREATE TRIGGER ``.`` < [ BEFORE | AFTER ] > < [ INSERT | UPDATE | DELETE ] > ON [dbo] //dbo代表该表的所有者 FOR EACH ROW BEGIN --do something END | insert 触发器示例 create trigger tri_insert on student for insert as declare @student_id char(10) select @student_id=s.student_id from student s inner join inserted i on s.student_id=i.student_id if @student_id='0000000001' begin raiserror('不能插入1的学号!',16,8) rollback tran end go update触发器示例

机械原理大作业

机械原理大作业三 课程名称: 机械原理 级: 者: 号: 指导教师: 设计时间: 1.2机械传动系统原始参数 设计题目: 系: 齿轮传动设计 1、设计题 目 1.1机构运动简图 - 11 7/7777777^77 3 UtH TH7T 8 'T "r 9 7TTTT 10 12 - 77777" 13 ///// u 2

电动机转速n 745r/min ,输出转速n01 12r/mi n , n02 17r /mi n , n°323r/min,带传动的最大传动比i pmax 2.5 ,滑移齿轮传动的最大传动比 i vmax 4,定轴齿轮传动的最大传动比i d max 4。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实 现。设带传动的传动比为i pmax 2.5,滑移齿轮的传动比为9、心、「3,定轴齿轮传动的传动比为i f,则总传动比 i vi i vmax 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、 7、8 9和10为角度变位齿轮,其齿数: Z5 11,Z6 43,Z7 14,Z8 39,Z9 18,乙。35 ;它们的齿顶高系数0 1,径向间隙

系数c 0.25,分度圆压力角200,实际中心距a' 51mm。 根据定轴齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮11、12、13和14为角度变位齿轮,其齿数:Z11 z13 13,乙 2 z14 24。它们的齿顶高系数d 1,径向间隙系数c 0.25,分度圆压力角200,实际中心距 a' 46mm。圆锥齿轮15和16选择为标准齿轮令13,乙 6 24,齿顶高系数 h a 1,径向间隙系数c 0.20,分度圆压力角为200(等于啮合角’)。 4、滑移齿轮变速传动中每对齿轮几何尺寸及重合度的计算 4.1滑移齿轮5和齿轮6

数据库原理与应用大作业

《数据库原理与应用》综合设计任务书 前言 《数据库原理与应用》课程的重点知识模块包括:1)数据库设计、2)用SQL实现建库、建表、查询、更新、和创建视图、3)存储过程和触发器设计。针对这三个应用能力,用一个案例作为背景,布置三次大作业。 在校大学生都能理解“图书管理系统”的应用场合和业务流程。因此,以图书管理系统作为案例来布置作业,可以降低业务分析难度,让学生将主要精力放在知识消化与技术应用上。 本文档包括四个部分。第一部分描述系统的需求,第二部分提出E-R模型设计和关系模型设计的任务;第三部分提出在SQL Server中,用SQL语句来建库、建表、查询、更新数据、创建视图的任务;第四部分,根据应用需求、安全需求和数据完整性要求,提出设计存储过程和触发器的任务。 每个任务之前,都给出了完成任务所需要掌握的关键知识点,学生可以在对这些知识点进行复习的基础上完成任务,每个任务是一次大作业。 第一部分案例的需求描述 本部分描述“图书管理系统”的需求,学生通过阅读本部分内容,了解系统的功能要求、运行环境,对系统所需的数据有总体认识,作为三次作业的基础。 1.2 需求分析 1)功能需求

图1-1:功能需求示意图 教师信息管理:用于教师基本资料的增删改查。 图书信息管理:用于图书基本信息的增删改查,分类统计图书册数和价值。 借书登记:记录借书时间、所借图书、借书人、办理人。 还书登记:记录还书时间、所还图书、还书人、办理人。 催还:查询借阅逾期的借书信息,给借书人发电子邮件,给借书人的部门打电话。 2)运行环境要求 图1-2:运行环境拓扑图 系统采用C/S模式,有两台PC和一台服务器,联成一个局域网。PC上安装图书管理软件的客户端,服务器上安装DBMS,服务器也可由两台PC中的一台来代替。 第二部分作业1——E-R模型与关系模型设计 (满分8分)

雷达作业

通信工程专业技术讲座结课论文(题目:雷达技术的发展历程和发展展望) 姓名: 院系: 2014年6月16日

目录 一、综述 (1) 二、工作原理 (1) 三、雷达的类型 (3) 四、雷达系统与技术的发展历程 (4) 五、雷达系统与技术发展的特点和现状 (6) 六、雷达系统与技术发展的展望 (7)

一、综述 雷达(RADAR),是英文“Radio Detection and Ranging”(无线电侦测和定距)的缩写及音译。将电磁能量以定向方式发射至空间之中,借由接收空间内存在物体所反射之电波,可以计算出该物体之方向,高度及速度,并且可以探测物体的形状。以地面为目标的雷达可以用于探测地面的精确形状。 自从雷达诞生至今,在70 多年的发展历程中,随着科技的不断发展、需求的不断变化,出现了多种体制的新功能雷达,雷达的技术哇能、体积和重量、可靠性、维修性、抗恶劣环境的生存能力等也发生了天翻地覆的变化。尤其是近年来,科学技术在飞速发展,各种新技术,新材料已经越来越快的应用到雷达系统中。特别是近年来,雷达在航电系统综合化的过程中变化非常大,如雷达作为独立系统,起初失去了显示分系统,接着又失去了信号和数据处理分系统,现在仅剩下接收、发射和天线等主要分系统。同时雷达作为一种有源传感器,与激光、红外、紫光和声学等不同传感器信息融合,增强了探测阵能和环境适应性。可见雷达已与电子系统打破了明显界限,雷达系统作为独立设备有逐步消亡的趋势。因此,有必要仔细研究雷达发展的历史,分析雷达系统与技术发展的特点,总结雷达发展的普遍规律,展望雷达系统发展的方向。 二、工作原理 雷达天线把发射机提供的电磁波能量射向空间某一方向,在此方向上的物体反射碰到的电磁波。这些反射波载有该物体的信息并被雷达天线接收,送至雷达接收设备进行处理,提取人们所需要的有用信息并滤除无用的信息,由此获得目标至雷达的距离、距离变化率(径向速度)、方位、高度等信息。 雷达可分为连续波雷达和脉冲雷达两大类。单一频率连续波雷达是一种最为简单的雷达形式,容易获得运动目标与雷达之间的距离变化率(即径向速度)。它的主要缺点是:①无法直接测知目标距离,如欲测知目标距离,则必须调频,但用调频连续波测得的目标距离远不及脉冲雷达精确;②在多目标的环境中容易混淆目标;③大多数连续波雷达的接收天线和发射天线必须分开,并要求有一定的隔离度。

大数据库原理与设计大作业源代码

数据库原理与设计大作业源代码 (1) 用户登录界面 运行超市管理信息系统后,首先进入用户登录界面,用户输入用户名和密码后,系统进行验证,验证通过进入程序的主界面。 在进行系统登录过程中,登录模块将调用数据库里的用户信息表,并对用户名和密码进行验证,只有输入了正确的账号和密码后,系统登录才会成功。在登录模块中,对系统的尝试登录次数进行了限制,禁止用户无终止的进行系统登录尝试,在本系统中,当用户对系统的三次登录失败后,系统将自动机制登录,突出登录模块。并在输入了错误的或者是不存在的账户和密码时,系统会给出出错信息提示,指明登录过程中的错误输入或者错误操作,以便用户进行正确的登录。登录界面如图5-2所示。 图5-2 登录界面 主要实现代码如下: //登录

private void radBtnOk_Click(object sender, EventArgs e) { try { if (radTxtBoxUser.Text.Trim() == "") { this.radLbInfo.Text = "请输入您的用户名!"; } else if (radTxtBoxPsw.Text.Trim() == "") { this.radLbInfo.Text = "请输入您的密码!"; } else { commandUnit com = new commandUnit(); string str = @"select * from UserInfo where loginNo = '" + radTxtBoxUser.Text.ToString() + "'"; DataTable table = com.GetDataSet(str); if (table.Rows.Count <= 0) { this.radLbInfo.Text = "用户名不存在!"; radTxtBoxUser.Text = ""; radTxtBoxPsw.Text = ""; return; } str = @"select * from UserInfo where loginNo = '" + radTxtBoxUser.Text.ToString() + "' and passWord = '" + radTxtBoxPsw.Text.ToString() + "'"; DataTable tableUser = com.GetDataSet(str); if (tableUser.Rows.Count > 0) { _currentUser = radTxtBoxUser.Text; _currentPsw = radTxtBoxPsw.Text; IsLogin = true; this.Close(); } else { this.radLbInfo.Text = "密码错误!"; radTxtBoxPsw.Text = ""; } } } catch (System.Exception ex)

雷达系统大作业题目

雷达系统大作业 一汉译英 1.线性调频信号 2.二相编码信号 3.侦察和监视雷达 4.杂波抑制 5.恒虚警检测 6.合成孔径雷达 7.干涉合成孔径雷达 8.匹配滤波 9.脉冲压缩 10.多普勒滤波器组 二英译汉 1.RCS 2.DPCA 3.GMTI 4.GMTD 5.Discrete Fourier Transform 6. in-phase and quadrature components 7.PRF

8. Doppler frequency of ground return 9.Pulse compression 10. Detection probability and the false-alarm probability 三12选3 1 The velocity of the airborne radar is 100m/s, the beamwidth of the radar is 3 deg.(constant for different look direction), the wavelength of the transmitted signal is 0.03m, compute the clutter Doppler bandwidth of the main beam for the following look direction: (a) 0 deg(relative to the velocity direction);(b) 30 deg(relative to the velocity direction);(c) 60 deg(relative to the velocity direction); If the radar antenna is a phased-array antenna, and the broadside of the antenna is parallel to the velocity direction, then compute the clutter Doppler bandwidth of the main beam for the following look direction(Assume that the beamwidth of the phased-array at 0 deg is 3 deg ): (a) 0 deg(relative to the velocity direction);(b) 30 deg(relative to the velocity direction);(c) 60 deg(relative to the velocity direction). 2 The moon as a radar target may be describe as followings: average

哈工大机械原理大作业

连杆的运动的分析 一.连杆运动分析题目 图1-13 连杆机构简图 二.机构的结构分析及基本杆组划分 1.。结构分析与自由度计算 机构各构件都在同一平面内活动,活动构件数n=5, PL=7,分布在A、B、C、E、F。没有高副,则机构的自由度为 F=3n-2PL-PH=3*5-2*7-0=1 2.基本杆组划分 图1-13中1为原动件,先移除,之后按拆杆组法进行拆分,即可得到由杆3和滑块2组成的RPR II级杆组,杆4和滑块5组成的RRP II级杆组。机构分解图如下:

图二 图一 图三 三.各基本杆组的运动分析数学模型 图一为一级杆组, ? c o s l A B x B =, ? sin lAB y B = 图二为RPR II 杆组, C B C B j j B E j B E y y B x x A A B S l C E y x S l C E x x -=-==-+=-+=0000 )/a r c t a n (s i n )(c o s )(?? ? 由此可求得E 点坐标,进而求得F 点坐标。 图三为RRP II 级杆组, B i i E F i E F y H H A l E F A l E F y y l E F x x --==+=+=111)/a r c s i n (s i n c o s ??? 对其求一阶导数为速度,求二阶导数为加速度。

lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0; yC=-350; A0=xB-xC; B0=yB-yC; S=sqrt(A0.^2+B0.^2); zj=atan(B0/A0); xE=xB+(lCE-S)*cos(zj); yE=yB+(lCE-S)*sin(zj); a=0:0.0001:20/255; Xe=subs(xE,t,a); Ye=subs(yE,t,a); A1=H-H1-yB; zi=asin(A1/lEF); xF=xE+lEF*cos(zi); vF=diff(xF,t); aF=diff(xF,t,2); m=0:0.001:120/255; xF=subs(xF,t,m); vF=subs(vF,t,m); aF=subs(aF,t,m); plot(m,xF) title('位移随时间变化图像') xlabel('t(s)'),ylabel(' x') lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0;

相关文档