文档库 最新最全的文档下载
当前位置:文档库 › 振动理论练习题

振动理论练习题

振动理论练习题
振动理论练习题

第1章练习题

题1.1 已知一弹簧质量系统的振动规律为x(t)=1.0sinωt+0.6cosωt (cm), 式中,ω=10π (1/s)。(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。

题1.2 如题1.2图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。

题1.2图题1.3图

题1.3 一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题1.3图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。

题1.4 如题1.4图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。

题1.4图题1.5图

题1.5 如题1.5图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角α,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。

题1.6 利用等效质量与刚度的概念求解题1.6图示系统的固有频率。AB杆为刚性,本身质量不计。

题1.6图题1.7图

题1.7 两缸发动机的曲轴臂及飞轮如题1.7图所示,曲轴相当于在半径r 处有偏心质量m e ,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r ,求平衡配重所需质量。

题1.8 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由0.268mm 减少到0.14mm 。求此系统的相对阻尼系数ζ。

题1.9 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =1.8N ·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%?(3)衰减振动的周期是多少?与不安装缓冲器时的振动周期作比较。

题1.10 如题1.10图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。

题1.10图

题1.11图

题1.11 求题1.11图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。

题1.12 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题1.13 弹簧质量系统30o

光滑斜面降落,如题1.13图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少?

题1.13图

题1.14图

题1.14 无阻尼单自由度质量弹簧m-k 系统,受题1.14图所示力的作用, 记x s =F 0/k ,m k n /2

=ω,

求证,在t < t 0 内,有 )sin (1

)(0

t t t x t x n n n s ωωω-= 在t > t 0内, 有

)(cos ]sin )([sin 1

)(000

t t t t t t x t x n n n n s -+--=ωωωω。

题1.15 如题1.15图,为车辆行驶通过曲线路面模型,设道路曲面方程为:)2cos 1(x l

a y s π

-=,求: 1)车辆通过曲线路面时的振动;2)车辆通过曲线路面后的振动。

题1.15图

题1.16图

题1.16 如题1.16图,质量m 1,m 2被无质量弦牵引,求所示质量的微幅振动微分方程和固有频率,分别给各阶模态形状,设张力T 不变。

题1.17 求如题1.17图所示系统的固有频率,分别给出n =l ,n =2时的模态形状。

题1.17图

题1.18图

题1.18 求如题1.18图所示扭转系统在扭转刚度k 1=k 2,转动惯量J 1=2J 2时的固有频率和正则模态。 题1.19 在题1.18中,若k 1=0,02≠k 则成为2自由度退化系统,具有一个零固有频率和一个非零固有频率,求其正则模态。讨论此系统对应的移动位移运动的弹簧质量M -K 系统的形式。求证当使用φ=θ1-θ2为坐标时,系统可被看成单自由度系统。

题1.20 设n 自由度无阻尼系统自由运动方程为 0Kx x M =+

,设它的n 个固有频率ωi (i =1,2,…, n )互不相同,求证系统模态向量?i (i =1,2,…, n )对质量矩阵M 和刚度矩阵K 的正交性,即证明

?

??≠==j i j i m i j

T i 0M φφ,???≠==j i j i k i j T

i 0K φφ, i , j =1, 2, 3, … , n 。 题1.21 如题1.21图,为滑块+单摆系统,设x (t )= a sin ωt ,其中m k =ω。求: (1)单摆的最大摆角;(2)系统的固有频率。

题1.21图

题1.22图

题1.22 如题1.22图,其中2/3km c =,m 1=m 2=m ,m 1上受阶跃力F 1,求零初始条件下系统响应。 题1.23 如题1.23图,各质量上的激励力F 1=F 2=F 3=F sin ωt ,其中ω=1.25m k /,各阶模态阻尼比为ζ1=ζ2=ζ3=0.01,求各质量的稳态响应。

题1.23图

题1.24图

题1.24 如题1.24图所示简支梁,三等分处各有质量m 1=m 2=m ,各质量下有阻尼器,阻尼系数为C 1=C 2=300m k ,其中k 0=486EJ /l 3,EJ 为梁的抗弯刚度,l 为梁长度,设梁的质量不计。求: (1)各阶相对阻尼系数ζ1,ζ2;(2)质量m 1上受到一单位脉冲力δ(t )作用,m 1,m 2的运动规律。 题1.25 设一等直杆在左端自由,右端固定,求它的纵向振动的表达式。

题1.26 求如题1.26图所示的阶梯杆的纵向振动的特征方程,有ρ1=ρ2=ρ。提示:杆的连续条件是当x 1=l 1, x 2=0时,u 1=u 2,EA 1

11x u ??=EA 22

2x u

??。

题 1.26 图

题 1.27 图

题1.27 如题1.27图所示,长为l 的等直圆杆以等角速度ω转动。某瞬时左端突然固定,求杆扭转振动的响应。

题1.28 一根重的柔性钢索,长度为l ,单位长度的质量为ρ,上端悬挂,在平面内作自由振动,如题1.28图所示,试推导钢索横向运动微方程,并证明可分离成两个常微分方程。

题1.28 图

题 1.29 图

题1.29 如题1.29图所示,等截面悬臂梁的自由端有一弹性支承,其刚度系数为k ,求特征方程和主振型的正交性条件。

题1.30 一等截面梁,x =0端自由,x =l 端简支,若简支端有横向运动y l (t )=Y l sin ωt ,证明简支端与

自由端的振幅比为0cos sin sin l Y sh l l ch l l Y sh l l

ββββββ-=

-,其中EJ A ρωβ24

=。 题1.31 如题1.31图所示,一根矩形截面杆一端固定一端自由,其长度为l ,厚度为b ,横截面积A 按直线规律变化:A (x )=A 0(1+x /l ),其中A 0为自由端的截面积,试用里兹法运用模态截断的思路求杆纵向振动的第1,2阶固有频率。设

第1,2阶振形函数为:2211)(l x x -=φ , 33

21)(l

x x -=φ。

题1.32 随机过程X [t ]的样本函数为:)sin )sin )(2211φωφω+++=t a t a t x 21((,式中a 1,a 2,ω1,

ω2是常数,φ1,φ2为统计独立的在[0,2π]上均匀分布的随机变量,求自相关函数R xx (τ)。

题1.33 某平稳随机过程的自相关函数为:162cos 25)(4+=-τπττ

f e R xx ,求其均值μx ,方差2x ε,

功率谱密度函数S xx (f )和单边谱密度函数G xx (f )。

题1.34 已知某振动系统的输入为力,输出为位移,系统位移响应的y (t )的自功率谱为:

)(4)()(2

2022

220

∞<<-∞+-=

ωωω?ωωωa

S yy ,求响应y (t )的自相关函数和均方值。

题1.35 系统示意图如题1.22图,设F 1 (t )为均值为零的白噪声,其自功率谱密度函数为S FF (ω),求稳态情况下响应的自功率谱密度函数,互功率谱密度函数及各响应的均方值。 题1.36 如题1.36图,系统由主系统(m 1,k 1)和副系统(m 2,C 2,k 2)组成,设作用在m 1上的F 1(t )为零均值白噪声,试以响应y 1(t )的均方值最小为条件确定副系统的m 2,C 2,k 2。 题1.37 设线性系统随机运动方程为

)(t W KX X C X

=++ 其中: ??

????--=5.1119C ; C K 100=。

W (t )为平稳白噪声激励向量,有 E [W (t )]=0,E [W (t )W T (t +τ)]=I δ(t ),I 为单位矩阵,用实模态分析法求响应的相关函数矩阵R XX (t )。

题1.31图

题1.36图

振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt; 由物体的受力分析,N = 0(极限状态) 物体不跳离平台的条件为:; 既有, , 由题意可知Hz,得到,mm。 1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解: 设该简谐振动的方程为;二式平方和为 将数据代入上式: ; 联立求解得 A=10.69cm;1/s;T=s 当时,取最大,即:

得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。 1-3 一个机器内某零件的振动规律为 ,x的单位是cm,1/s 。这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: 振幅A=0.583 最大速度 最大加速度 1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。 解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5t+) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan) 虚部:sin(5t+ arctan) 1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x (t)可表示为 , 由式得

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 第一章 1.2 afG — sin0) ;殳上运动的质点的微 afl - COS0) 分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解: 设s为质点沿摆线运动时的路程,取0=0时,s=0 H ( x = a(0-sine) * ly = —a(l — COS0) ds - J (dx)2 + (dy)2 二 J((i9 — COS0 亠de)2+(sirL9 de)2 = 2asin| 2a sin舟dO = 4 a (L co马 写出约束在铅直平面内的光滑摆线

ee A s=2acos^59 + 2asin?9 = acos| 9^ + 2a sin? 9 x轴的夹角,取逆时针为正,tan (p即切线斜率设(P为质点所在摆线位置处切线方向 与 dy cos 0 -1 tan

振动理论-考题

《振动力学》——习题 单自由度系统的自由振动 2-1 如图2-1 所示,重物 W悬挂在刚度为k的弹簧上并处于静止平衡位置,另一重物2W 1 从高度为h处自由下落到 W上且无弹跳。试求2W下降的最大距离和两物体碰撞后 1 的运动规律。 图2-1 图2-2 2-2 一均质等直杆,长为l,重量为w,用两根长h的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 2-3 一半圆薄壁筒,平均半径为R, 置于粗糙平面上做微幅摆动,如图2-3所示。试求其摆动的固有频率。 图2-3 图2-4 2-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅垂平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。 2-5 试求图2-5所示系统中均质刚性杆AB在A点的等效质量。已知杆的质量为m,A 端弹簧的刚度为k。并问铰链支座C放在何处时使系统的固有频率最高?

图2-5 图2-6 2-6 在图2-6所示的系统中,四个弹簧均未受力。已知m =50kg ,19800N m k =, 234900N m k k ==,419600N m k =。试问: (1)若将支撑缓慢撤去,质量块将下落多少距离? (2)若将支撑突然撤去,质量块又将下落多少距离? 2-7 图2-7所示系统,质量为m 2的均质圆盘在水平面上作无滑动的滚动,鼓轮绕轴的 转动惯量为I ,忽略绳子的弹性、质量及各轴承间的摩擦力。试求此系统的固有频 率。 图2-7 2-8 如图2-8所示的系统中,钢杆质量不计,建立系统的运动微分方程,并求临界阻尼 系数及阻尼固有频率。 图2-8 图2-9 2-9 图2-9所示的系统中,m =1kg ,k =224N/m ,c =48N.s/m ,l 1=l =0.49m ,l 2=l /2,l 3=l /4,不计钢杆质量。试求系统的无阻尼固有频率n ω及阻尼ζ。 单自由度系统的强迫振动 3-1 如图3-1所示弹簧质量系统中,两个弹簧的连接处有一激振力0()sin P t P t ω=。试

汽车振动练习题

判断题 1、系统作与激振力同频率的简谐振动,振幅决定于激振力的幅值、频率以及系统本身的物理特性。 A.对 2、当初始条件为零,即==0时,系统不会有自由振动项。 A.错 3、隔振系统的阻尼愈大,则隔振效果愈好。 A.对 4、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。B.错 5、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。对 6、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。错 7、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。对 8、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。对 9、无阻尼振动的固有频率只与质量和刚度有关,是系统的固有特性,与外界初始激励(初始条件)无关。对 10、对数衰减系数可以用来求阻尼比。() A.对 11、单自由度系统在简谐激励力作用下,系统将产生一个与激励力相同频率的简谐振动,但滞后一个相角。 A.对 12、线性系统内各个激励产生的响应是互不影响的。 A.对 13、两个同频率的简谐振动在同方向的合成运动是该频率的简谐振动。 A.对 14、简谐振动的加速度,其大小与位移呈正比,而方向与位移相反,始终指向平衡位置。 A.对 15、所有表示周期振动的周期函数都可以展开成Fourier级数的形式。 B.错 16、广义坐标必须能完整地描述系统的运动。 A.对 17、在欠阻尼和过阻尼的情况下,运动都将衰减为零。()对 18、对于无阻尼系统,速度超前位移90度。() A.对 19、瑞利法的基础是能量守恒定律。() A.对 20、有阻尼系统自由振动的频率有可能是零。() A.对 21、有阻尼系统自由振动的频率有时大于无阻尼系统的固定频率。() A.对 22、能量守恒定律可用于推导有阻尼系统和无阻尼系统的运动微分方程。() A.对 23、当质量块在垂直方向振动时,推导运动微分微分方程时都可以不计重力。() A.对 24、对于单自由度系统而言,无论质量是在水平面还是在斜面上运动,运动微分方程都是相同的。 A.对 25、在空气中振动的系统可以看作是一个阻尼系统。() A.对 26无阻尼系统的振幅不随时间变化。() A.对 27、离散系统和集中参数系统是相同的。() A.对 28、广义坐标不一定是笛卡尔坐标。() A.对 29、几个不同位置质量的等效质量可以用动能等效得到。() A.对 30、简谐运动是周期运动。() A.对

振动理论课后答案

精心整理 1-1???一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt????; ???????? 既有 , ,得到,mm 有一作简谐振动的物体,它通过距离平衡位置为cm 解: 设该简谐振动的方程为; ; A=10.69cm;1/s;T=s 当时,取最大,即: 得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3?一个机器内某零件的振动规律为,x的单位是cm,1/s?。 这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: ????????振幅A=0.583 ??????最大速度??? 已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式, 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:?实部:cos(5t+?arctan) ????????????????????????????????????虚部:sin(5t+?arctan)

1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x?(t)可表示为 ?, 由式得??????????????????????????????????????????????????????????n=1,2,3…… 1-7 , ,???? ?????; ?????P(t)平均值为0

振动理论课件第二章单自由度习题6.26

习 题 2.1 求题图2.1所示系统的无阻尼、有阻尼固有频率及周期 题图:2.1 2.2图示为车辆在道路上行驶时振动分析的简化模型,质量块m 表示车辆车体。由于地面不平顺,车辆行驶时,引起车辆竖向振动。道路不平顺可用路程s 的函数()y s 描述,当车辆 以速度v 匀速运动时,有s vt =、道路不平顺可转化为时间的函数()y vt 。试用绝对或 相对坐标描述车体的位移,建立振动微分方程。 题图2.2 2.3已知:弹簧质量系统,质量块为m ,弹簧刚度为k ,已知,()00x x =,()00x x =,不考虑弹簧的质量,试求三种表达式表达的响应。 2.4假设弹簧长度为l ,单位长度质量为ρ,建立考虑弹簧质量的振动微分方程,求出固有频率并与不考虑弹簧质量时比较。(提示:可假设弹簧纵向位移函数,函数左端为零、右端 与质量块同,用能量法建立方程) ) s i t e ω

题图2.3 2.5 有阻尼的弹簧质量系统,已知m 196kg =,k=19600N/m ,m s N c /2940?=,作用在质量块上的激振力为P(t)=160sin(19t)N ,试求考虑阻尼和忽略阻尼的两种情况中,系统的振幅放大因子及位移。 2.6 有实验测得一个系统有阻尼时固有频率为d ω,在简谐激振力作用下出现最大位移值的激励频率为m ω,求系统的无阻尼固有频率n ω,相对阻尼系数ξ及对数衰减率δ。 2.7 已知系统的弹簧刚度为k=800N/m ,作自由振动时的阻尼振动周期为 1.8s ,相邻两振幅的比值为 i i 1 4.2 1 A A += ,若质量块受激振力P(t)=360cos(3t)的作用,求系统的稳态响应。 2.8 一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率为16rad /s ω=时,系统发生共振,给质量块增加1kg 的质量后重新试验,测得共振频率为2 5.86rad /s ω=,试求系统原来的质量及弹簧刚度。 2.9 如题图 2.4所示,作用在质量块上的激振力为0P(t)=P sin t ω,弹簧支承端有运动 t a x s ωcos =,写出系统的运动微分方程,并求稳态振动。 题图2.4 题图2.5 k m x 0sin t ω)

振动理论及应用期末复习题题

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2112 1 y m T = m 2动能:2222222 22222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 32333)2 1(21))(21(2121y m R y R m J T ===ω 系统势能: 221)2 1 (21)21(y k y g m gy m V ++-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =++-++= +2212321)2 1 (2121)2131(21 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2212 1 x m T =

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 丄、八 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体, 甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 旋转机械分类: I类:为固定的小机器或固定在整机上的小电机,功率小于15KW U类:为没有专用基础的中型机器,功率为15~75KW刚性安装在专用基础上功率小于300KW的机器。 川类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 W类:为轻型结构基础上的大型旋转机械,如透平发电机组。 机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采 取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1 转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2 旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2 旋转机械振动模糊诊断法的实现 隶属函数的确定

振动理论习题答案汇总

《振动力学》——习题 第二章 单自由度系统的自由振动 2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。试求2W 下降的最大距离和两物体碰撞后的运动规律。 解: 2 22221v g W h W = ,gh v 22= 动量守恒: 122 122v g W W v g W +=,gh W W W v 221212+= 平衡位置: 11kx W =,k W x 1 1= 1221kx W W =+,k W W x 2 112+= 故: k W x x x 2 1120= -= ()2 121W W kg g W W k n +=+= ω 故: t v t x t x t x x n n n n n n ωωωωωωsin cos sin cos 12 000+ -=+-= x x 0 x 1 x 12 平衡位置

2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2a θ=h α 2F =mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ 其中 1 2c o s s i n ≈≈θ αα h l ga p h a mg ml n 2 22 22304121==?+θθ g h a l ga h l p T n 3π23π2π22 2= == 2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。

振动理论练习题

振动理论练习题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第1章练习题 题已知一弹簧质量系统的振动规律为x(t)=?t+?t (cm), 式中,?=10? (1/s)。 (1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题如题图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题图题图 题一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题如题图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题图题图 题如题图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角?,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题利用等效质量与刚度的概念求解题图示系统的固有频率。AB杆为刚性,本身质量不计。 题图题图 题两缸发动机的曲轴臂及飞轮如题图所示,曲轴相当于在半径r处有偏心质量m e,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r,求平衡配重所需质量。

题 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由减少到。求此系统的相对阻尼系数?。 题 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%(3)衰减振动的周期是多少与不安装缓冲器时的振动周期作比较。 题 如题图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题图 题图 题 求题图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题 弹簧质量系统30o 光滑斜面降落,如题图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少 题图 题图 题 无阻尼单自由度质量弹簧m-k 系统,受题图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1)(000 t t t t t t x t x n n n n s -+--=ωωωω。 题 如题图,为车辆行驶通过曲线路面模型,设道路曲面方程为:)2cos 1(x l a y s π -=,求: 1)车辆通过曲线路面时的振动;2)车辆通过曲线路面后的振动。 题图 题图

振动理论练习题.doc

第1章练习题 题1.1 已知一弹簧质量系统的振动规律为x(t)=1.0sinωt+0.6cosωt (cm), 式中,ω=10π (1/s)。(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题1.2 如题1.2图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题1.2图题1.3图 题1.3 一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题1.3图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题1.4 如题1.4图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题1.4图题1.5图 题1.5 如题1.5图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角α,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题1.6 利用等效质量与刚度的概念求解题1.6图示系统的固有频率。AB杆为刚性,本身质量不计。 题1.6图题1.7图

题1.7 两缸发动机的曲轴臂及飞轮如题1.7图所示,曲轴相当于在半径r 处有偏心质量m e ,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r ,求平衡配重所需质量。 题1.8 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由0.268mm 减少到0.14mm 。求此系统的相对阻尼系数ζ。 题1.9 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =1.8N ·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%?(3)衰减振动的周期是多少?与不安装缓冲器时的振动周期作比较。 题1.10 如题1.10图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题1.10图 题1.11图 题1.11 求题1.11图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题1.12 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题1.13 弹簧质量系统30o 光滑斜面降落,如题1.13图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少? 题1.13图 题1.14图 题1.14 无阻尼单自由度质量弹簧m-k 系统,受题1.14图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1 )(000 t t t t t t x t x n n n n s -+--=ωωωω。

汽车理论习题集(附答案)分解

汽车理论习题集 一、填空题 1. 汽车动力性评价指标是: 汽车的最高时速 ﹑ 汽车的加速时间 和 汽车的最大爬坡速度 。 2. 传动系功率损失可分为 机械损失 和 液力损失 两大类。 3. 汽车的行驶阻力主要有 滚动阻力 、 空气阻力 、 坡度阻力 和 加速阻力 _。 4. 汽车的空气阻力分为 压力阻力 和 摩擦阻力 两种。 5. 汽车所受的压力阻力分为 形状阻力 ﹑ 干扰阻力 ﹑ 内循环阻力 和 诱导阻力 。 6. 轿车以较高速度匀速行驶时,其行驶阻力主要是由_ 空气阻力 _引起,而_ 滚动阻力 相对来说较小。 7. 常用 原地起步加速时间 加速时间和 超车加速时间 加速时间来表明汽车的加速能力。 8. 车轮半径可分为 自由半径 、 静力半径 和 滚动半径 。 9. 汽车的最大爬坡度是指 I 档的最大爬坡度。 10.汽车的行驶方程式是_ j i w f t F F F F F +++= 。 11.汽车旋转质量换算系数δ主要与 飞轮的转动惯量 、__ 车轮的转动惯量 以及传动系统的转动比有关。 12.汽车的质量分为平移质量和 旋转 质量两部分。 13.汽车重力沿坡道的分力成为 汽车坡度阻力 _。 14.汽车轮静止时,车轮中心至轮胎与道路接触面之间的距离称为 静力半径 。 15.车轮处于无载时的半径称为 自由半径 。 16.汽车加速行驶时,需要克服本身质量加速运动的惯性力,该力称为 加速阻力 。 17.坡度阻力与滚动阻力均与道路有关,故把两种阻力和在一起称为 道路阻力 。 18.地面对轮胎切向反作用力的极限值称为 附着力 。 19.发动机功率克服常见阻力功率后的剩余功率称为 汽车的后备功率 。 20.汽车后备功率越大,汽车的动力性越 好 。 21.汽车在水平道路上等速行驶时须克服来自地面的__ 滚动_阻力和来自空气的_ 空气 _阻力。

机械振动理论基础及其应用(张).

机车传动轴振动分析与仿真优化Vibration Analysis of Commercial Vehicle Driveline 摘要:机车传动轴的振动及噪声直接影响了整车传动的平稳性与乘坐的舒适性,甚至影响到整车的可靠性。作为商用车制造厂,必须对传动轴的振动情况进行研究并对传动轴系进行合理的布置与设计,从根本上控制产生振动与噪声的因素。为了尽快解决某车型传动系振动带来的汽车传动轴中间支承横梁开裂的问题,本文应用了国内外的一些研究成果,从理论和试验两方面分析了某重型机车传动系振动的原因和机理,提出解决措施,并对传动系进行了优化设计。同时,本文还从系统论的观点出发,对传动系振动问题寻求最优解决方案。 关键词:传动轴系振动分析仿真优化 Abstract:The NVH of commercial-vehicle driveline directly affects easiness andsafety of the whole vehicle.In order to reduce the vibration and noise,it isnecessary for the vehicle manufacture to research the NVH of driveline and tocarry out rational layout and design to the driveline which is the fundamentalways of all.In this paper,some research results of the domestic and foreign havebeen applied to analyze the vibration of driveline theoretically andexperimentally.Furthermore,the vehicle chassis intermediate mounting crossmember abruption problem due to the vibration of driveline has been resolvedby optimizing the driveline layout.Based on system theory,this thesis givesout the optimal solution to the driveline vibration. Keywords: Vehicle Drive line;Vibration Analysis;Optimization 第一章引言 1.1课题背景和实际意义 机车是一个复杂的多自由度“质量—刚度—阻尼”振动系统,是由多个具有固有振动特性的子系统组成,如车身的垂直振动、纵向角振动和侧倾振动、发动机曲轴

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体,甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 ●旋转机械分类: Ⅰ类:为固定的小机器或固定在整机上的小电机,功率小于15KW。 Ⅱ类:为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。 Ⅲ类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 Ⅳ类:为轻型结构基础上的大型旋转机械,如透平发电机组。 ●机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2旋转机械振动模糊诊断法的实现 隶属函数的确定

机械振动理论及工程应用

机械振动学学习报告 摘要:简述了机械振动学的发展历程,振动利用中的若干新工艺理论与技术,振动机械及其相关技术的应用与发展,介绍了振动在人类生活工作中起到了非常重要的作用。通过对具体实例——单电机振动给料机的计算分析,得出机械振动对机器工作性能的影响。并介绍了单自由度、多自由度的线性振动系统振动的基本理论和隔振的基本原理。关键词:机械振动;振动给料机;线性振动系统 Abstract:This paper describes the development course of study of mechanical vibration and the utilization of some new technology theory and technology. The vibration has played a very important role in human life and work. By analyzing the practical example-single motor , vibrating feeder calculation and analysis of mechanical vibration machine has influence on the performance. And introduced the single-degree-of-freedom, multi-freedom system vibration of the linear vibration of the basic theory and the basic principle of vibration isolation. Keywords:Mechanical vibration; Vibrates the feeding machine; Linear vibration system 第一章绪论 1.1振动振动学的发展 振动振动学科是20世纪后半期逐渐形成和发展起来的一门新学科。目前正处在迅速发展过程中,由于该学科所涉及的有关技术与工业生产及人类生活联系十分密切,它能为社会创造重大的经济效益和社会效益,能为人类生活提供极大的方便和良好的服务,目前已成为人类生产活动与生活过程中一种不可缺少的手段与必要的机制。国内以闻邦椿院士为首的科研团队一直以极大的精力从事这一领域的研究,在振动利用工程这一学科的多个领域取得了一系列的研究成果,促进了该学科的形成与发展。自然界和人类社会中的某一个量随时间或大或小的变化即称为振动。振动是物质世界运动的一种基本形式,物质世界中的每一个物体及其中的每一个分子都始终处于振动之中。毫无例外,人类自身的每一器官也每时每刻都处在振动之中,例如,心脏的搏动、血液的循环、肺部的张缩呼吸、脑细胞的思维以及耳膜的振动和声带的振动等,前面所列举的这些振

推土机理论练习题(附答案)

推土机操作理论练习题(一) 一、判断题 1、推土机离合器摩擦片有油污打滑时要进行清洗,最好在工作后进行清洗。 (√) 2、推土机向深沟悬崖边缘推土时,推刀可以推出边缘。 (×) 3、推土机转向离合器操纵杆自由行程过小会使转向失灵。 (×) 4、自行式铲运机实习驾驶员如有违反交通规则或发生事故,监督员没有责任。(×) 5、铲运机转弯时,禁止把钢索收到底。 (√) 6、摩擦片翘曲会造成离合器有拖带现象。 (√) 7、推土机在陡坡上纵向行驶时可以拐死弯。 (×) 8、推土机、铲运机在深沟基坑作业时,其垂直边坡深度超过2m时要放出安全坡度。(√) 9、发动机进气行程在活塞到达上止点前一定角度,进气门提前开启。 (√) 10、发动机气缸盖衬垫损坏,使压缩比缩小。 (√) 11、发动机排气行程在活塞到达下止点前一定角度,排气门提前开启。 (√) 12、推土机在Ⅲ-Ⅳ级土壤地带作业时应进行爆破或用松土器疏松。 (×)

13、发动机水管中漏入空气会形成气塞,则发动机出水温度会过低。 (×) 14、发动机排气冒黑烟,表示发动机燃烧室内进入机油。 (×) 15、发动机排气冒蓝烟,表示发动机燃烧室内进入机油。 (√) 16、液压推土操纵杆的浮动位置,主要是为了便利操作。 (×) 17、发动机气缸垫具有一定的弹性,以补偿接合面的不平度,保证密封。 (√) 18、推土机推土刀架可调节成斜铲,主要用于将土壤推向一侧的工况。 (√) 19、推土机推土板操纵杆在浮动位置时,推土板按地面条件不能自由地上升或下降。(×) 20、胶带传动平稳性好,准确可靠,传动比固定不变。 (×) 21、在运距较近的半挖半填地区尽量采用下坡推土。 (√) 22、推土、铲运机不工作时发动机不能在较长时间内进行怠速运转。 (√) 23、推土机液压操纵系统推土板操纵杆有提升、下降、停止、浮动四个位置。(√) 24、推土机进行前后退换档时,应踏下减速踏板待减速后,再进行换档。 (√) 25、在安装带轮时,主、从动轮的轮槽可以不在同一平面内。 (×) 26、液压油的粘度随温度升高而提高。 (×) 27、推土、铲运机的制动器作用是使推土、铲运机停车。

振动理论课后答案

1-1 一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz 的简谐振动 时,要使物体不跳离平台,对台面的振幅应有何限制 ? 解:物体与桌面保持相同的运动,知桌面的运动为 x = Asm OJ / 兄=一卫少'sin 宓 x =A sin10 n 「二 ⑴宀」■'; 由物体的受力分析,N = 0 (极限状态) 物体不跳离平台的条件为: 既有 r ? A<- g - = 9.93mm 5 由题意可知「 : Hz ,得到丁 -匚1匚,」」三].扛mm 。 1-2有一作简谐振动的物体,它通过距离平衡位置为5 cm 及- 'cm 时的速度分别为九二20 cm/s 及一 :cm/s ,求其振动周期、振幅和最大速度。 解: 设该简谐振动的方程为 1 ' - ; I ‘八…:?… \二式平方和为 将数据代入上式: ,存十芒『貝二決(与 】 ■- . 联立求解得 当兀二〕时,'■:取最大,即 : A =10.69cm

1-3 一个机器内某零件的振动规律为 「「二:f 一门仁,x 的单位是cm , i 一 1 :八1/s 。这个振动是否为简谐 振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的 关系。 解: x - 0.5 sin 迥亘 + 0.3cos =0 5B3[cas 30.95°Ein 砒+sin 3C? = 0.5B3sin(?x+30.95ft ) 振幅 A=0.583 = 0 583^ sin (^ + 120.95&) ^ = 0 583^ 血(血 +120 95°) 最大速度 」:--:-',L 最大加速度? : 1-4某仪器的振动规律为讥=—匚化-w 二以"。此振动是否为简谐振动? 试用x- t 坐标画出运动图。 解:因为3 1= 3 32=3 3,31工32.又因为 T 仁2 n / 3 丁2=2 n /3 3,所以,合成运动为 周期为T=2 n /3 3的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为 有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。 22.63m/s 。

振动理论-第二章-习题解答

第二章习题 2—1 一重块100W N =,支承在平台上,如题2-1图所示。重块下联结两个弹簧,其刚 度均为20/k N cm =。在图示位置时,每个弹簧已有初压力010F N =。设将平台突然撤去,则重块下落多少距离? k k 题2—1图 解答:由题可知:弹簧在初始时的形变0010 0.520 F L cm cm k = == 设重块将下落h m ,则: 22 12.[()]W h k h L L =+- 于是: 4h cm = 2-3.求题2-3图所示的轴系扭转振动的固有频率。轴的直径为d ,剪切弹性摸量为 G , 两端固定。圆盘的转动惯量为J,固定于轴上,至轴两端的距离分别为12l l 和。 解: 以圆轴的轴线为固定轴,建立系统的振动微分方程 惯性力矩: J θ&&

恢复力矩: 1 2 p p GI GI l l + 由动静法得 120p p GI GI J l l θθ??++= ??? && 因此 2-4 一均质等直杆AB ,重为W ,用两相 同尺寸的铅垂直线悬挂如题2-4图所示。 线长为l , 两线相距为2a 。试推导AB 杆绕通 过重心的铅垂轴作微摆动的振动微分方程,并求出 其固有频率。 A B ()12212 4 32 2p p GI l l Jl l d I f f ωπωπ += == = 且 由以上各式得

解:AB 杆绕重心摆动,则: ( )2 22 2 cos 20 : 2 12330 =: 2J a Wa F T T l l J Fa Wa J l m m J b b Wa mlb a b f θ θθ ?θθ θθθωωπ=== +=+===+=∴== g g g g g g g g g g 惯性力矩: 恢复力矩: 2Fa 其中 : 则 : 即 : 又有则 : 固有频率 2-5 有一简支梁,抗弯刚度EI=2E10 N ·c ㎡,跨度为L=4m ,用题图(a),(b)的两种方式在梁跨中连接一螺旋弹簧和重块。弹簧刚度K=5kN/cm ,重块质量W=4kN,求两种弹簧的固有频率。 (a) (b) 解:根据材料力学理论可知简支梁中点的刚度

燕山大学振动理论习题答案

第二章 单自由度系统的自由振动 2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。试求2W 下降的最大距离和两物体碰撞后的运动规律。 解: 2 22221v g W h W = ,gh v 22= 动量守恒: 122 122v g W W v g W +=,gh W W W v 221212+= 平衡位置: 11kx W =,k W x 1 1= 1221kx W W =+,k W W x 2 112+= 故: k W x x x 2 1120= -= ()2 121W W kg g W W k n +=+= ω 故: t v t x t x t x x n n n n n n ωωωωωωsin cos sin cos 12 000+ -=+-= x x 0 x 1 x 12 平衡位置

2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2a θ=h α 2F =mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ 其中 1 2c o s s i n ≈≈θ αα h l ga p h a mg ml n 2 22 22304121==?+θθ g h a l ga h l p T n 3π23π2π22 2= == 2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。

相关文档