文档库 最新最全的文档下载
当前位置:文档库 › 高等数学复习资料大全

高等数学复习资料大全

高等数学复习资料大全
高等数学复习资料大全

《高等数学复习》教程

第一讲 函数、连续与极限

一、理论要求 1.函数概念与性质 函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限

极限存在性与左右极限之间的关系 夹逼定理和单调有界定理

会用等价无穷小和罗必达法则求极限 3.连续

函数连续(左、右连续)与间断

理解并会应用闭区间上连续函数的性质(最值、有界、介值)

二、题型与解法 A.极限的求法

(1)用定义求

(2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法

(5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法

(7)洛必达法则与Taylor 级数法

(8)其他(微积分性质,数列与级数的性质) 1.61

2arctan lim )21ln(arctan lim

3030-=-=+->->-x

x x x x x x x (等价小量与洛必达) 2.已知2

030)

(6lim 0)(6sin lim

x x f x x xf x x x +=+>->-,求

解:2

0303'

)(6cos 6lim )(6sin lim

x xy x f x x x xf x x x ++=+>->- 72

)0(''06)0(''32166

'

''''36cos 216lim

6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x

362

72

2''lim 2'lim )(6lim

0020====+>->->-y x y x x f x x x (洛必达)

3.1

21)1

2(lim ->-+x x

x x x (重要极限)

4.已知a 、b 为正常数,x

x x x b a 3

0)2(lim +>-求

解:令]2ln )[ln(3

ln ,)2(3

-+=+=x x x x x b a x

t b a t

2/300)()

ln(23)ln ln (3lim

ln lim ab t ab b b a a b a t x

x x x x x =∴=++=>->-(变量替换) 5.)1ln(1

2

)(cos lim x x x +>-

解:令)ln(cos )

1ln(1

ln ,)

(cos 2)

1ln(1

2

x x t x t x +==+

2/100

2

1

2tan lim

ln lim ->->-=∴-=-=e t x x t x x (变量替换)

6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim

2

2

=?

?

>-x

x x dt

t f x

dt

t f

(洛必达与微积分性质)

7.已知???=≠=-0

,0

,)ln(cos )(2x a x x x x f 在x=0连续,求a

解:令2/1/)ln(cos lim 2

-==>-x x a x (连续性的概念)

三、补充习题(作业) 1.3cos 11lim

-=---->-x

x x e x x (洛必达)

2.)1

sin 1(

lim 0

x

x ctgx x ->- (洛必达或Taylor ) 3.11lim

2

2

=--->-?x x

t x e

dt

e x (洛必达与微积分性质)

第二讲 导数、微分及其应用

一、理论要求

1.导数与微分

导数与微分的概念、几何意义、物理意义

会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程

2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题

3.应用

会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)

二、题型与解法

A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导

1.??

?=+-==5

2arctan )(2t

e ty y t x x y y 由决定,求dx dy

2.x y x y x x y y sin )ln()(3

2

+=+=由决定,求

1|0==x dx

dy

解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy

+==2

)(由决定,则dx dy x )12(ln |0-==

B.曲线切法线问题

4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

解:1|'),,0(|),(,sin cos 2/2

/2/-==?????====πθππθθ

θ

θ

θy e y x e y e x x e y -=-2/π

5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。 解:需求)1('),1()6('),6(f f f f 或,等式取x->0的极限有:f(1)=0

)6(22)1('8)1('4])1()1(3)1()1([lim sin )sin 1(3)sin 1(lim

0sin 0-=∴=∴==--+-+=--+>-=>-x y f f t f t f t f t f x x f x f t t x x C.导数应用问题

6.已知x

e x

f x x xf x x f y --=+=1)]('[2)('')(2

满足对一切,

)0(0)('00≠=x x f 若,求),(00y x 点的性质。

解:令???<>>>===-0

,00

,0)(''0001000

0x x x e e x f x x x x 代入,,故为极小值点。

7.2

3

)

1(-=x x y ,求单调区间与极值、凹凸区间与拐点、渐进线。 解:定义域),1()1,(+∞-∞∈ x

:斜

:铅垂;;拐点及驻点2100''3

00'+===?===?=x y x x y x x y

8.求函数x e x y arctan 2/)1(+-=π的单调性与极值、渐进线。

解:

101'arctan 2/2

2-==?++=+x x e x

x x y x 与驻点π,

2)2(-=-=x y x e y 与渐:π

D.幂级数展开问题

9.

?=-x x dt t x dx

d 02

2sin )sin( ???=???++-+???+-=-?

??++--+???+-=-+---+???+-+--=-???++--+???+---=----+-x n n n n

x

n n n n x n x x x dt t x dx d n n x x x t x n n t x t x t x dt t x n t x t x t x t x 02

)

12(2622147302

141

732

)

12(262

2

sin )!

12()1(!31)sin()!12)(14()1(7!3131)sin()!

12)(14()()1()(7!31)(31)sin()!

12()()1()(!31)()sin(

或:2

0202sin sin )(sin x du u dx

d du u dx d u t x x x ==-?

=-?? 10.求)0(0)1ln()()

(2

n f

n x x x x f 阶导数处的在=+=

解:)(2

)1(32()1ln(22

1322

2

---+--+???-+-=+n n n x o n x x x x x x x =

)(2)1(321543

n n

n x o n x x x x +--+???-+-- 2

!

)1()0(1

)

(--=∴-n n f

n n E.不等式的证明

11.

)

1,0(∈x ,

2

1

1)1ln(112ln 1)1(ln )122<-+<-<++x x x x x ,求证(

证:1)令0)0(,)1(ln )1()(22=-++=g x x x x g

;得证。

单调下降,单调下降单调下降,时0)()(,0)(')(',0)('')('')1,0(0)0('')0(',0)

1()

1ln(2)('''),(''),('2

<<<∈∴==<++-

=x g x g x g x g x g x g x g g x x x g x g x g

2)令单调下降,得证。

,0)('),1,0(,1

)1ln(1)(<∈-+=

x h x x

x x h F.中值定理问题

12.设函数]11[)(,在-x f 具有三阶连续导数,且1)1(,0)1(==-f f ,

0)0('=f ,求证:在(-1,1)上存在一点3)('''=ξξf ,使

证:32)('''!

31

)0(''!21)0(')0()(x f x f x f f x f η++

+= 其中]1,1[),,0(-∈∈x x η

将x=1,x=-1代入有)

('''6

1

)0(''21)0()1(1)('''6

1

)0(''21)0()1(021ηηf f f f f f f f ++==-+

=-=

两式相减:6)(''')('''21=+ηηf f

3)](''')('''[2

1

)('''][2121=+=?∈?ηηξηηξf f f ,,

13.2

e b a e <<<,求证:)(4ln ln 222a b e

a b ->-

证:)(')

()(:

ξf a

b a f b f Lagrange =-- 令ξ

ξ

ln 2ln ln ,ln )(222

=

--=a b a b x x f 令2

2

22ln )()(0ln 1)(',ln )(e e t t t t t t >∴>∴<-==

ξξ?ξ??? )(4

ln ln 2

22a b e a b ->

- (关键:构造函数)

三、补充习题(作业)

1.23

)0('',11ln

)(2

-=+-=y x

x x f 求 2.曲线012)1,0(2cos 2sin =-+?????==x y t

e y t

e x t

t

处切线为在 3.e

x y x x e x y 1

)0)(1ln(+=>+

=的渐进线方程为 4.证明x>0时22)1(ln )1(-≥-x x x

证:令3

22

2

)

1(2)('''),(''),(',)1(ln )1()(x

x x g x g x g x x x x g -=---= 02)1(''0)1(')1(>===g g g ,

00

'),,1(0

'),1,0(0''2'',0'''),,1(2'',0'''),1,0(>∴??

?>∞∈<∈?>????>>+∞∈><∈g g x g x g g g x g g x

第三讲 不定积分与定积分

一、理论要求 1.不定积分 掌握不定积分的概念、性质(线性、与微分的关系)

会求不定积分(基本公式、线性、凑微分、换元技巧、分部) 2.定积分

理解定积分的概念与性质

理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分

会用定积分求几何问题(长、面、体)

会用定积分求物理问题(功、引力、压力)及函数平均值

二、题型与解法 A.积分计算

1.

?

?

+-=--=-C x x dx x x dx 2

2

arcsin

)2(4)

4(2

2.?

??

+=+=+C x e xdx e xdx e dx x e x

x x x tan tan 2sec )1(tan 222222

3.设x

x x f )

1ln()(ln +=

,求?dx x f )( 解:??+=dx e

e dx x

f x

x )

1ln()(

?+++-=+-++=--C e e x dx e

e e e x

x x

x x

x

)1ln()1()11()1ln( 4.

??∞

∞>-∞

+=+-+-=112122ln 2

14)11(lim |arctan 1arctan b b dx x x x x x dx x x π B.积分性质

5.)(x f 连续,?=10)()(dt xt f x ?,且A x

x f x =>-)

(lim

0,求)(x ?并讨论)('x ?在0=x 的连续性。

解:x

dy y f x xt y f x

?=

?===0

)()(,0)0()0(??

)0('2/)0('lim 2)0(')()()('0

2

????==∴=

-=

>-?A A

x

dy

y f x xf x x x

6.

??---=-x x x t d t x f dx d dt t x tf dx d 02

222022)()(2)( )()()(22

02x xf y d y f dx

d x ?== C.积分的应用

7.设)(x f 在[0,1]连续,在(0,1)上0)(>x f ,且2

2

3)()('x a x f x xf +

=,又)(x f 与x=1,y=0所围面积S=2。求)(x f ,且a=?时S 绕x 轴旋转体积最小。

解:

?-=∴=+=?=102

42)(2

3)(23))((a c dx x f cx x a x f a x x f dx d

?-=∴==-+=

∴1022

50)'(')14(2

3)(a dx y V x x a x f π 8.曲线1-=x y ,过原点作曲线的切线,求曲线、切线与x 轴所围图形

绕x 轴旋转的表面积。

解:切线2/x y =绕x 轴旋转的表面积为ππ522

=?

yds

曲线1-=

x y 绕x 轴旋转的表面积为)155(6

22

1-=

πyds

总表面积为

)1511(6

三、补充习题(作业)

1.

?+---=C x x x x dx x x

cot 2sin ln cot sin sin ln 2

2.?+-+dx x x x 13

65

2

3.?

dx x

x

arcsin

第四讲 向量代数、多元函数微分与空间解析几何

一、理论要求 1.向量代数

理解向量的概念(单位向量、方向余弦、模) 了解两个向量平行、垂直的条件 向量计算的几何意义与坐标表示

2.多元函数微分

理解二元函数的几何意义、连续、极限概念,闭域性质 理解偏导数、全微分概念 能熟练求偏导数、全微分

熟练掌握复合函数与隐函数求导法

3.多元微分应用 理解多元函数极值的求法,会用Lagrange 乘数法求极值

4.空间解析几何 掌握曲线的切线与法平面、曲面的切平面与法线的求法 会求平面、直线方程与点线距离、点面距离

二、题型与解法 A.求偏导、全微分

1.)(x f 有二阶连续偏导,)sin (y e f z x =满足z e z z x

yy xx 2''''=+,求

)(x f

解:u

u

e

c e c u f f f -+=?=-21)(0''

2.y

x z y x y xy f x z ???++=2)()(1,求?

3.决定由0),,(),()(),(=+===z y x F y x xf z x z z x y y ,求dx dz /

B.空间几何问题

4.求a z y x =++上任意点的切平面与三个坐标轴的截距之

和。

解:a d a z z y y x x =?=++000//

/

5.曲面21322

2

2

=++z y x 在点)2,2,1(-处的法线方程。

C.极值问题

6.设),(y x z z =是由01821062

22=+--+-z yz y xy x 确定的函数,

求),(y x z z =的极值点与极值。

三、补充习题(作业)

1.y

x z

x y g y x xy f z ???+=2),(),(求

2.x

z x y g y x xy f z ??+=求)),(,

( 3.dz x

y

y x u u z 求,arctan

,ln ,2

2

=+==??

第五讲 多元函数的积分

一、理论要求 1.重积分

熟悉二、三重积分的计算方法(直角、极、柱、球)

??

??????

???=D

r r b a x y x y rdr r f d dy y x f dx dxdy y x f 21)

(2)(1)(2)

(1),(),(),(θθθθθθ ???

????????????

?

?

??

=V

r r z z z z z r z r b a x y x y y x z y x z dr r r f d d rdr

z r f d dz dz z y x f dy dx dxdydz z y x f βαθ?θ??θ?θθθθθ??θ?θθθ)(2)(1)

,(2),(12

21)(2)(1),(2)

,(1)(2)(1)

,(2),(1sin ),,(),,(),,(),,( 会用重积分解决简单几何物理问题(体积、曲面面积、重心、转动惯量)

??

++=?=D

y x dxdy z z A y x f z 2

2''1),(

2.曲线积分

理解两类曲线积分的概念、性质、关系,掌握两类曲线积分的计算方法

?

?????

?

??

??+?=+????==+?==L

t t b

a x d r r r r f r r L dt y x t y t x f t y y t x x L dx y x y x f x y y L dl y x f βαβα

θ

θθθ22222')sin ,cos ()(:''))(),(()()

(:'1))(,()(:),(

熟悉Green 公式,会用平面曲线积分与路径无关的条件

3.曲面积分

理解两类曲面积分的概念(质量、通量)、关系 熟悉Gauss 与Stokes 公式,会计算两类曲面积分

????????????

???=???=?++==L S

S V

Dxy

y x y x z z S S d F r d F Stokes dV E S d E Gauss dxdy z z y x z y x f dS z y x f 旋度)

通量,散度)

()(:(:''1)),(,,(),,(2

2),(:

二、题型与解法

A.重积分计算

1.Ω+=???Ω

,)(2

2

dV y x I 为平面曲线???==0

22x z

y 绕z 轴旋转一周与z=8

的围域。 解:3

1024)(20

220

80

2228

22

π

θπ=

=+=?

?????

≤+z

z

y x rdr r d dz dxdy y x dz I 2.??

--+=

D

D dxdy y x a y x I ,42

2222为)0(22>-+-=a x a a y 与

x y -=围域。()2

1

16(

2

2

-=πa I 3.?

??≤≤≤≤=其他,00,21,),(2x

y x y x y x f ,

??

≥+D

x y x D dxdy y x f 2:,),(22 (49/20)

B.曲线、曲面积分 4.?

-++-=L

x x dy ax y e dx y x b y e I )cos ())(sin (

)0,0(2)0,2(2O x ax y a A L 至沿从-= 解:令A y O L 至沿从01= 3220

1

1

2

)22

(

)()(a b a dx bx dxdy a b I a

D

L L L π

π

-

+=---=-=

?????+

5.?+-=

L y x ydx

xdy I 224,为半径的圆周正向为中心,为以)1()0,1(>R L 。

解:取包含(0,0)的正向???==θ

θ

sin cos 2:1r y r x L ,

π==∴=-=?

??

??-1

1

1

0L L

L L

L L

6.对空间x>0内任意光滑有向闭曲面S ,

0)()(2=--??

S

x zdxdy e dzdx x xyf dydz x xf ,且)(x f 在x>0有连续一

阶导数,1)(lim 0=+

>-x f x ,求)(x f 。

解:?????

???Ω

Ω

--+=??=?=s

x dV e x xf x xf x f dV F S d F ))()(')((02 )1(1)11('2-=

?=-+x

x x e x

e y e x y x y

第六讲 常微分方程

一、理论要求 1.一阶方程 熟练掌握可分离变量、齐次、一阶线性、伯努利方程求法

2.高阶方程 会求))(')(',('')),(')(',(''),()(y p y y y f y x p y y x f y x f y n =====

3.二阶线性常系数

??

???+=→±=+=→=+=→≠?=++?=++)sin cos ()(0

0'''2112112121121221x c x c e y i e x c c y e c e c y q p q py y x x

x

x βββαλλλλλλλαλλλ(齐次) ??

?

??=→==→==→≠?=x n x

n x

n x

n e x x Q y and xe x Q y or e x Q y e x P x f ααααλλαλλαλα22212212)()()()()((非齐次) ?????=+=→=±+=→≠±?+=)

,max((sin )(cos )((sin )(cos )(()

sin )(cos )(()(22j i n x x r x x q xe y i x

x r x x q e y i x x p x x p e x f n n x

n n x

j i x ββλβαββλβαββααα(非齐次)

二、题型与解法 A.微分方程求解

1.求

)2()23(222=-+-+dy xy x dx y xy x 通解。

()3

2

2

c x y x xy =-- 2.利用代换x

u y cos =

化简x

e x y x y x y =+-cos 3sin '2cos ''并求通解。(x

e x c x x c y e u u x

x

cos 5sin 2cos 2cos ,4''21++==+) 3.设)(x y y =是上凸连续曲线,),(y x 处曲率为

2

'

11y +,且过)1,0(处

切线方程为y=x+1,求)(x y y =及其极值。

解:2ln 2

1

1,2ln 211|)4

cos(

|ln 01'''max 2

+=+

+-=?=++y x y y y π

三、补充习题(作业)

1.已知函数)(x y y =在任意点处的增量)1(,)0(),(12

y y x o x

x

y y 求π=?++?=?。(4π

πe ) 2.求x e y y 24''=-的通解。(x

x x

xe e c e c y 222214

1+

+=-) 3.求0)1(),0(0)(22=>=-++

y x xdy dx y x y 的通解。()1(2

12

-=

x y ) 4.求1)0(')0(,0'2''2===--y y e y y x 的特解。(x e x y 2)23(4

1

41++=

第七讲 无穷级数

一、理论要求 1.收敛性判别

级数敛散性质与必要条件

常数项级数、几何级数、p 级数敛散条件 正项级数的比较、比值、根式判别法 交错级数判别法

2.幂级数

幂级数收敛半径、收敛区间与收敛域的求法

幂级数在收敛区间的基本性质(和函数连续、逐项微积分) Taylor 与Maclaulin 展开

3.Fourier 级数

了解Fourier 级数概念与Dirichlet 收敛定理 会求],[l l -的Fourier 级数与],0[l 正余弦级数

第八讲 线性代数

一、理论要求 1.行列式 会用按行(列)展开计算行列式

2.矩阵

几种矩阵(单位、数量、对角、三角、对称、反对称、逆、伴随) 矩阵加减、数乘、乘法、转置,方阵的幂、方阵乘积的行列式 矩阵可逆的充要条件,会用伴随矩阵求逆 矩阵初等变换、初等矩阵、矩阵等价 用初等变换求矩阵的秩与逆

理解并会计算矩阵的特征值与特征向量

理解相似矩阵的概念、性质及矩阵对角化的冲要条件 掌握将矩阵化为相似对角矩阵的方法

掌握实对称矩阵的特征值与特征向量的性质 3.向量

理解n 维向量、向量的线性组合与线性表示 掌握线性相关、线性无关的判别

理解并向量组的极大线性无关组和向量组的秩

了解基变换与坐标变换公式、过渡矩阵、施密特方法 了解规范正交基、正交矩阵的概念与性质

4.线性方程组理解齐次线性方程组有非零解与非齐次线性方程组有解条件

理解齐次、非齐次线性方程组的基础解系及通解

掌握用初等行变换求解线性方程组的方法

5.二次型二次型及其矩阵表示,合同矩阵与合同变换

二次型的标准形、规范形及惯性定理

掌握用正交变换、配方法化二次型为标准形的方法

了解二次型的对应矩阵的正定性及其判别法

第九讲概率统计初步

一、理论要求

1.随机事件与概率了解样本空间(基本事件空间)的概念,理解随机事件的关系与运算

会计算古典型概率与几何型概率

掌握概率的加减、乘、全概率与贝叶斯公式

2.随机变量与分布理解随机变量与分布的概念

理解分布函数、离散型随机变量、连续型变量的概率密度

掌握0-1、二项、超几何、泊松、均匀、正态、指数分布,会求分布函

3.二维随机变量理解二维离散、连续型随机变量的概率分布、边缘分布和条件分布

理解随机变量的独立性及不相关概念

掌握二维均匀分布、了解二维正态分布的概率密度

会求两个随机变量简单函数的分布

4.数字特征理解期望、方差、标准差、矩、协方差、相关系数的概念

掌握常用分布函数的数字特征,会求随机变量的数学期望

5.大数定理了解切比雪夫不等式,了解切比雪夫、伯努利、辛钦大数定理

了解隶莫弗-Laplace定理与列维-林德伯格定理

6.数理统计概念理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩

χ分布、t分布、F分布的概念和性质,了解分位数的概念

了解2

了解正态分布的常用抽样分布

7.参数估计掌握矩估计与极大似然估计法

了解无偏性、有效性与一致性的概念,会验证估计量的无偏性

会求单个正态总体的均值和方差的置信区间

8.假设检验掌握假设检验的基本步骤

了解单个及两个正态总体的均值和方差的假设检验

第十讲总结

1.极限求解

1作对数替换),洛必达法则,其他(重要极限,微积分性变量替换(∞

质,级数,等价小量替换) 1.2

))1((...)2()[(1lim a x n a n x n a x n a x n n +=-++++++∞>- (几何级数) 2.2//10

)arccos 2

(

lim ππ

->-=e x x x (对数替换)

3.2

tan

1

)

2(lim x

x x π->-

4.2

1)63(lim -∞>-++x x x

x

5.2

1)()()(lim a x a x na a x n n n a x ----->- 6.?

???

?

????

>=<-=?)0(cos 0,40,2cos 1)(02x x tdt

x x x x x f x

,求)(lim 0

x f x >-

2.导数与微分

复合函数、隐函数、参数方程求导

1.]')()()[(b

a x a

x x b b a

2.

0)sin(arctan =--+y x x x

y

,求dy/dx 3.?????==t

e y t e x t t

sin cos 决定函数)(x y y =,求dy 4.已知1ln 22=-y y x ,验证0')12(42

2=-+y y x xy

5.bx x v v u e y u

sin ,ln 31

,32==

=,求x y ' 3.一元函数积分

1.求函数?+-+=x dt t t t x I 0211

3)(在区间]1,0[上的最小值。

(0) 2.?---2

22|

1|1

dx x x 3.?-1

02

/32)1dx x (

4.

?

+dx x x )

1(1

5.

?-1

2

t t

dt

6.

?

-+dx x

x 2

4141

4.多元函数微分

1.),(2xy

e y

x f z =,求y x z z ','

2.),(y x z z =由0),(=++

x

z

y y z x F 给出,求证:xy z yz xz y x -=+'' 3.求xy y x y x u 2),(22+-=在O(0,0),A(1,1),B(4,2)的梯度。

4.)ln(sin y x x u +=,求y

x u

???2

6.证明)(

2x

y

f x z n

=满足nz yz xz y x =+'2' 7.求18:44),(2222≤+---=y x D y x y x y x f 在内的最值。

5.多元函数积分

1.求证:b rot a a rot b b a div

-=?)(

2.??≤+--=D

y y x D dxdy y x I 2:,)4(22 3.??

≤++=

D

y y x D dxdy y x I 2:,)(22

4.改变积分次序?

?+-2

21

),(x dy y x f dx

5.??====

D xy x y x D dxdy y x I 1,2,2:,)(2围域。

6.常微分方程

1.求01ln 12

2=++++dx y dy xdx y 通解。

2.求x

e y y y 325'2''=++通解。 3.求x

e

y y y 265'2''=--通解。

4.求0)()(2

2

=++-dy x xy dx y y x 通解。 5.求0)0()0('),2cos (2

1

4''==-=

+y y x x y y 特解。 6.求1)0(',,0)0(,4''===-y y xe y y x

特解。

《高等数学考研题型分析》

填空题:极限(指数变换,罗必达)、求导(隐函数,切法线)、不定积分、二重积分、变上限定积分

选择题:等价小量概念,导数应用,函数性质,函数图形,多元极限

计算题:中值定理或不等式,定积分几何应用,偏导数及几何应用,常微分方程及应用

高等数学基础期末复习资料全

《高等数学基础》课程期末考试复习资料册 一、单项选择题 1.设函数f(x)的定义域为,则函数f(x)+f(-x)的图形关于(C)对称. A.y=x B.x轴 C.y轴 D.坐标原点 2.函数在x=0处连续,则k=(C). A.1 B.5 D.0 3.下列等式中正确的是(C). 4.若F(x)是4.f(x)的一个原函数,则下列等式成立的是(A). 5.下列无穷限积分收敛的是(D).

6.设函数f (x)的定义域为,则函数f(x)- f(-x)的图形关于( D)对称. A.y=x B.x轴 C.y轴 D.坐标原点 7.当时,下列变量中( A)是无穷大量. 8.设f (x)在点x=1处可导,则 =(B). 9.函数在区间(2,4)满足(A). A.先单调下降再单调上升 B.单调上升 C.先单调上升再单调下降 D.单调下降 10.=(B). A.0 B. П C.2П D. П/2 11.下列各函数对中,(B)中的两个函数相等. 12.当,变量(C)是无穷小量.

13.设f(x)在点x=0处可导,则=(A). 14.若f(x)的一个原函数是,则=(D). 15.下列无穷限积分收敛的是(C). 16.设函数f(x)的定义域为,则函数的图形关于(A)对称. A.坐标原点 B.x轴 C.y轴 D. y=x 17.当时,变量(D)是无穷小量.

18.设f(x)在x。可导,则=(C). 19.若则=(B). 20. =(A). 21.下列各函数对中,(B)中的两个函数相等. 22.当k=(C)时,在点x=0处连续. A. -1 B. 0 c.1 D.2 23. 函数在区间(2,4)满足(B). A. 先单调下降再单调上升 B.单调上升 C. 先单调上升再单调下降 D.单调下降

大学高等数学重点绝密通用复习资料,绝对有用

高等数学(通用复习) 师兄的忠告:记住我们只复习重点,不需要学得太多,这些是每年必须的重点,希望注意 第一章 函数与极限 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δ δ=-< (U a 1.由n x ∴N 2.即对?∴x ∞ →lim ○x →1.由(f ∴δ=2.即对?∴x x →0 lim ○→x 1.由(f ∴X 2.即对?∴x ∞ →lim 第三节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=????

(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1 f x -为无穷小;反之,若()x f 为无穷小,且 ()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →?????(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2. →x (→x 3(x →0lim x x → 3 9 x x →-【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()() 2 3 3 3 33 11lim lim lim 9 333 6 x x x x x x x x x →→→--==== -+-+ 其中3x =为函数()2 39 x f x x -= -的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):

考研数学公式大全(考研必备)

高等数学公式篇 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 导数公式: 基本积分 a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222????+-+--=-+++++=+-= ==-C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n ln 22)ln(221 cos sin 22222 2222222 22 2 22 2 π π

考研数学公式大全(考研同学必备)

考研数学公式(全) ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边,

·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A

考研数学公式大全(考研必备,免费下载

高等数学公式篇·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)

高等数学高等数学综合复习资料

高等数学(2)综合复习资料 1.坐标面xoy 的方程是___________________________. 2.平行于向量{}3,2,6-=→ a 的单位向量是______ __. 3.设..10,11:≤≤≤≤-y x D 则 () _________3=+??dxdy y y x D 4. 若向量→→→c b a ,,两两互相垂直,且3,2,1===→→→ c b a 和,则____=++→→→c b a 5. 已知两点),3,2,7(),1,2,3(--B A 则_____=→AB 6.设,ln 22y x z +=则._______________=x z 7.直线3 7423z y x =-+=-+与平面3224=--z y x 的关系是( ) (A)平行,但直线不在平面上;; (B)直线在平面上; (C)垂直相交; (D)相交但不垂直; 8.点)1,2,1(M 到平面01022=-++z y x 的距离是 ( ) 1)(A ; 1)(±B ; 1)(-C ;3 1)(D ; 9.设D 是矩形域11,40:≤≤-≤≤y x π ,则=??D xydxdy x 2cos ( ) ;0)(A ;21)(-B ;21)(C 4 1)(D 10.设?? ? ?? +=4arctan πxy z ,则=x z ( ) ;41)(??? ??++πxy xy A ;411)(2??? ??+++πxy x B ;414sec )(22??? ? ?++??? ??+ππxy xy xy C 241)(??? ??++πxy y D ; 11.曲面z y x =-2 2在xoz 平面上的截线方程是( )

考研必备 数学公式大全

·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式:

高等数学综合复习资料

《高等数学1》综合复习资料 一、是非题 1. 如果数列有界,则极限存在.(× ) 2. 如果()a f +'与()a f -'存在且相等,则()x f 在点a 处必连续.( √ ) 3. 若函数()x f 在0x 的某领域内处处可微,且()00='x f ,则函数()x f 必在 0x 处取得极值.( ×) 4. ()2 x x e e y -+=和() 2 x x e e y --=是同一函数的原函数. (√ ) 5. 若 ()0=?-dx x f a a ,则()x f 必为奇函数. ( ×) 6.ln ln y a x =+和ln y x =是同一函数的原函数. (√ ) 7.当0→x 时,x 2sin 与2x 是同阶无穷小. ( √) 8. 2cos 2cos cos d x x d x = ( √) 二、填空题 1.设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0 lim ( ()0x f ). 2.曲线x y ln =在1=x 处的切线方程为( 1-=x y ). 3.设()1 2-=x e x f ,则()=''0f ( 4 e ). 4.已知函数()x f 处处连续且满足 ()? -=x x dt t f 0 cos 1,则= ?? ? ??π2f ( 1 2 ). 5. ()?b a dx x f 的几何意义为:它是介于x 轴、函数()x f y =的图形及直线a x =、 b x =之间的各部分面积的( 代数和 ). 6.设()2 11 x x f += ,则()C x f dx +=?)(. 22 -2x (1x )+ 7.. )(1sin lim =∞ →x x x 1

高等数学复习资料大全

《高等数学复习》教程 第一讲函数、连续与极限 一、理论要求 1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理 会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断 理解并会应用闭区间上连续函数的性质(最值、有界、介值) 二、题型与解法 A.极限的求法(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法 (8)其他(微积分性质,数列与级数的性质)

1.61 2arctan lim )21ln(arctan lim 3030-=-=+->->-x x x x x x x x (等价小量与洛必达) 2.已知2030) (6lim 0)(6sin lim x x f x x xf x x x +=+>->-,求 解:2 0303' )(6cos 6lim )(6sin lim x xy x f x x x xf x x x ++=+>->- 72 )0(''06)0(''32166 ' ''''36cos 216lim 6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x 362 72 2''lim 2'lim )(6lim 0020====+>->->-y x y x x f x x x (洛必达) 3.1 21)1 2( lim ->-+x x x x x (重要极限) 4.已知a 、b 为正常数,x x x x b a 3 0)2 ( lim +>-求 解:令]2ln )[ln(3 ln ,)2(3 -+=+=x x x x x b a x t b a t 2/300)() ln(23)ln ln (3lim ln lim ab t ab b b a a b a t x x x x x x =∴=++=>->-(变量替换) 5.) 1ln(1 2 )(cos lim x x x +>- 解:令)ln(cos ) 1ln(1 ln ,) (cos 2 ) 1ln(1 2 x x t x t x +==+ 2/100 2 1 2tan lim ln lim ->->-=∴-=-=e t x x t x x (变量替换) 6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim 2 2 =? ? >-x x x dt t f x dt t f (洛必达与微积分性质) 7.已知???=≠=-0 ,0 ,)ln(cos )(2x a x x x x f 在x=0连续,求a

(整理)高数复习重点

万变不离其宗!短短一个月后,就要考试了,面对复习不能手足无措,要有目的地复习。主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。 复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理! 一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分五.定积分六定积分的应用浏览目录了解真正不熟悉的章节然后有针对的复习。 一函数与极限 熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理 本章公式: 两个重要极限: 常用的8个等价无穷小公式:当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2*(x^2) (e^x)-1~x ln(1+x)~x [(1+x)^1/n]-1~(1/n)*x 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

三.微分中值定理与导数的应用: 洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ① 在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在

考研数学公式大全(数三)

导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

关于高等数学B上复习资料归纳

华南理工大学网络教育学院 《高等数学(上)》辅导 一、 求函数值 例题: 1、若2()f x x =,()x x e ?=,则(())f x ?= . 解:() 2 2(())()x x x f x f e e e ?=== 2、若(1)21f x x -=+,则()f x = . 解:令1x t -=,则1x t =+ 所以()2(1)123f t t t =++=+ 即 ()23f x x =+ 二、 常见的等价无穷小及等价无穷小替换原理 常见的等价无穷小: 无穷小替换原理:在求极限过程中,无穷小的因子可以用相应的等价无 穷小替换 例题: 1、320sin 3lim x x x →=? 解:当0sin3~3x x x →, , 原式=3 200(3)lim lim270x x x x x →→== 2、0sin3lim x x x →=? 解:原式=03lim 3x x x →=

3、201-cos lim x x x →=? 解:当2 10cos ~2x x x →,1- 原式=220112lim 2 x x x →= 4、0ln(13) lim x x x →+=? 解:当03)~3x x x →,ln(1+ 原式=.03lim 3x x x →=. 5、201 lim x x e x →-=? 解:当201~2x x e x →-, 原式=.02lim 2x x x →=. 三、 多项式之比的极限 2lim 03x x x x →∞=+,22 11lim 33x x x x →∞-=+,23lim x x x x →∞+=∞ 四、 导数的几何意义(填空题) 0()f x ':表示曲线()y f x =在点00(,())M x f x 处的切线斜率 曲线..()y f x =..在点00(,())M x f x 处的切线方程为: 曲线()y f x =在点00(,())M x f x 处的法线方程为: 例题: 1、曲线44x y x += -在点(2,3)M 的切线的斜率.

考研数学公式大全(考研必备)

高等数学公式篇 导数公式: 基本积分表: C kx dx k +=? )1a (,C x 1 a 1 dx x 1a a -≠++=+? C x ln dx x 1+=? C e dx e x x +=? C a ln a dx a x x +=?(1a ,0a ≠>) C x cos xdx sin +-=? C x sin dx x cos +=? C x arctan dx x 11 2+=+? C a x arcsin x a dx C x a x a ln a 21x a dx C a x a x ln a 21a x dx C a x arctan a 1x a dx C x cot x csc ln xdx csc C x tan x sec ln xdx sec C x sin ln xdx cot C x cos ln xdx tan 2 2222222+=-+-+=-++-=-+=++-=++=+=+-=???????? ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C )a x x ln(a x dx C shx chxdx C chx shxdx C a ln a dx a C x csc xdx cot x csc C x sec dx x tan x sec C x cot xdx csc x sin dx C x tan xdx sec x cos dx 222 2x x 2 22 2 a ln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 2 21a a = '='?-='?='-='='='='='-2 2 22 x x x 11 )x cot arc (x 11 )x (arctan x 11 )x (arccos x 11 )x (arcsin x 1 )x (ln e )e (x sin )x (cos +- ='+= '-- ='-= '= '='-='

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

高等数学复习资料(含答案)

专升本高等数学复习资料 一、函数、极限和连续 1.函数 )(x f y =的定义域是( ) A .变量x 的取值范围 B .使函数 )(x f y =的表达式有意义的变量x 的取值范围 C .全体实数 D .以上三种情况都不是 2.以下说法不正确的是( ) A .两个奇函数之和为奇函数 B .两个奇函数之积为偶函数 C .奇函数与偶函数之积为偶函数 D .两个偶函数之和为偶函数 3.两函数相同则( ) A .两函数表达式相同 B .两函数定义域相同 C .两函数表达式相同且定义域相同 D .两函数值域相同 4.函数 42y x x =-+-的定义域为( ) A .(2,4) B .[2,4] C .(2,4] D .[2,4) 5.函数 3()23sin f x x x =-的奇偶性为( ) A .奇函数 B .偶函数 C .非奇非偶 D .无法判断 6.设 ,121)1(-+= -x x x f 则)(x f 等于( ) A .12-x x B .x x 212-- C .121-+x x D .x x 212-- 7. 分段函数是( ) A .几个函数 B .可导函数 C .连续函数 D .几个分析式和起来表示的一个函数 8.下列函数中为偶函数的是( ) A . x e y -= B .)ln(x y -= C .x x y cos 3= D .x y ln = 9.以下各对函数是相同函数的有( ) A . x x g x x f -==)()(与 B .x x g x x f cos )(sin 1)(2=-=与 C . 1)()(==x g x x x f 与 D .?? ?<->-=-=2 22 2)(2)(x x x x x g x x f 与 10.下列函数中为奇函数的是( ) A .)3cos(π +=x y B .x x y sin = C .2 x x e e y --= D . 23x x y += 11.设函数 )(x f y =的定义域是[0,1],则)1(+x f 的定义域是( ) A .]1,2[-- B . ]0,1[- C .[0,1] D . [1,2]

考研数学公式大全(考研必备,免费下载)

高等数学公式篇· 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·si nβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·si nβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tan β·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tan γ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1 -2sin^2(α)

(完整版)大一高数复习资料(免费)

高等数学 第一章 函数与极限 第一节 函数 ●函数基础(高中函数部分相关知识)(▲▲▲) ●邻域(去心邻域)(▲) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ●0x x →时函数极限的证明(▲) 〖題型 〗已知函数()x f ,证明()A x f x x =→0 lim 〖证明 〗δε-语言 1.由()f x A ε-<化簡得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ●∞→x 时函数极限的证明(▲) 〖題型 〗已知函数()x f ,证明()A x f x =∞ →lim 〖证明 〗X -ε语言 1.由()f x A ε-<化簡得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ●无穷小与无穷大的本质(▲) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ●无穷小与无穷大的相关定理与推论(▲▲) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 〖題型 〗計算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ●极限的四则运算法则(▲▲) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分 子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 〖題型 〗求值2 3 3 lim 9 x x x →--

考研数学公式大全

高等数学公式篇 ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 ·三角函数恒等变形公式·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·倍角公式:si n(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三角函数的有理式积分: 22 2212211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  一些初等函数: 两个重要极限: 和差角公式: ·和差化积公式: ·正弦定理:R C c B b A a 2sin sin sin ===·余弦定理: C ab b a c cos 2222 -+= 反三角函数性质: arcctgx arctgx x x -= -= 2 arccos 2 arcsin π π 高阶导数公式——莱布尼兹(Leibniz )公式: ) () ()()2()1()(0)()() (!)1()1(!2)1() (n k k n n n n n k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+ '+==---=-∑ a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arc c os 11 )(arc sin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '2 sin 2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos 2sin 2sin sin β αβαβαβ αβαβαβ αβαβαβ αβ αβα-+=--+=+-+=--+=+α ββαβαβαβ αβαβ αβαβαβ αβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?= ±?±= ±=±±=±1 )(1)(sin sin cos cos )cos(sin cos cos sin )sin( x x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+= -+±=++=+-==+= -= ----11ln 21) 1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)1 1(lim 1sin lim 0==+=∞→→e x x x x x x

高等数学基础复习资料

高等数学基础复习资料 一.选择题 1.函数y=5-x +ln(x -1)的定义域是( ) A. (0,5) B. (1,5] C. (1,5) D. (1,+∞) 2.函数f(x)= 2 1x x -的定义域是( ) A.(-∞,+∞) B.(0,1) C.(-1,0) D.(-1,1) 3.函数45)(2+-= x x x f 的定义域为 ( ) A. (]1,∞- B. [)+∞,4 C. (][)+∞?∞-,41, D. ()()+∞?∞-,41, 4.下列函数中为奇函数的是( ) A.y=cos 3x B.y=x 2+sinx C.y=ln(x 2+x 4 ) D.y=1 e 1e x x +- 5.函数f(x)=1+xsin2x 是( ) A.奇函数 B.偶函数 C.有界函数 D.非奇非偶函数 6.=+ ∞ →x x x )21(lim ( ) A. e -2 B. e -1 C. e 2 D.e 7.=→2x tan3x lim x ( ) A.∞ B. 2 3 C.0 D.1 8.设??? ??=≠=0 0sin )(x a x x x x f 在x=0处连续,则常数a=( ) A.0 B.1 C.2 D.3 9.设?????=≠--+=0 011)(x k x x x x x f , , 在0=x 点处连续,则k 等于 A.0; B.1; C. 2 1 ; D. 2; 10.设函数?????=≠-+=0 024)(x k x x x x f , ,在点0=x 处连续,则k 等于 ( )

A. 0 B. 4 1 C. 2 1 D. 2 11.设y=sin 2x ,则y ′=( ) A.sin2x B.2sinx C.cos2x D.cos 2x 12.y=e x (sinx-cosx),则='y ( ) A.e x (-sinx+cosx) B.2e x sinx C.2e x cosx D.e x sinx 13.设y=2x +e 2,则y ′=( ) A.x2x-1 B.2x ln2+e 2 C.2x ln2 D.2x 14.设y=sin(7x+2),则 =dx dy ( ) A. 7sin(7x+2) B.7cos(7x+2) C. cos(7x+2) D.sin(7x+2) 15.已知曲线x x y -=2上的点M 处的切线平行于直线x+y=1,则M 点的坐标为( ) A.(0,1) B.(1,0) C.(1,1) D.(0,0) 16.曲线y=lnx 的与直线y=x 平行的切线方程为( ) A.x-y=0 B.x-y-1=0 C.x-y+1=0 D.x-y+2=0 17.函数)1ln(2x y +=的单调减少区间是( ) A.)0,(-∞ B. ),(+∞-∞ C.),0(+∞ D.(-1,1) 18.函数y=x 2-2x+5的单调增加的区间是( ) A.),1(+∞ B.)1,(-∞ C.),(+∞-∞ D.),2(+∞ 19.函数x e y x arctan +=在区间[]1,1-上 ( ) A.单调减少 B.单调增加 C.无最小值 D.无最大值 20.函数5x 5e 的一个原函数为( ) A. e 5x B. 5e 5x C. x 5e 5 1 D. –e 5x 21. 1 x 31 +的一个原函数是( ) A. ln(3x+1) B.2 )1x 3(1+- C. 2)1x 3(2 1 + D.)1x 3ln(3 1 + 22.设 ? += C x x dx x f ln )(,则=)(x f ( )

相关文档
相关文档 最新文档