文档库 最新最全的文档下载
当前位置:文档库 › 灭菌、无菌工艺验证

灭菌、无菌工艺验证

灭菌、无菌工艺验证
灭菌、无菌工艺验证

灭菌/无菌工艺验证指导原则(第二稿)

目录

1概述 (1)

2制剂湿热灭菌工艺 (3)

2.1湿热灭菌工艺的研究 (3)

2.1.1 湿热灭菌工艺的确定依据 (3)

2.1.2过度杀灭法的工艺研究 (4)

2.1.3残存概率法的工艺研究 (5)

2.2湿热灭菌工艺的验证 (6)

2.2.1物理确认 (6)

2.2.2 生物学确认 (8)

3制剂无菌生产工艺 (10)

3.1无菌生产工艺的研究 (10)

3.1.1无菌分装生产工艺的研究 (10)

3.1.2 过滤除菌生产工艺的研究 (11)

3.2 无菌生产工艺的验证 (11)

3.2.1培养基模拟灌装试验 (12)

3.2.2 除菌过滤系统的验证 (14)

4原料药无菌生产工艺 (17)

4.1 无菌原料药生产工艺特点 (17)

4.1.1 溶媒结晶工艺 (18)

4.1.2 冷冻干燥工艺 (18)

4.2 无菌原料药工艺验证 (19)

4.2.1 验证批量 (19)

4.2.2 最差条件 (19)

1概述

无菌药品是指法定药品标准中列有无菌检查项目的制剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。从严格意义上讲,无菌药品应完全不含有任何活的微生物,但由于目前检验手段的局限性,绝对无菌的概念不能适用于对整批产品的无菌性评价,因此目前所使用的“无菌”概念,是概率意义上的“无菌”。一批药品的无菌特性只能通过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征。而这种概率意义上的无菌保证取决于合理且经过验证的灭菌工艺过程、良好的无菌保证体系以及生产过程中严格的GMP管理。

无菌药品通常的灭菌方式可分为:1)湿热灭菌;2)干热灭菌;3)辐射灭菌;4)气体灭菌;5)除菌过滤。按工艺的不同分为最终灭菌工艺(sterilizing process)和无菌生产工艺(aseptic processing)。其中最终灭菌工艺系指将完成最终密封的产品进行适当灭菌的工艺,由此生产的无菌制剂称为最终灭菌无菌药品,湿热灭菌和辐射灭菌均属于此范畴。无菌生产工艺系指在无菌环境条件下,通过无菌操作来生产无菌药品的方法,除菌过滤和无菌生产均属于无菌生产工艺。部分或全部工序采用无菌生产工艺的药品称为非最终灭菌无菌药品。基于无菌药品灭菌/除菌生产工艺的现状,本指导原则主要对在注射剂与无菌原料药的生产中比较常用的湿热灭菌与无菌生产工艺进行讨论。本指导原则中的湿热灭菌工艺验证主要包括灭菌条件的筛选和研究,湿热灭菌的物理确认,生物指示剂确认等内容;无菌生产工艺验证主要包括无菌分装、除菌过滤、培养基模拟灌装、过滤系统的验证等验证内容。

最终灭菌工艺和无菌生产工艺实现产品无菌的方法有本质上的差异,从而决定了由这两类工艺生产的产品应该达到的最低无菌保证水平的巨大差异。最终灭菌无菌产品的无菌保证水平为残存微生物污染概率≤10-6,非最终灭菌无菌产品的无菌保证水平至少应达到95%置信限下的污染概率<0.1%。由此可见,非最终灭菌无菌产品存在微生物污染的概率远远高于最终灭菌无菌产品,为尽量减少非最终灭菌无菌产品污染微生物的概率,鼓励企业在生产中采用隔离舱等先进技术设备。

基于质量源于设计的药品研发与质量控制的理念,为保证无菌药品的无菌保证水平符合要求,研发者在产品的研发过程中应根据药品的特性选择合适的灭菌方式,并系统地评估生产的各环节及各种因素对无菌保证水平的影响,根据风险的高低与风险发生的可能性等来针对性地验证灭菌工艺的可靠性,验证的内容、范围与批数等取决于工艺与产品的复杂性以及生产企业对类似工艺的经验多少等因素。只有在研发中经过系统而深入的研究与验证,获得可靠的灭菌工艺,并在日常的生产过程中严格执行该工艺,才能真正保证每批药品的无菌保证水平符合预期的要求。当然,在药品的整个生命周期内,随着对所生产的药品的特性和生产工艺等的了解越来越全面和深入,灭菌工艺也在不断的完善,此时就会涉及到对变更后的工艺如何进行验证的问题,本指导原则也适用于此种情况。

由于灭菌/除菌工艺验证的工作在我国开展的时间不长,基础还不牢靠,因

此必然在实际工作中会遇到很多难以预料的问题,故本指导原则只是一个一般性原则,药物研发者应从药物研发的客观规律出发,具体问题具体分析,必要时根据实际情况采用其他有效的方法和手段。同时,本指导原则作为阶段性产物,必将随着药物研究者与评价者对灭菌工艺研究与验证的认知加深,而不断进行修订与完善。

2制剂湿热灭菌工艺

2.1湿热灭菌工艺的研究

2.1.1 湿热灭菌工艺的确定依据

灭菌工艺的选择一般按照灭菌工艺的决策树(详见附件1)进行,湿热灭菌工艺是决策树中首先考虑的灭菌工艺。湿热灭菌法是利用高压饱和蒸汽、过热水喷淋等手段使微生物菌体中的蛋白质、核酸发生变性而杀灭微生物的方法。高温在杀灭微生物的同时,可能对药品的质量也有所影响。如果产品不能耐受湿热灭菌,则需要考虑采用无菌生产工艺。所以,对于药品的灭菌工艺的考察和确定,首先是考察其能否采用湿热灭菌工艺,能否耐受湿热灭菌的高温。

目前湿热灭菌方法主要有两种:过度杀灭法(F0≥12)和残存概率法(8≤F0<12)。用其它F0值小于8的终端灭菌条件的工艺,则应该按照无菌生产工艺要求。

以上两种湿热灭菌方法都可以在实际生产中使用,具体选择哪种灭菌方法,在很大程度上取决于被灭菌产品的热稳定性。药物是否能耐受湿热灭菌工艺的高温,除了与药物活性成分的化学性质相关外,还与活性成分存在的环境密切相关,所以在初期的工艺设计过程中需要通过对药物热稳定性进行综合分析,以确定能否采用湿热灭菌工艺。

2.1.1.1活性成分的化学结构特点与稳定性

通过对活性成分的化学结构进行分析,可以初步判断活性成分的稳定性,如果活性成分结构中含有一些对热不稳定的结构基团,则提示主成分的热稳定性可能较差。在此基础之上,还应该通过设计一系列的强制降解试验对活性成分的稳定性做进一步研究确认,了解活性成分在各种条件下可能发生的降解反应,以便在处方工艺的研究中采取针对性的措施,保障产品能够采用湿热灭菌工艺。

2.1.1.2 处方工艺的研究

在对活性成分的结构特点与稳定性进行研究的基础上,可以有针对性的进行

处方工艺的优化研究。如活性成分易发生氧化反应,则需要考虑是否需要在工艺中去除氧并采取充氮的生产工艺,或在处方中加入适宜的抗氧剂;如活性成分的稳定性与pH值相关,则需要通过研究寻找最利于主成分稳定性的pH值,当然此时需要关注该pH值在临床治疗时能否接受;如果主成分是因为某些杂质的存在影响了稳定性,则需要通过适宜的手段去除相关的杂质;如果是主成分在某种溶剂系统中稳定性较差,则需要考虑更换溶剂系统,此时同样需要考虑所选用的溶剂系统在临床应用时能否被接受;湿热灭菌的不同灭菌温度和灭菌时间的组合对产品的稳定性的要求有所不同,可以在保证提供所需的SAL的基础上,通过灭菌时间和灭菌温度的调整来确定药物可以耐受的湿热灭菌工艺。

总之,需要通过各个方面的研究,使药物尽可能的可以采用湿热灭菌工艺。只有在理论和实践均证明即使采用了各种可行的技术方法之后,活性成分依然无法耐受湿热灭菌的工艺时,才能选择无菌保证水平较低的无菌生产工艺。

2. 2.1.3稳定性研究

无论使用何种设计方法,都需要进行最终灭菌产品的稳定性研究。考察最终灭菌程序对产品性质稳定性影响的试验可包括产品的降解、含量、pH值、颜色、缓冲能力以及产品的其它质量特性。

灭菌时,杀灭微生物的效果和活性成分的降解都随着时间和温度而累积。这意味着加热和冷却的变化将影响产品的稳定性,同时影响杀灭效果。因此,稳定性研究用样品最好选取处于最苛刻的灭菌条件的产品,如:可采用在热穿透试验中F0最大的位置上灭菌的产品进行稳定性考察,以确保灭菌产品的质量仍能符合要求。

2.1.2过度杀灭法的工艺研究

通常来说,与残存概率法相比,过度灭杀法所需的被灭菌品开始生产阶段和日常监控阶段生物负荷的信息较少,但是过度杀灭要求的热能比较大,其后果是被灭菌品降解的可能性增大。

过度杀灭法的目标是确保达到一定程度的无菌保证水平,而不管被灭菌产品初始菌的数量及其耐热性如何。过度杀灭法假设的生物负荷和耐热性都高于实际数,而大多数微生物的耐热性都比较低,很少发现自然生成的微生物的D121℃值大于0.5分钟。因此,过度杀灭的灭菌程序理论上能完全杀灭微生物,从而能

提供很高的无菌保证值。由于该方法已经对生物负荷及耐热性作了最坏的假设,从技术角度看,对被灭菌品进行初始菌监控就没有多大必要了。

但这并不意味着生产过程中对污染可以完全不加控制。仅从控制热原的角度,也应当遵循工艺卫生规范,控制产品的微生物污染。如果实际生产中能够严格遵循GMP的要求,这一点是可以实现的。

2.1.3残存概率法的工艺研究

与过度杀灭法相比,残存概率法方法所需的信息量要大得多,包括被灭菌品生产开始阶段及常规生产阶段的信息、指示菌(对灭菌程序呈现强耐热性的试验菌)以及生物负荷的信息。只有积累了这类有价值的信息后,才能制定比过度杀灭法F0值低的热力灭菌程序,同时产品的无菌保证水平不会降低。使用热力较低灭菌程序更有利于药品的稳定性,使产品的有效期延长。正是因为这个原因,残存概率法更适合那些处方耐热性较差的最终灭菌产品。

通常说来,不耐热药品的灭菌可能不能使用过度杀灭法,需要设计一个灭菌程序能够恰当地杀灭生物负荷,同时不导致产品不可接受的降解。这种情况下,灭菌程序的确认就需研究产品的生物负荷和耐热性。根据以下公式可以比较清楚的说明这一点:

无菌保证值= F0 / D - lgN0

其中,无菌保证值是SAL的负对数,N0为灭菌开始时产品中的污染微生物总数,D为污染微生物的耐热参数。所以,菌工艺的无菌保证值与F0、N0、D 密切相关。

2.1.

3.1 灭菌前生物负荷的控制

采用残存概率法进行终端灭菌的产品,除了需要关注灭菌过程本身,还需要在生产过程中采用一些适当的手段来监测和控制药品灭菌前的生物负荷。具体的措施通常包括灭菌前微生物数量与耐热性的监测、药液过滤、工艺参数的控制等等。

灭菌前微生物污染水平的监测将在下面的章节详细阐述。产品过滤在终端灭菌的产品中仅仅作为辅助的控制手段,但是在工艺确定的过程中,也应该对滤膜的孔径、材质、滤器的使用周期进行必要的筛选。在工艺参数控制方面,由于微生物的特性,通常在药液放置期间也会逐渐繁殖,尤其一些营养型的注射液,如葡萄糖注射液、复方氨基酸注射液等,其环境更有利于微生物的生长和繁殖,因

此应通过工艺筛选和验证来确定溶液配制至过滤前、以及过滤后至灭菌前能够放置的最长时限,并相应确定产品的批量、生产周期等关键工艺参数。

2.1.

3.2 灭菌前微生物污染的监测

灭菌前微生物污染水平的监测应在正常生产过程中取样并覆盖整个生产过程,取样设计应选取生产过程中污染最大,最有代表性的样品,且要充分考虑到产品从灌封到灭菌前的放置时间。一般而言,如果灌装持续一段时间,可从每批产品灌装开始、中间及结束时分别取样。污染水平检查可以采用如下的方法:先用灭菌的5%吐温充分湿润0.45um的滤膜,然后定量过滤药液,将此滤膜移至营养琼脂平板上,在30~35℃下培养3~7天,计数。

分离获得的污染菌需要进行耐热性的检查。污染菌的耐热性检查可以采用以下的测定方法:先用灭菌的5%吐温充分润湿0.45um 的滤膜,然后过滤污染水平监测所取的药液样品,再将此膜移至装有无菌的待监测产品的试管中,在沸水浴上煮沸约30分钟,然后在30-35℃下在硫乙醇酸盐肉汤中培养,观察是否有耐热菌生长。

当耐热性检查发现药液存在耐热污染菌污染时,可采用定时煮沸法将它和已知的生物指示剂的耐热性加以比较,必要时,可再测试耐热污染菌的D值(D 值的具体检测方法详见附件2),然后根据灭菌的F0值及污染菌的数量与耐热性对产品的无菌做出评价。当产品微生物污染水平超标准时,应对污染菌进行鉴别、调查污染菌的来源并采用相应的纠正措施。

2.2湿热灭菌工艺的验证

湿热灭菌工艺的验证一般分为物理验证和生物学验证两部分,物理验证包括热分布、热穿透试验,生物学验证主要是微生物挑战试验。物理验证是证实灭菌效果的间接方式,而微生物挑战试验则直接反映灭菌的效果,两者不能相互替代。

2.2.1物理确认

2.2.1.1空载热分布试验

空载热分布的目的是主要是了解整个灭菌设备的运行情况,确认灭菌室内的温度均匀性,测定灭菌腔内不同位置的温差状况,确定可能存在的冷点。空载热分布试验通常采用足够数量的热电偶或热电阻作温度探头,进行编号后将它们固定在灭菌柜腔室的不同位置。温度探头的安放位置需要根据设备类型和不同位置下的灭菌风险评估而定,应包括可能的高温点、低温点,灭菌柜温度控制探头处、

靠近温度记录探头处,其他的探头可以均匀地分布于灭菌柜腔室内,以使温度的检测具有较好的代表性。温度探头在试验前后至少需要两个温度点进行校正。温度探头安放结束后,即可以按照设定的灭菌程序进行灭菌。

2.2.1.2装载热分布试验

装载热分布试验的目的是了解设备在装载条件下内部的温度分布状况,包括高温点、低温点的位置,为后续的评估和验证打下基础。装载热分布一般在空载热分布的基础上进行。温度探头的个数和安放的位置一般同空载热分布试验,注意一定要在空载热分布试验确定的冷点安放温度探头。温度探头安放在待灭菌的容器的周围,注意不能介入待灭菌的容器。

装载热分布试验需要考虑最大、最小和生产过程中典型装载量情况,进行试验时,应尽可能使用待灭菌产品,如果采用类似物,应结合产品的热力学性质等进行适当的风险评估。待灭菌产品的装载方式和灭菌工艺的各项参数的设定应与正常生产时一致,应采用图表的方式说明产品的装载情况,并评估探头放置是否合理。如果待灭菌产品存在不同包装规格或浓度规格,应评估验证所采用的样品和装载方式是否能充分反映所有样品的实际装载情况。每一装载量的热分布试验需要至少进行三次。温度探头在试验前后同样均需要进行校正。

2.2.1.3 热穿透试验

热穿透试验是考察灭菌柜和灭菌程序对待灭菌产品适用性的一项试验。热穿透试验的目的是确认产品内部也能达到预定的灭菌温度。对于药物而言,灭菌程序既要赋予产品一定的F0值,以保障产品的SAL≤10-6。同时灭菌程序又不应使产品受热过度而造成药物部分降解,以致同一灭菌批次的产品出现质量不均一。

热穿透试验所用的温度探头的个数和安放位置需要根据热分布试验的结果确定。一般可以采用足够数量的温度探头。应将热穿透温度探头置于液体容器中的冷点,即整个包装中最难灭菌的位置。如果有数据支持或有证据表明将探头放在产品包装之外也能够反映出产品的热穿透情况,风险能够充分得到控制,也可以考虑将探头放在容器之外。插有温度探头的产品的安放位置包括热分布试验确定的冷点和高温点、其他可能的高温点、灭菌柜温度探头附近、温度记录探头处。

热穿透试验的步骤及要求与装载的热分布试验基本相同,每一装载方式的热穿透试验也需要至少进行三次。通过热穿透试验可以确定在设定的灭菌程序下,

灭菌柜内各个位置的待灭菌产品是否能够到达设定的温度。结合灭菌前微生物污染的检测,可以确定灭菌柜内各个位置的待灭菌产品是否能够获得设定的F0值。

对于F0值最大点位置的样品,由于其受热情况最为强烈,因此应评估该位置下产品的稳定性情况,以进一步确认灭菌对于产品的稳定性没有影响。

2.2.1.4热分布和热穿透试验数据的分析处理

在物理确认试验中,应确认关键和重要的操作参数并有相应的文件和记录。通常需要关注的主要参数包括

-每个探头所测得温度的变化范围

-不同探头之间测得的温度变化范围

-探头测得的温度与设定温度之间的差值

-探头测得超过设定温度的最短及最长时间

-F0的下限及上限

-灭菌阶段结束时的最低F0值

-灭菌阶段的最低和最高压力

-饱和蒸汽温度和压力之间的关系

-灭菌阶段腔室的最低和最高温度

-热穿透温度探头之间的最大温差或F0的变化范围

-热分布试验中温度探头间的最大温差

-最长平衡时间

-最少正常运行的探头数

合格标准应结合灭菌条件、灭菌设备的特点以及产品的实际情况制定。通常情况下,灭菌柜腔室最冷、最热点和平均温度之间的温差应不超过2.5℃。保温时间内温度波动应在±1.0℃之内,如果温度差别过大,提示灭菌柜的性能不符合要求,需要寻找原因并进行改进,重新进行验证。另外对于热敏感的药物,还应该控制灭菌柜的升温和降温时间,以保证热能的输入控制在合理的范围以内,不会对产品的热稳定性造成影响。

2.2.2 生物学确认

湿热灭菌工艺的微生物挑战试验是指将一定量已知D值的耐热孢子(生物指示剂)在设定的湿热灭菌条件下灭菌,以验证设定的灭菌工艺是否确实能达到产品所需的标准灭菌时间和F0。此项验证工作能够如实反映灭菌工艺条件对微生

物的杀灭效果,从而证明该灭菌工艺所赋予相关产品的无菌保证水平是否符合要求。

2.2.2.1生物指示剂选用的一般原则

一般情况下,生物指示剂选择的原则性要求是:孢子稳定、非致病菌、易于培养、有效期长、保存及使用方便、安全性好。针对具体的灭菌工艺和具体的产品,还应注意所用的生物指示剂的耐热性应强于待灭菌产品中的污染菌。

湿热灭菌工艺常用的生物指示剂有以下几种,嗜热脂肪芽孢杆菌,枯草芽孢杆菌,凝结芽孢杆菌,梭状芽孢杆菌等。对于采用过度杀灭法的灭菌程序,生物指示剂系统主要是嗜热脂肪芽孢杆菌的孢子。残存概率法由于其热输入量比较低,因此在验证中使用的生物指示剂的耐热性可以小于嗜热脂肪芽孢杆菌的孢子。

2.2.2.2生物指示剂的使用和放置

实际验证过程中可以直接采用市售的生物指示剂成品或将生物指示剂接种在待灭菌产品上。采用市售品时,只要供应商具有相应的质量体系认证资质,在测试中其提供的生物指示剂的D值就可以被接受。采用将生物指示剂接种到待灭菌产品的方法,由于生物指示剂在不同介质或环境中的耐热性会有所不同,首先应考虑产品对生物指示剂耐热性的影响。所以对于具体的品种而言,如果需要将生物指示剂接种至产品之中,应测定生物指示剂在该产品中的耐热性,即D 值。如果生物指示剂与产品不相容,可以用与产品相似的溶液来代替产品。

生物指示剂的用量需要根据生物指示剂在待灭菌样品中的耐热性来确定,其用量应符合挑战性试验的要求。生物指示剂的用量可以采用阴性分数法或者残存曲线法计算,可以根据实际情况(如污染菌的耐热性,拟用的生物指示剂的D 值等)选择合适的计算方法,具体检测方法见附件3。

应结合产品特点和热分布、热穿透的实际结果来确定生物指示剂的放置位置。装有生物指示剂的容器应紧挨于装有测温探头的容器,在灭菌设备的冷点处必需放置生物指示剂。灭菌柜的其他部位应装载产品或者类似物,以尽可能的模仿实际生产时的状况。

2.2.2.3灭菌

生物指示剂的验证应该按照产品设定的灭菌工艺进行灭菌。

2.2.2.4检查和培养

可以根据生物指示剂的生长特性以及验证时的包装方式,采用适当的方法进行检查和培养。将指示剂放入培养基中进行培养。需要注意不同的生物指示剂所需要的培养条件也各不相同,针对使用的生物指示剂确定培养条件,同时应放置阴性和阳性对照样品。

2.2.

3.5试验结果的评价

根据生物指示剂的D值和接种量推算产品在灭菌过程中实际达到的SAL值。验证新的灭菌工艺时,每个产品的每个规格的每一灭菌程序,至少需要连续进行三次生物指示剂验证试验。如果试验的重现性好,所有试验的结果均提示SAL≤10-6,则验证结果提示该灭菌工艺为验证合格的灭菌工艺。如果各次验证的结果不一致,需要分析原因,采取相应的改进措施后重新进行验证工作。

3制剂无菌生产工艺

3.1无菌生产工艺的研究

无菌药品应首选采用终端灭菌工艺。如不能耐受终端灭菌工艺条件,应尽量优化处方工艺,以改善其耐热性。如确实无法耐受终端灭菌工艺,则可采用无菌生产工艺。无菌生产工艺通常包括无菌分装生产工艺和除菌过滤生产工艺。

3.1.1无菌分装生产工艺的研究

无菌分装生产工艺是将采用经验证的灭菌/除菌工艺过程处理后的原料药或者原料药和辅料,用无菌生产的方法分装到采用经验证的灭菌工艺处理的容器中,密封得到的。无菌分装生产工艺的工艺研究和生产过程控制的重点是影响无菌保证水平的工艺步骤,主要包括物料(包括原料药、辅料、内包装材料等)的质量控制、原材料暴露于环境中可能再污染的操作步骤等。

关于物料的质量控制,采用无菌分装生产工艺的制剂所涉及的各种物料,都必须采用适当的灭菌/除菌工艺处理后方可使用。各种物料的灭菌/除菌工艺,都应是经过验证的、控制良好的工艺。同时需要对各种物料的无菌性、细菌内毒素水平等进行严格控制,通过研究确定相应的质控标准。

无菌分装的生产工艺是将原料药或者原料药和辅料经分装设备分装至内包

装材料中后密封得到。分装步骤是影响产品质量和无菌保证水平的关键生产步骤,应结合生产设备和产品特点进行工艺参数的研究,包括分装速度和分装时间等。

无菌分装生产工艺能否达到设定的无菌保证水平,与整个生产过程的控制密切相关,应按照GMP要求及产品具体生产工艺情况进行生产环境和生产过程的控制。在进行无菌生产工艺验证时,应采用最差条件进行验证,在实际生产过程中,对生产过程和工艺参数的控制均不能超过经验证的最差条件的控制范围。

3.1.2 过滤除菌生产工艺的研究

过滤除菌的无菌生产工艺是通过除菌过滤器,将药液中的微生物除去得到无菌滤液。采用过滤除菌工艺时,同样需要对影响无菌保证水平的工艺步骤及工艺参数进行详细的研究,主要包括物料的质量控制、除菌过滤器的选择及除菌过滤工艺参数的研究、除菌过滤生产过程的控制等。

对于采用过滤除菌生产工艺的制剂,需注意对配制药液使用的原料药、辅料(包括注射用水)等原材料的微生物种类及数量进行检查,掌握潜在的污染微生物的总体特性情况,通过研究确定相应的质控标准。采用过滤除菌生产工艺的制剂所使用的内包装材料,必须采用适当的经验证的灭菌工艺处理后方可使用。

除菌过滤生产工艺所使用的除菌过滤器,通常为标称孔径0.2微米或更小的除菌级的过滤器。除菌过滤器的过滤效能是评价除菌过滤工艺的重要参数,需要对除菌过滤器的过滤效能进行验证。通常,影响除菌过滤器的除菌过滤效能的因素包括:①药液的性质,如药液的粘度、表面张力、pH值、渗透压等;②过滤步骤的工艺参数,如过滤的压力、流速、时间、温度等;③除菌过滤器的相关参数,如除菌过滤器与药液的相容性、除菌过滤器的过滤总量和使用周期等。除菌过滤器的过滤效能可因产品和操作条件不同而显著不同。除菌过滤器的选择及工艺参数的研究可结合上述影响除菌过滤器的过滤效能的因素进行。在实际生产过程中,在过滤除菌前后均需要进行滤器完整性测试。由于微生物通过过滤器的概率随着待过滤溶液中微生物数量的增加而增加,除菌过滤工艺中需对待过滤溶液的微生物负荷情况进行研究和控制,通常情况下,最终除菌过滤前,料液的微生物负荷应不超过10cfu/100ml。应通过研究确定无菌生产各操作环节的时间控制范围,如料液配制后待过滤的存放时间、药液过滤操作的时间、过滤后至灌装前放置的时间、灌封操作的时间、灭菌后的内包装材料及密封件允许的放置时间等。各生产环节操作时间的确定需提供相应的试验数据。

3.2 无菌生产工艺的验证

无菌生产工艺的验证主要包括培养基模拟灌装试验,应当尽可能模拟常规的

无菌生产工艺,包括所有对无菌结果有影响的关键操作,及生产中可能出现的各种干预和最差条件。新建的无菌生产工艺的生产线在正式投产前必须进行连续三批无菌培养基模拟灌装试验。在生产用的设备、设施、人员结构及工艺方法有重大变更时都应进行培养基模拟灌装试验。实际生产中每半年应至少进行一次培养基模拟灌装试验。

对于除菌过滤无菌生产工艺的验证,还包括对除菌过滤系统的验证,如过滤器的微生物截留验证、过滤器与待过滤药液的相容性验证、过滤器的完整性验证等。

3.2.1培养基模拟灌装试验

3.2.1.1培养基

培养基模拟灌装试验需要选择合适的培养基,并对培养基的质量进行控制。

应当根据产品的剂型、培养基的选择性、澄清度、浓度和灭菌的适用性选择培养基。一般选用胰胨大豆肉汤培养基(TSB),按每30g加1L过滤纯化水的比例,配制足够量。某些特殊情况下也可以选用厌氧生长培养基,如硫乙醇酸盐培养基(FTM)。

培养基的质量控制主要包括培养基的微生物生长性能和无菌性。

培养基的微生物生长性能:在按照标准操作规程制备培养基并灭菌后,可按照中国药典附录进行培养基微生物生长性能试验,确认所制备的培养基应出现明显的所接种的微生物的生长。

培养基的无菌性:可按照中国药典附录进行培养基无菌性检查,结果应符合规定。

在培养基模拟灌装试验中,需进行阳性对照试验,即取低浓度的菌种接种于进行阳性试验用的对照容器中,与培养基模拟灌装试验在同一条件下进行培养。除了中国药典附录中规定的阳性菌,建议使用生产环境中常见的微生物,如枯草芽孢杆菌、白色念珠球菌,或者在同一生产环境中曾被检出过的菌种。接种量一般每个容器102以下,每个菌种接种2瓶,通常需均证实有菌生长,该培养基模拟灌装试验方有效。

如果试验中需要使用模拟分装用粉末,同样需要对模拟分装用粉末进行选择和质量控制。模拟分装用粉末的选择一般遵循以下原则:①可以在干粉状态下灭菌,灭菌后的无菌性达到药典规定的标准;②流动性较好,可以用分装机分装;

③可溶于液体培养基;④在模拟试验应用的浓度下无抑菌性。常用的模拟分装材料有乳糖、甘露醇、PEG6000、PEG8000等,也可以采用培养基干粉作为模拟分装用无菌粉末。

3.2.1.2模拟无菌生产工艺的操作过程

培养基模拟灌装试验中使用的内包装材料的清洗、灭菌,分装设备的清洗、消毒及与产品接触的分装设备部件的清洗、灭菌、安装过程均应遵循与实际生产操作相同的标准操作规程。培养基模拟灌装试验过程中应制订取样计划,对使用的内包装材料间隔一定数量后随机取样进行无菌性检查;同时,全部与产品接触的设备表面应无菌。某些特殊情况下,如胶塞具有抑菌性,则需要考虑更换采用其他相当的但无抑菌性的胶塞。

应当注意有足够数量的培养基与容器的内表面充分接触,灌装培养基时,每个容器的灌装体积一般为1/3-1/2之间,最多不能超过容器的85%。应注意,对于冻干粉针剂的验证试验,在培养基灌装半压塞后,只需模拟样品进入和移出冻干机的过程即可,而不必模拟冻干过程,以保证一旦有细菌,能够保持较好的生存能力。同时,还应模拟一些可能造成污染的操作步骤,如抽真空,充氮等步骤。

培养基模拟灌装试验应当尽可能模拟常规的无菌生产工艺,应当包括所有对无菌结果有影响的关键操作,包括生产中可能出现的各种干预和最差条件,各种干预和最差条件的考虑需要体现风险控制的理念。通常可能出现的各种干预和最差条件包括:①人员数量和他们的活动、换班、休息、更衣(需要时);

②设备调试,正常停车、非正常停车、意外事故(如检修等);③采用灭菌后所允许放置的最长时间的设备或者车间进行生产;④模拟生产时间最长的批量所需的时间;⑤采用最慢的填充速度和最大的包装容器(即最长的暴露时间);采用最快的填充速度和最小的包装容器(即容易伴随更多干预的生产情况)。总之,在试验计划中,总体研究设计和运行时间应该模拟可能出现的各种干预和最差操作条件,覆盖所有实际生产过程涉及的操作。

培养基模拟灌装的数量应当足以保证评价的有效性,批量较小的产品,培养基模拟灌装的数量应当至少等于产品的批量。

3.2.1.3试验结果的评价

培养基模拟灌装试验需要对所有灌装样品进行培养和无菌检查。培养基模拟

灌装试验的目标是零污染,应当符合以下要求:

是否可以重复进行试验等等。

3.2.2 除菌过滤系统的验证

除菌过滤系统的验证一般包括:微生物截留研究、析出物研究、化学兼容性研究和药液吸附研究。

3.2.2.1微生物截留研究

过滤器的微生物截留验证的目的:除菌过滤器微生物截留试验是通过模拟实际过滤工艺,过滤含有一定量生物指示菌的溶液,确认除菌过滤器的微生物截留能力。

过滤器的微生物截留验证的设计:

(1)挑战用微生物的选择

通常采用缺陷性假单胞菌作为挑战性试验用菌。在有些情况下,缺陷性假单胞菌可能不能代表最坏条件,则需要考虑采用其他细菌。如果使用其他细菌,应保证该细菌足够细小至足以挑战除菌级别滤器的截留性能,并能模拟产品中发现的最小微生物。应尽可能的进行微生物负荷的鉴别和量化研究,掌握所分离的微生物的形态学特征,为挑战性微生物的选择提供依据。

挑战性微生物的大小可以通过其可穿过0.45微米级别的滤膜来确证。通常情况下,标准培养条件下生长的缺陷性假单胞菌,在高挑战浓度(如≧107)时,能少量穿过0.45微米级别的滤膜。

(2)微生物截留试验条件

在试验室模拟生产工艺条件,将定量缺陷性假单胞菌加入到料液中,进行过滤。根据实际生产条件,考虑确定微生物截留试验的过滤时间及温度、压差、流

速等。建议对实际生产的过滤工艺进行一次彻底评估,包括溶剂性质(例如水性的、酸、碱、有机的)、过滤时间、工艺压差、工艺流速、工艺温度和过滤器设计规范,以便合理设计微生物截留试验条件。

过滤时间和压差会影响细菌截留试验的结果。在完整的生产时间进行微生物截留试验可以对那些与时间有关的因素进行评估,如过滤器兼容性,完整性的维持,时间依赖性的穿透等。

微生物截留试验过程中的压差应达到或超过实际生产过程的最大压差和/或最大流速(在过滤器制造商的设计规范内)。在验证过程中同时模拟压差和流速可能是不可能的。在设计挑战试验条件时过滤器的使用者应该确认哪个参数与特定工艺的相关性更高,以便为微生物截留试验条件的确定提供依据。

微生物截留验证研究应包括多个批次的滤膜(通常三个批次)。在用于微生物截留验证研究的三个批次的滤膜中,至少应有一个批次是进行预研究时或使用前物理完整性测试时的数值通过但是接近(例如,10%之内)过滤器生产商提供的合格规范限值的。

(3)微生物截留验证研究中使用的过滤膜的物理完整性检测数值应包括在实验报告中。物理完整性检测应使用已有规范值的水、产品或其它润湿流体来进行测试,并在进行微生物挑战前完成。

如果微生物截留验证研究后,测试用微生物在任何过滤器的下游被检测到,那么就需要对此进行调查。如果调查确认测试用微生物能穿透完整性检测达标的过滤器,那么就应重新考虑此种过滤器在这些工作条件下的适用性。

需要关注的是,过滤器的重复使用通常是不被推荐的。如果需要重复使用除菌级过滤器,需要说明理由,重复使用的相关参数(如过滤量等)也需要经过严格的验证后确定相应的范围。

3.2.2.2析出物和释放物研究

析出物指在人为或挑战性条件(如溶剂、温度或时间)下,从某一材料中脱离的任何化学组分。释放物是指在正常储存或使用条件下,从接触面上进入产品或工艺流体中的物质。潜在的析出物或释放物的来源包括但不限于:膜组件(如:成形剂、表面活性剂、抗氧化剂、残留溶剂、支架层)和塑料组件(如:封盖、外壳、支架、O型圈)。影响释放物的因素可能包括过滤液的化学性质、灭菌方法、接触时间、温度和过滤量与面积之比。有机溶液的过滤产生的释放物可能比

水溶液过滤要更高。

析出物数据可从过滤器生产商处获得,也可以由过滤器使用者进行试验取得。考虑到析出物的来源不同和影响析出物的因素较多,建议过滤器使用者在开展研究时尽可能使用实际产品,并使用与实际生产相同类型的过滤器。有些情况下可能需使用替代溶液进行试验,例如,产品会干扰分析方法或产品有抑菌性等。这时,替代溶液必须与待过滤产品性质尽可能一致。另外,也可以选择使用几种溶液来涵盖实际过滤溶液的pH、离子强度或有机成分的含量等特性。如果使用了替代溶液或几种溶液合并的方式,则必须提供溶液选择的合理依据。

一旦确定好用于析出试验的萃取溶液(产品、替代液或几类溶液合并使用),则应在设计试验时模拟实际生产条件下最劣工况,具体应考虑诸如温度、时间、pH和预处理(如:冲洗、灭菌)工序等关键变量。析出试验应采用过滤装置处于最劣生产条件时的接触时间和温度,使用经过高压灭菌或消毒过的过滤器来完成。可以用静态浸泡或循环流动的方法。采用静态浸泡法时,过滤器在给定温度的析出溶液中浸泡一段既定的时间。而采用循环流动法时,萃取液在既定的时间内循环反复穿越过滤器。将萃取液收集并检测,从而确定其中的过滤器析出物。

在取得过滤器萃取液后,通过分析可以确定来自过滤器的物质种类和含量。除了对过滤器析出物的种类和含量进行确定外,必要时还可以采用已被认可的生物反应性试验对其安全性进行评估。

3.2.2.3 相容性研究

过滤器的相容性研究用来评估过滤装置与料液的化学相容性,以避免可能的过滤器受损或变形,并能防止料液受到释放物或微粒物质的污染。化学相容性试验应涵盖整个装置,试验的设计应考虑料液性质、过滤温度和接触时间等。由于过滤装置与过滤料液或溶剂之间可能存在诸多化学相互作用,过滤器生产商所提供的代表性的化学相容性表通常只作为过滤器使用者的参考,过滤器使用者需要进行更全面的测试。通常的化学相容性试验包括:接触料液前后的目视检查、过滤过程中流速变化、滤膜重量变化、过滤前后起泡点变化等。

3.2.2.4 吸附性研究

吸附是所过滤的料液中的某些成分粘附在滤膜上的过程,可能影响料液的构成和浓度。过滤器中吸附性的材料包括滤膜、硬件和支撑性材料。吸附试验条件可以根据实际生产条件确定,流速、过滤时间、料液浓度、防腐剂浓度、温度和

pH值等因素都可能影响吸附效果。吸附试验中采用的检测方法可以采用产品质量标准中所确定的相关检测方法。

4原料药无菌生产工艺

无菌原料药是指在法定的药品标准中规定无菌检查项目的原料药。化学原料药的常用生产工艺包括化学合成工艺、微生物发酵工艺,以及采用微生物发酵产品作为起始原料的半合成工艺;而原料药的无菌工艺特指对制成的原料药进行无菌化处理的相关工艺,无菌工艺之前的生产过程不属本章节的讨论范畴。但对于用于无菌制剂生产的无菌辅料(如盐酸精氨酸、碳酸氢钠等)的无菌工艺验证也可以参考本指导原则的相关要求。

与无菌制剂工艺相比,无菌原料药的生产工艺一般要更复杂,设备类型多种多样,且不同的工艺有不同的特点。工艺过程中的物料、内包装材料、设备(包括阀门、管道等相关部件)的灭菌和无菌传递、对接、组装等操作相比无菌制剂要复杂的多。原料药从非无菌转化成无菌状态的常用方法是通过除菌过滤来实现。该过程受料液性质影响很大,需要根据料液的性质选择适当的过滤器及滤芯的材质。另外,原料药的生产设备通常体积较大且内部结构复杂,在选择放置位置或进行投料、取样、回收操作时应考虑如何保证洁净区内的气流流向符合要求,以及如何匹配好高效过滤器的位置与设备本体之间的位置分布等等。

尽管无菌制剂和无菌原料药在生产过程和质量控制特点上存在诸多不同,但就无菌保证的基本原则,以及生产管理和验证的基本原则而言,两者的要求又是相通的。因此在生产设备、厂房设施、洁净级别及监测、灭菌工艺与方法及质量控制要求等方面,无菌原料药和无菌制剂的要求可以相互参考。

4.1 无菌原料药生产工艺特点

无菌原料药可以通过最终灭菌或非最终灭菌的方式获得。对于采用最终灭菌的无菌原料药,必须严格控制微生物污染、细菌内毒素和不溶性微粒的水平。由于多数原料药的耐热性较差,所以通常无菌原料药采用非终端灭菌的方式生产。

无菌原料的精制过程和除菌过程经常结合在一起,作为生产工艺的一个单元操作来完成。目前生产上最常用的方法是无菌过滤法;即将非无菌的中间体或原材料配制成溶液,再通过0.22μm孔径的过滤器以达到除去细菌的目的。无菌原料药常用工艺包括溶媒结晶和冷冻干燥两种,前期国内也有采用喷雾干燥工艺的无

菌原料药,但是多因为其生产工艺不能满足无菌工艺的验证要求而逐渐被放弃或进行了工艺变更。

溶媒结晶工艺和冷冻干燥工艺涉及的具体设备和操作各不相同,但都采用除菌过滤的方式使料液从非无菌状态转变为无菌状态,并且要在此后的干燥、粉碎、混合以及分装过程中始终保持无菌状态。

4.1.1 溶媒结晶工艺

典型的溶媒结晶工艺流程包括非无菌原料药的溶解、除菌过滤、结晶、固液分离(如常用过滤、离心等方法)、洗涤、干燥、粉碎、混合、分装等过程。溶解环节应关注物料的微生物负荷、溶剂的质量、设备的微生物污染水平以及使用的料液输送动力源(如空气或氮气)的微生物污染水平。除菌过滤环节应关注滤器本身的无菌性、过滤器与料液的相容性、滤芯本身及装配后的完整性、过滤器的清洗及灭菌周期、过滤器的除菌效率、除菌滤器前料液的微生物污染水平等。结晶环节应关注设备无菌性、密封性及密封装置的可靠性、设备的清洗及灭菌周期、呼吸器的完整性及无菌性;如需加入晶种,晶种本身应符合无菌药品的要求,并且应验证晶种加入过程的无菌保证。过滤或离心环节应关注设备无菌性、密封性能及密封装置的可靠性、清洗及灭菌周期、呼吸器的完整性及无菌性等。洗涤环节应关注洗涤溶剂的无菌性。干燥环节应关注干燥设备无菌性、密封性能及密封装置的可靠性、清洗及灭菌周期、呼吸器的完整性及无菌性,以及真空系统的防倒吸设置(如使用真空,应在管路上安装除菌级别的过滤器)。粉碎环节应关注设备无菌性、密封性能及密封装置的可靠性;粉碎用气体(如使用气流粉碎机)的无菌保证、给料方式的无菌保证水平等。混合环节应关注设备无菌性、密封性能及密封装置的可靠性、清洗及灭菌周期等。分装环节应关注分装设备本身的无菌性或者其产品暴露洁净级别是否达到A级区标准,关注内包装材料的无菌性、内包装材料的递入方式、内包装容器的密封性以及取样环节的无菌保证。

4.1.2 冷冻干燥工艺

冻干无菌原料药的典型流程包括原料药的溶解、除菌过滤、冷冻干燥、粉碎、混合和分装。其中除冷冻干燥环节外,其它工艺步骤的关注重点可参考溶媒结晶工艺的相关要求。冻干工艺环节中应关注的主要问题包括冻干机本身及附属装置的无菌性、密封性能及密封装置的可靠性、清洗及灭菌周期、设备的可清洗及可灭菌性;真空系统的保证及干燥后的压力平衡,补气过程的无菌保证(宜补充无

菌气体或者在冻干机上安装除菌呼吸过滤器),以及物料进出设备时的无菌保证。

4.2 无菌原料药工艺验证

采用终端灭菌工艺的无菌原料药工艺验证可参考制剂终端灭菌工艺验证的相关要求。非终端灭菌的无菌原料药工艺验证主要包括培养基模拟灌装验证和过滤除菌系统验证。其中的过滤除菌系统验证可参考无菌制剂的相关要求,并重点关注进入结晶罐的所有物料(如原料药、溶媒、酸碱、气体等)均应除菌过滤,并进行相关验证。

4.2.1 验证批量

常规生产批量较小的无菌原料药,应最大限度模拟大生产的批量。对于常规生产批量较大的无菌原料药,考虑到模拟大生产批量的可行性和实际介质培养的可行性,模拟灌装批量可以比大生产批量小,但模拟介质应能够接触到所有产品可能接触的设备内表面。并能够充分模拟实际生产可能遇到的其它各种最差条件。

4.2.2 最差条件

选择最差条件时,应考虑进出人数(包括维修人员)、生产材料、设备设施在无菌区的暴露时间、设备灭菌后至开始灌装前的间隔时间,以及微生物抑制因素(如温度、氮保护、抗生素)的调整和消除等。应确认模拟介质是否能接触到实际生产工艺过程中所有无菌产品可能接触到的表面,时间间隔是否具有可比性(比如溶解过滤时间应不短于实际生产过程中使用的时间),可将时间延长来模拟最差条件,如果缩短时间来模拟,需要说明/论证是否缩短时间后的条件可等同于生产工艺的最差条件。

其它要求可参考无菌制剂的验证相关内容。

附件1:灭菌工艺选择的决策树

溶液剂型产品灭菌方法选择的决策树

软袋灭菌工艺验证

0.9%氯化钠注射液(100ml软袋) 灭菌工艺验证报告 验证工艺0.9%氯化钠注射液(100ml软袋)灭菌工艺验证车间输液 3 线 验证方案制订: 部门姓名日期品管部 验证方案审核: 部门姓名日期研发部 生产部 品管部 验证方案批准:日期: 验证结果审核: 部门姓名日期研发部 生产部 品管部 验证结果批准:日期:

1.概述 为了改善输液软袋外部的洁净度,本品种采取了双袋灭菌工艺。内袋灌注 药液后,再进行套外袋,内袋和外袋共同进行灭菌,避免了内袋和输液塞与外界 环境的接触,给患者增加了安全感,也方便了医务人员,双袋输液进入手术室内 即可使用。 本品为临床上常用的输液品种。用于各种原因所致的失水,包括低渗性、等 渗性和高渗性失水;高渗性非酮症糖尿病昏迷,应用等渗或低渗氯化钠可纠正失 水和高渗状态;低氯性代谢性碱中毒等。 本公司按最终灭菌药品的工艺进行生产。鉴于本品化学性能稳定,故采用115℃、35分钟的灭菌温度进行灭菌(Fo≥12),现将灭菌情况报告如下。 灭菌釜的型号:PSMD7280 生产厂家:山东新华医疗器械股份有限公司 本公司设备编号: 灭菌釜的结构: PSMD型大输液水浴灭菌器为圆形筒体结构,灭菌室最高可承受0.27MPa压力。筒体材料为8mm厚耐酸不锈钢,支座材料为碳钢板Q235B。水浴灭菌器将 蒸汽通过热交换器间接加热纯化水,并以循环喷淋方式对输液瓶进行加热灭菌,灭菌结束后,冷却水通过热交换器冷却纯化水,对输液瓶进行冷却,使产品温度 降到60℃左右。 通常将待灭菌的产品放置在不锈钢架子里,软袋每车为18层,每层30袋,装载后用车子推入灭菌机内。100ml软袋产品装载12车(约6480袋/批)。 灭菌柜采用计算机与程序逻辑控制器(PLC)进行自动化控制。灭菌程序中 的主要参数,如灭菌加热速率、压力、温度、时间及冷却速率都可根据不同产品 的要求设定。温度控制系统使用Pt 100探头6只。一个探头测定循环水入口处的 温度,另一个探头测量循环水出口处的温度,其余4个探头直接插入瓶内测定瓶 内温度,与计算机控制系统相连,用于灭菌温度控制,只有当4个瓶内探头中的 3只达到设定温度时,才开始记录灭菌时间。另一个探头用来测定腔室内的压力,并通过压缩空气来调节控制腔室内部压力。 灭菌步骤:装车,进纯化水、升温(热交换循环)、保温(灭菌)、排气及冷却 等阶段。 2. 测试方法 2-1热电偶校正: 2-1-1 校正器材: 名称型号厂商检测单位有效期 二等标准水银温度计 50~100℃,棒式 100~150℃,棒式 常州南方仪表有限公司 无锡计量 测试中心

工艺确认-工艺验证

1.工艺验证系列:第一节--工艺验证概述及传统工艺验证 1.1.工艺验证的定义 工艺验证应当证明一个生产工艺按照规定的工艺参数能够持续生产出符合预定用途和注册要求的产品。 工艺验证可以有不同的验证方法,一般包括:传统工艺验证(前验证、同步验证)以及基于生命周期的工艺验证(工艺设计、工艺确认、持续工艺确认)。 工艺验证不应该是一次性的事情。鼓励药品生产企业采用新的工艺验证方法,即基于生命周期的方法,将工艺研发、商业生产工艺验证、常规商业化生产中持续工艺确认相结合,来确定工艺始终如一的处于受控状态。 1.2.工艺验证的一般原则 工艺验证的方法和方针应该有文件记录,例如,在验证总计划中规定。 采用新的生产处方或生产工艺进行的首次工艺验证应当涵盖该产品的所有规格。企业可根据风险评估的结果采用简略的方式进行后续的工艺验证,如选取有代表性的产品规格或包装规格、最差工艺条件进行验证,或适当减少验证批次。 工艺验证批的批量应当与预定的商业批的批量一致。 企业应当根据质量风险管理原则确定工艺验证批次数和取样计划,以获得充分的数据来评价工艺和产品质量。 企业通常应当至少进行连续三批成功的工艺验证。对产品生命周期中后续商业生产批次获得的信息和数据,进行持续的工艺确认。 企业应当有书面文件确定产品的关键质量属性、关键工艺参数、常规生产和工艺控制中的关键工艺参数范围,并根据对产品和工艺知识的理解进行更新。 工艺验证一般在支持性系统和设备确认完成后才可以开始。在某些情况下,工艺验证可能与性能确认同步开展。 用于工艺验证的分析方法已经过验证。 用于工艺验证批次生产的关键物料应当由批准的供应商提供,否则需评估可能存在的风险。 日常生产操作人员及工艺验证人员应当经过适当的培训。 工艺验证在执行前应进行适当的风险评估,以确定存在的风险点。

药品工艺回顾性验证方案

工艺回顾性验证方案 和数理统计分析 文件编码:×××××××× 起草人:日期:年月日 验证小组会签: 生产管理部经理:日期:年月日设备动力部经理:日期:年月日Q C室主任:日期:年月日质量管理部经理:日期:年月日 方案批准: 验证委员会主任:日期:年月日 方案执行: 执行日年月日

验证小组组长: 目录 一、概述 二、验证目的 三、验证组织和职责 四、数据选择和收集 五、数据采用的统计分析方法 六、*******药品回顾性验证和数理统计分析 七、*******药品收率数理统计分析 八、*******药品**有效成分含量数理统计分析 九、 *******药品成品水分数理统计分析 十、偏差 十一、结果评价与结论 十三、验证小组领导意见

一、概述 为确保在提高*******药品质量标准后生产出合格的*******药品,经过半年生产后对*******药品生产工艺进行回顾性验证。通过回顾性验证证明*******药品的生产工艺确实能够稳定地生产出符合预定规格及质量标准的产品,生产工艺具有可靠性和重现性。 二、验证目的 在提高*******药品质量标准后生产的*******药品中按相关的要求选取30批*******药品,通过统计分析。检验证实生产工艺和产品质量能够符合质量标准。确认本生产工艺稳定、操作规合理,工艺具有可靠性和重现性,确保能生产出合格的产品。 三、验证组织和职责 1 、验证小组成员表 验证小组成员表

2、职责 2.1验证委员会 2.1.1 负责审阅并批准工艺回顾性验证方案。 2.1.2负责验证结论的判定批准。 2.2质量管理部 2.2.1组织验证工作的实施及各部门的协调,保证验证工作有序的进行。 2.2.2负责验证方案的审核,及操作过程中对验证文件修订的审核工作。 2.2.3负责验证方案及实施计划的归档工作。 2.2.4负责审核相关数据的准确性、真实性。 2.3生产管理部 2.3.1负责编写工艺回顾性验证方案。 2.3.2负责完成工艺回顾性验证。 2.3.3审阅工艺回顾验证方案﹑数据和最后的报告。 2.3.3审核验证对所需的测试项目是否全部完成可上报批准。 四、数据的选择和收集 1、数据的选择和收集依据 1.1 生产记录是在同一生产工艺下完成。 1.2检验结果是在同一检验环境下完成。 1.3生产记录和检验结果必须真实可靠。 1.4选择和收集的数据不少于10批,最好在20批以上。 1.5选择和收集数据的批次是连续生产的。

工艺验证报告

验证文件 XXXXXX有限公司 2013年XX月6.验证报告起草、审核与批准 6.1验证报告起草 6.2 再验证报告审核 6.3 再验证报告批准

目录 1. 验证概述 2. 验证目的 3. 验证范围 4. 再验证依据标准 5. 机构与职责 5.1 验证机构 5.2 验证职责 6. 验证方式 7. 验证准备 7.1 设备设施准备7.2 仪器试剂准备

7.3 原辅物料准备 7.4 文件与培训 8. 验证时间与计划 9. 验证实施 9.1 产品的工艺流程图9.2产品的工艺验证: 9.2.1称量备料 9.2.1.1目的 9.2.1.2文件 9.2.1.3检查项目及结果9.2.2 配制 9.2.2.1 目的

9.2.2.2 文件 9.2.2.3 评估项目 9.2.2.4 评估方法 9.2.2.5 取样方法 9.2.2.6配制试验数据 9.2.3 灌装封尾 9.2.3.1 目的 9.2.3.2文件 9.2.3.3评估项目 9.2.3.4评估方法 9.2.3.5灌装封尾检查数据9.2.4 成品抽样检验

9.2.4.1 目的 9.2.4.2 文件 9.2.4.3 评估项目 9.2.4.4 评估方法 9.2.4.5产品检验报告复印件 10. 偏差与处理. 11. 结果与分析 11.1 验证数据汇总 11.2 存在问题与措施 11.3 风险与预防 12. 验证结论 12.1 验证结论

12.2 验证评价与建议 13. 验证周期 14. 附件 15.参考或引用文件 1.概述: 复方醋酸地塞米松乳膏为我司生产多年的乳膏剂品种,自2009GMP再认证以来,乳膏剂生产线生产所用关键设备、生产工艺及工艺参数没有改变,为了验证在正常的生产条件和GMP文件管理体系下能生产出符合预定的规格及质量标准的产品,根据验证管理文件的要求,我们对复方醋酸地塞米松乳膏的生产工艺进行再验证。 2.目的: 在现行的GMP文件管理体系下,生产三批复方醋酸地塞米松乳膏进行工艺再验证: (1)确认关键工序质量监控点是否符合质量要求; (2)确认该产品质量是否符合预定成品的标准。

工艺验证方案

工艺验证方案 1

下载文档 收藏 1工艺验证方案 体外诊断试剂质量管理体系文件 北京生物医学科技有限公司生产工艺验证方案类别:验证方案编号: 部门:XXXXXX 诊断试剂盒(AAAA)工艺验证小组页码:共 23 页,第 1 页 XXXX(XXXX) XXXX(XXXX)诊断试剂盒 (AAAA)工艺验证方案 AAAA)版次: □ 新订□ 替代: 年月日制定人: 审批会签: (验证小组) 批准人: 生效日期: 年年月月日日共 23 页,第 1 页 北京易斯威特生物医学科技有限公司生产工艺验证方案目录一. 目的 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3 二、范围 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3 三、职责 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3 1、验证委员会 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3 2、工艺验证小组 2

备科 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 4、生产部 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 5、质量检验部 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 四、验证内容 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 1、文件 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 2、方案概要 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈5 3、验证步骤 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈5 五、时间进度表 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈10 六、验证周期 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈11 七、验证结果评价和建议 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈11 八、附件 3

辐照灭菌验证确认方案说明

辐照灭菌 验证确认方案 编号: . 版次: 起草人:日期: . 审核人:日期: . 批准人:日期: .

目录 1概述 2目的 3验证人员 4验证进度 5验证方案内容 5.1资料档案确认 5.2设备检查确认 5.2.1安装确认与运行确认 5.2.2辐照单位相关资质证件(附件一) 5.2.3辐照单位相关信息、银行账号(附件二) 5.3性能确认 5.3.1目的 5.3.2内包装材料材质确认 5.3.3灭菌剂量确认(附件三) 5.3.4 产品装载模式的确认 5.3.5产品剂量分布图(附件四) 5.3.6检测项目及标准 5.4灭菌效果测试 5.5异常情况处理程序 5.6第三方检验、检验报告(附件五) 6再验证周期 7验证总结及方案批准 7.1验证总结 7.2验证结果审核 7.3方案批准 8 GB 18280 – 2000 idt ISO11137:1995《医疗保健产品灭菌确认和常规控制要求辐照灭菌》(附件六) 9老化试验方案、试验记录(附件七) 10再验证记录(附件八)

1概述 辐照灭菌与其他主要灭菌方式对比所存在的优点 常见术语和定义 1)钴 60:钴59的同位素,半衰期约为5.27年。 2)半衰期:放射性原子核的数量因衰变而减少为初始值一半所需的时间。 3)放射性活度:一定量的放射性核素在一定时间间隔内发生的核衰变数除以该时间间隔叫做放射性活度。在国际单位制中,放射性活度的单位为贝可勒尔,简称贝可,符号为Bq,1Bq 等于放射性核素在1秒钟内有1个原子核发生衰变,即1Bq=1次衰变/秒。早期的放射性活

度单位叫居里(Ci),1Ci=3.7×1010Bq。 4)吸收剂量:传输到物质单位质量上的辐射能的量。衡量吸收剂量的单位是Gray(戈瑞),1Gray就是1千克的物质吸收1焦耳的能量。以前衡量吸收剂量使用的单位是rad (拉德) ,取名于"radiation absorbed dose”。1戈瑞= 100 拉德。 5)无菌保证水平 (SAL) :灭菌后单元产品上存在微生物的概率。例如SAL为10-6 的含义是100万个产品里有一个产品被污染。 6)D-10值:将同源微生物总数杀灭90%所需的辐照剂量 (kGy)。 7)不均匀度:同批产品在辐照容器中的最大吸收剂量与最小吸收剂量之比值,即U=Dmax/Dmin,亦称剂量均匀性。 8)最低辐照吸收剂量:在辐照容器内,传输到最低剂量位置上物质的单位质量上的辐射能量。9)最高辐照吸收剂量:在辐照容器内,传输到最高剂量位置上物质的单位质量上的辐射能量。10)生物负载:一件产品上活微生物的总数。 11)剂量计:对辐射有可重复出现、可测量的响应的器件或系统,可用于测量给定材料中的吸收剂量。 12)微生物限度标准:由相关法规和或生产工艺标准规定的具体量化标准。合格产品的微生物负载,在保质期限内,不得高于微生物限度标准。 13)初始微生物指标:进行灭菌(杀菌)之前,产品的微生物负载。 14)照否标签:一种粘贴式标签,接受足够的伽玛射线时会改变颜色,从而将已经辐照的产品与未辐照产品区分开。照否标签分为两种量程(灵敏度):4~10kGy,辐照后颜色由绿色变为紫色;>10kGy,辐照后颜色由黄色变为红色。 15)消毒:杀灭或消除产品上的病原微生物,使之达到无害化的处理过程。 16)灭菌:经确认使产品无活微生物的加工。(在灭菌加工中,微生物的死亡规律用指数函数表示。因此,任何单件产品上微生物的存在可以用概率表示。概率可以减少到非常低的数目,

环氧乙烷灭菌验证方案计划

环氧乙烷灭菌验证方案

XXXXX医疗科技有限公司 年月

,. 环氧乙烷灭菌验证方案

目录 1. 概述 2. 验证目的 3. 相关文件 4. 验证组织职责 5. 验证实施时间 6. 验证内容与方法 7. 漏项、偏差的处理程序 8. 验证周期 9. 验证结果评定与结论 10.附表 附表1:环氧乙烷灭菌人员资格确认表 附表2:产品灭菌适用性验证确认表 附表3:生物指示剂检验记录表 附表4:初始微生物负载检验记录表 附表5:环氧乙烷残留量检验记录表 附表6:漏项、偏差处理表

1.概述 XXXXX医疗科技有限公司生产的XXXXXXXXXX将会直接与患者的器官和组织接触,器械以无菌的形式提供给医院。 XXXXXXXXXXX的包装总体分3层,从内向外依次是无菌包装、彩盒包装、瓦楞纸箱包装。每一个无菌包装中放置一把器械,每一个无菌包装将放置于一个彩盒包装中,瓦楞纸箱包装也是最终的运输包装。 其中无菌包装是由两部分组成的,PETG材质的泡壳和Tyvek材质的盖材。然后用专用的热封机将两者热封合到一起,形成完整的阻菌屏障。由于Tyvek具有一定的通气性,故EO 混合气体可以穿过盖材进入包装内,从而实现杀灭的目地。 2.验证目的 通过本次测试,验证吻合器系列产品采用的热封工艺和EO灭菌工艺,产品能够达到以下标准: a)热封工艺有稳定可重复的输出结果,满足厂内标准; b)在合适的EO灭菌工艺参数下能确保足够的无菌保证水平; c)能可靠的在有效期内处于无菌状态; 灭菌工艺对产品的使用性能不产生影响; 3.相关文件 3.1 环氧乙烷灭菌器作业指导书 3.2 《医疗器械生产质量管理规范》及无菌医疗器械附录 4.验证组织职责 4.1验证人员职责 管理者代表:负责验证方案、验证报告的批准;负责签发验证证书。 组长:审核验证方案、验证报告,制定验证计划;负责验证实施全过程的组织协调工作;对验证过程的技术、质量负责; 组员:负责验证过程中的具体工作,并做好记录工作。 4.2验证过程中各相关部门职责 4.2.1质量管理部: 负责组织验证方案、报告与结果的会审会签;负责对验证全过程实施监控;负责验证过程的取样、检验及结果报告;负责核查、汇总验证数据;负责建立验证档案,及时将批准实施的验证资料收存归档。

工艺验证报告模板

工艺验证报告 内部资料禁止外传) 文件编码:100200 目录 1. 介绍. ....................... 错误!未定义书签。 2. 验证目的. ..................... 错误! 未定义书签。 3. 验证范围. ..................... 错误!未定义书签。 4. 验证类型. ..................... 错误!未定义书签。 5.验证日期与相关批号. .................. 错误! 未定义书签。 6.验证小组成员及职责. .................. 错误!未定义书签。 7.简单工艺描述(略). .................. 错误!未定义书签。 8. 胺化工艺验证. .................... 错误!未定义书签。 . 工艺参数.......................... 错误! 未定义书签。 . 验证人员及日期. ................ 错误! 未定义书签。 . 验证标准、分析方法. ........... 错误! 未定义书签。 . 验证数据. .................. 错误! 未定义书签。 . 验证结果分析、评价及建议. ............ 错误! 未定义书签。 9. 纯化工艺验证. .................... 错误!未定义书签。 . 工艺参数.......................... 错误! 未定义书签。 . 验证人员及日期. ................ 错误! 未定义书签。 . 验证标准、分析方法. ........... 错误! 未定义书签。 . 验证数据. .................. 错误! 未定义书签。 . 验证结果分析、评价及建议. ............ 错误! 未定义书签。 10. .......................... 成盐工艺验证 错误!未定义书签。 . 工艺参数. .................. 错误! 未定义书签。 . 验证人员及日期. ............. 错误! 未定义书签。 . 验证标准. .................. 错误! 未定义书签。 . 分析方法. .................. 错误! 未定义书签。 . 验证数据. .................. 错误! 未定义书签。 . 验证结果分析、评价及建议. ............ 错误! 未定义书签。 11. .................... 验证结果批准、会签及日期 错误!未定义书签

灭菌无菌工艺验证指导原则

灭菌/无菌工艺验证指导原则(第二稿) 目录 1概述 (2) 2制剂湿热灭菌工艺 (3) 2.1湿热灭菌工艺的研究 (3) 2.1.1 湿热灭菌工艺的确定依据 (3) 2.1.2过度杀灭法的工艺研究 (5) 2.1.3残存概率法的工艺研究 (5) 2.2湿热灭菌工艺的验证 (7) 2.2.1物理确认 (7) 2.2.2 生物学确认 (9) 3制剂无菌生产工艺 (10) 3.1无菌生产工艺的研究 (10) 3.1.1无菌分装生产工艺的研究 (10) 3.1.2 过滤除菌生产工艺的研究 (11) 3.2 无菌生产工艺的验证 (12) 3.2.1培养基模拟灌装试验 (12) 3.2.2 除菌过滤系统的验证 (14) 4原料药无菌生产工艺 (17) 4.1 无菌原料药生产工艺特点 (18) 4.1.1 溶媒结晶工艺 (18) 4.1.2 冷冻干燥工艺 (19) 4.2 无菌原料药工艺验证 (19) 4.2.1 验证批量 (19) 4.2.2 最差条件 (19)

1概述 无菌药品是指法定药品标准中列有无菌检查项目的制剂和原料药,一般包括注射剂、无菌原料药及滴眼剂等。从严格意义上讲,无菌药品应完全不含有任何活的微生物,但由于目前检验手段的局限性,绝对无菌的概念不能适用于对整批产品的无菌性评价,因此目前所使用的“无菌”概念,是概率意义上的“无菌”。一批药品的无菌特性只能通过该批药品中活微生物存在的概率低至某个可接受的水平,即无菌保证水平(Sterility Assurance Level, SAL)来表征。而这种概率意义上的无菌保证取决于合理且经过验证的灭菌工艺过程、良好的无菌保证体系以及生产过程中严格的GMP管理。 无菌药品通常的灭菌方式可分为:1)湿热灭菌;2)干热灭菌;3)辐射灭菌;4)气体灭菌;5)除菌过滤。按工艺的不同分为最终灭菌工艺(sterilizing process)和无菌生产工艺(aseptic processing)。其中最终灭菌工艺系指将完成最终密封的产品进行适当灭菌的工艺,由此生产的无菌制剂称为最终灭菌无菌药品,湿热灭菌和辐射灭菌均属于此范畴。无菌生产工艺系指在无菌环境条件下,通过无菌操作来生产无菌药品的方法,除菌过滤和无菌生产均属于无菌生产工艺。部分或全部工序采用无菌生产工艺的药品称为非最终灭菌无菌药品。基于无菌药品灭菌/除菌生产工艺的现状,本指导原则主要对在注射剂与无菌原料药的生产中比较常用的湿热灭菌与无菌生产工艺进行讨论。本指导原则中的湿热灭菌工艺验证主要包括灭菌条件的筛选和研究,湿热灭菌的物理确认,生物指示剂确认等内容;无菌生产工艺验证主要包括无菌分装、除菌过滤、培养基模拟灌装、过滤系统的验证等验证内容。 最终灭菌工艺和无菌生产工艺实现产品无菌的方法有本质上的差异,从而决定了由这两类工艺生产的产品应该达到的最低无菌保证水平的巨大差异。最终灭菌无菌产品的无菌保证水平为残存微生物污染概率≤10-6,非最终灭菌无菌产品的无菌保证水平至少应达到95%置信限下的污染概率<0.1%。由此可见,非最终灭菌无菌产品存在微生物污染的概率远远高于最终灭菌无菌产品,为尽量减少非最终灭菌无菌产品污染微生物的概率,鼓励企业在生产中采用隔离舱等先进技术设备。 基于质量源于设计的药品研发与质量控制的理念,为保证无菌药品的无菌保证水平符合要求,研发者在产品的研发过程中应根据药品的特性选择合适的灭

A注射液灭菌工艺验证方案

A注射液灭菌工艺验证方案 公司名称

目录 1.概述 2.验证目的 3.验证依据 4.支持文件 5.验证小组成员及职责 6. 生物指示剂验证试验方法 7.验证合格标准 7.1A注射液生产全过程部分微生物污染监控措施 7.2灭菌釜技术要求 7.3湿热灭菌工艺的生物学验证技术要求 7.3.1沸腾试验阴性 7.3.2沸腾试验阳性 8.湿热灭菌验证操作步骤 8.1 X.PSM.B型旋转水浴式灭菌釜确认 8.1.1概述 8.1.2运行确认 8.1.3空载热分布 8.1.4满载热分布 8.1.5热穿透试验 8.1.6升温速率试验 8.2生物指示剂验证(挑战性试验) 9.取样计划及样品编号 10.验证结果、分析及评价 10.1 A注射液工艺优化、偏差处理及整改措施汇总 10.2 A注射液灭菌前药液微生物限度警戒线及行动线的确认 11.验证培训 12.验证合格证书 13.附件 附件1A注射液无菌保证与国际GMP差距

附件2 生物指示剂制备方法 附件3 A注射液灭菌工艺验证预试验取样计划(系列) 附件4 A注射液灭菌前不同工艺环节的药液生物负荷及沸腾试验调查总结附件5 A注射液湿热灭菌工艺验证待确认修改的相关SOP目录 附件6 A注射液湿热灭菌工艺验证待建立相关SOP目录 14.附录: 附录1 A注射液射液灭菌前药液生物负荷及无菌保证值汇总表 附录2 灭菌釜运行测试记录 附录3 空载热分布汇总记录 附录4 满载热分布汇总记录 附录5升温速率试验记录 附录6 A注射液灭菌工艺微生物学验证记录 附录7 A注射液灭菌工艺验证取样计划及项目编号 附录8 A注射液灭菌工艺验证取样记录 附录9 偏差处理记录 附录10验证培训记录 附录11验证合格证书

片剂工艺验证方案及报告

XXXXX工艺验证方案 YZS-G-1XX037 类别:验证管理工艺验证方案 制定人:制定日期:年月日 审核人:审核日期:年月日 批准人:批准日期:年月日 颁发部门:生效日期:年月日 复印数:份

目录 1.概述 2.目的 3.产品简介 4.验证内容、方法及标准 4.1粉碎过筛 4.2配料混合 4.3压片 4.4包装 4.5成品质量 4.6各工序收率及物量平衡 5验证结果评定与结论 6.稳定性考察 7.相关文件 8.图一 9.相关记录

1.主题内容 本方案规定了XXXXX生产工艺验证的目的,步骤、标准及评价内容 2.适用范围 本方案适用于XXXXX生产工艺的验证 3.责任人 3.1工艺验证小组 组长: 组员: 3.2其他相关人员 4.验证的内容 4.1概述 XXXXX是我公司的主要产品,在以往的生产过程中,此产品生产工艺是稳定可靠的,但是为符合GMP要求,我公司新建了厂房,引进了先进的设备,因此在该产品正式投入生产前进行工艺验证,进行工艺验证的前提条件是: 1.厂房、设施、设备已经过验证并验证合格可投入使用。 2.相应的文件已批准执行。 3.物料通过供应商审计并审计合格。 4.人员已进行全面健康检查和系统培训且已有健康证和培训上岗证。 本验证方案拟在XXXXX试生产时实施 4.2目的: 本产品工艺验证方案的目的在于通过对XXXXX生产工艺的验证,证明该生产工艺可靠性和稳定性 4.3产品简介: 4.3.1处方:原辅料名称万片的用量 4.3.2工艺流程图(见图一) 4.3.3生产、质、量管理文件 批生产指令及记录 XXXXX批生产指令及记录 生产工艺规程 XXXXX批生产工艺规程 质量标准 XXXXX质量标准及主要物料质量标准

湿热灭菌的指导原则及灭菌工艺验证

用于最终灭菌药品(注射剂)的蒸汽灭菌工艺及验证指南
一、范围
由于蒸汽-湿热灭菌本身具备无残留,不污染环境,不破坏产品表面,并容易控制和重现等 优点,被广泛应用于最终灭菌药品(注射剂)的除菌过程中。
本指南为有关人员提供最终灭菌药品(注射剂)的蒸汽灭菌柜的验证指南,以及蒸汽灭菌工 艺及验证的一些操作方法的指南。
本指南依据《药品生产质量管理规范》(1998 年修订)的相关准则,但本指南叙述的通用原 则和方法不是法定的。本指南的着重于最终灭菌药品(注射剂)的蒸汽-湿热灭菌工艺的验 证,但有些通用原则和方法对于冻干机的湿热灭菌、某些设备的在线蒸汽灭菌等可能也具备 参考价值。
二、目的
蒸汽-湿热灭菌验证的目的,就是通过一系列验证试验提供足够的数据和文件依据,从而找 到最有效最合理的灭菌参数,并把已经验证过的饱和蒸汽灭菌设备和灭菌工艺参数应用到药 品生产的除菌过程中去,以证明用于药品生产过程中的每一台饱和蒸汽灭菌设备都能起到灭 菌的效果,并且对不同灭菌物品的灭菌过程和灭菌效果具有可靠性和重现性,即验证结果必 须证明生产中所采用的灭菌过程对经过灭菌的物品能够保证残存微生物污染的概率或可能 性低于百万分之一。
蒸汽-湿热灭菌周期的设计和开发与蒸汽灭菌柜的性能以及被灭菌产品的适用性有关。蒸汽湿热灭菌介质包含以下几种:饱和蒸汽,空气-蒸汽混合气体,过热水等等。其中:饱和蒸 汽的加热速度最快,但是对于大型的软包装产品,过热水浸泡灭菌的方法效率更高,然而在 过热水灭菌法中,热量的转移很大程度上依赖于容器中介质的强制运动。
饱和蒸汽是与液体状态的水保持平衡时的水蒸汽,因此饱和蒸汽只能存在于水汽的分界线 上,即温度与压力之间的关系是固定的。灭菌效果是通过蒸汽,蒸汽-空气混合物,过热水 等介质与灭菌物品的热传递或产生冷凝水的水合作用来实现的。
蒸汽-空气混合物与受压的水或蒸汽相比,单位体积所包含的热容量较低,但是,蒸汽-空气 混合物作为灭菌戒指具有能够适当调整蒸汽-空气比例达到不同结果的优点。
选择一种适合的蒸汽灭菌方式,能在满足产品本身性能的情况下取得满意的灭菌效果,但是 任何一种灭菌方法,都必须在实际应用前予以验证。
三、定义
1

现代化背景下探讨关于药品生产工艺验证的新举措

现代化背景下探讨关于药品生产工艺验证的新举措 药品生产企业在药品生产工艺验证阶段投入多,对工艺适应性了解越多,对生产工艺验证特点了解越多,通过详细的生产设计和验证,就会对生产的产品质量保证越高,使药品生產企业建立高度自信。重视药品生产工艺验证,了解药品生产工艺验证特点,对药品生产企业也有益处。所以对药品生产企业增加法制规定对药品生产工艺验证的监督和管理内容,引导并督促药品生产企业做好药品生产工艺验证工作,以保证药品的质量。 1 工艺验证的基础 药品生产工艺验证的基础完成了工艺设备及辅助系统的验证,并且是符合要求的。在工艺验证前需要对重要的要素进行属性认定,其中包括分析检验规程,仪器仪表校准,重要支持系统,操作人员培训,原材料和包装材料,设备等等要素。并需要在产品验证及试生产完成之后,进行技术检查,包括产品规格标准语实际合格产品的比较,确定产品检验方法的有效性等等。 2 工艺验证组成特点 2.1 开发期验证 开发期验证是从实验工厂报告递交时开始,由药物研发部门撰写,内容包含了推荐采用的厨房和制造说明等。 2.2 预验证 预验证是指在新产品或采用了影响性产品特性,修改工艺生产的产品,在正式投产上市前的质量验证活动。一般采用预验证很容易让研究结论被接受,是制定工艺规程的基础。其中预验证的工作程序又包括了设计验证,安装验证,运行验证,产品验证等。 2.3 同步验证 同步验证是指在生产运行的同时对某项工艺进行的验证,包括对罕见药物,低容量产品及临床应用等领域实用此种验证方法。同步验

证需要三个完成的批次,其所选的批次时间间隔单独放行且比较长。 2.4 回顾性验证 回顾性验证指对已经上市并进行销售的产品生产工艺天剑进行验证。具有丰富的资料,能从大量数据中回顾性分析整个生产工艺控制全貌的优点。 2.5 再验证 再验证是指药品生产设备变更或生产工艺规程修改时,证明已经验证过的状态没有遭到破坏而进行的验证。适用于设备大修变更,改变处方等情况。 3 工艺参数确认步骤 3.1 关于工艺验证的规模和批次 工艺验证的规模应该是要中试以上或者是生产规模,根据以往国际中心临床研究品种的资料可知,中试规模通常是生产规模的三分之一到五分之一,比如对于处理第二期临床研究的样品,临床研究的生产规模是在五十万到七十万片时,中式的规模样品量通常是在二十万片左右。 3.2 关于生产工艺验证的有关步骤 (1)审阅处方以及制造说明,并且决定在(生产)过程中哪些是重要的。在审阅处方的过程中,必须要对用于产品的原材料采样以及分析要做出决定。同时也要对原材料进行检查以决定原料是否具有代表性,在这一问题方面,其他的处方所用的已经过验证的同样原料是可以用来进行比较的。 (2)要根据样品制造过程中的重要步骤决定索要采集的样品形式以及数量。在无菌固定的混合生产过程中,通常是需要采集两种类型的样品,第一是活性成分含量的均匀度所用,第二是为颗粒大小分析以及松散度或者是密度测量用。要是因为格局采样计划得到的样品太少而不能适用,进而产生一些问题,那么采样计划就必须要根据生产的方式来进行修改,比如,要是经过灭菌混合之后产品灌入到桶中,那么就可以在底部、中部以及顶部采集双方样品,同时也是为了能够

工艺验证报告模板

工艺验证报告 文件编码: 起草人:姓名: 部门: 日期: 审核人:姓名: 部门: 日期: 批准人:姓名: 部门: 日期:

目录 1.介绍 (2) 2.验证目的 (2) 3.验证范围 (2) 4.验证类型 (2) 5.验证日期与相关批号 (2) 6.验证小组成员及职责 (2) 7.简单工艺描述(略) (2) 8.胺化工艺验证 (3) 8.1.工艺参数 (3) 8.2.验证人员及日期 (3) 8.3.验证标准、分析方法 (3) 8.4.验证数据 (3) 8.5.验证结果分析、评价及建议 (4) 9.纯化工艺验证 (4) 9.1.工艺参数 (4) 9.2.验证人员及日期 (5) 9.3.验证标准、分析方法 (5) 9.4.验证数据 (5) 9.5.验证结果分析、评价及建议 (6) 10.成盐工艺验证 (7) 10.1.工艺参数 (7) 10.2.验证人员及日期 (8) 10.3.验证标准 (8) 10.4.分析方法 (8) 10.5.验证数据 (8) 10.6.验证结果分析、评价及建议 (9) 11.验证结果批准、会签及日期 (10)

1.介绍 在验证生产过程中发生偏差与异常情况,我们按“偏差处理程序--SOP-ZL-9004-02”进行了处理。 2.验证目的 证明本工艺路线在预定的工艺参数范围内运行能持续有效地生产出高质量的合格的硫酸羟基氯喹。 3.验证范围 4.验证类型 前瞻性验证 5.验证日期与相关批号 验证日期:2007 年03 月20 日至2007 年04 月20 日验证批号:070402、070403、070404 6.验证小组成员及职责 7.简单工艺描述(略) 详见工艺验证方案SMP-ZL-7244-00。

工艺验证报告

验证报告编号:2305·429-00 ×××酯工艺验证报告 起草人:日期:年月日 审核人:日期:年月日 批准人:日期:年月日 ×××生物化学药业有限公司

1 概述 在2007年7月10日~9月23日,依据《×××酯类工艺验证方案》(验证方案号:1305·429-00),对三批×××酯类的制品生产过程实施了工艺验证,验证工序有中间体I制备、中间体Ⅱ制备、中间体Ⅲ制备、中间体Ⅳ制备、中间体Ⅳ制备、粗品制备、精制(层析分离)、、精制(蒸发干燥)、混合分装和外包装。对关键工序的关键项目及参数进行了验证考察确认,验证确认结果如下: 1.1 验证规程号 《×××酯工艺验证方案》(1305·429-00) 1.2 验证产品批号与批量: 1.3 验证工艺流程图(见附件1) 1.4 验证主要原辅材料(见附件2) 1.5 验证主要生产设备(见附件3) 1.6 验证生产质量控制点(见附件4)

2 工序验证结果及数据分析

3 偏差分析和评价建议 ×××酯生产工艺的每道工序,完整地进行了三个连续批次的验证,在验证过程中未发现偏差情况,结果均在允许的可接收标准范围内。为保证验证状态能得到维持,在正常生产过程中,严格按照经验证工艺控制方法、批量、设备、材料进行生产。当生产设备、批量、关键原辅料、工艺方法发生变更时,应及时进行再验证。 4 验证总结论: 经过正常生产规模的连续三批产品工艺验证,结果符合验证标准,可以投入生产使用。 5 再验证周期: 再验证周期为一年半。

6 附件清单: 附件1 验证工艺流程图 附件2 验证主要原辅材料 附件3 验证主要生产设备 附件4 验证生产质量控制点

灭菌工艺研究 灭菌技术很全的回答

灭菌工艺研究 1、按照欧盟决策树的要求,不能达到121℃,15分钟灭菌,可选择F0≥8的残存概率法。请问,若产品能达到121℃,12分钟灭菌,是否就不能选择121℃,10分钟,同样,能达到10分钟,就不能选择8分钟,都是F0≥8的情况。 答:从微生物杀灭的数学模型可知,在初始污染相同的情况下,灭菌F0值越大,无菌保证水平越高。因此,显然为降低产品残留微生物的风险,尽量选择高的F0值是顺理成章的。 2、在产品质量稳定的条件下,均能满足121℃,8分钟和115℃,30分钟,哪个条件应该优先选择呢? 答:不考虑产品理化质量稳定性,理论上这两种条件达到的F0值几乎相等,无所谓优选哪个。但实际生产中,还要考虑灭菌器内产品中热穿透的情况,灭菌器内不同部位的产品实际获得的F0值的差异,不同灭菌批次间产品的F0的差异等。应该选择热分布差异小,产品F0值差异较小的灭菌工艺。 2℃,灭菌30分钟”,这种表示法是否规范?±3、申报资料中的灭菌条件为“101℃ 2℃,灭菌30分钟” 几乎不能计算F0值。灭菌条件的表示可以参照±2℃,灭菌30分钟”本身不能称为终端灭菌,因“101℃±2℃,灭菌30分钟”是否规范,因“101℃±答:暂不说灭菌条件为“101℃中国药典40min。?15min或 101℃?2005年版二部附录168灭菌法,121℃ 4、同品种10ml、20ml注射剂,采取相同的灭菌方式是否合适? 答:同品种10ml、20ml注射剂,可以采取相同的灭菌方式,但应进行热穿透试验,考察不同体积样品的热穿透是否有一致,同时考虑采用的灭菌方式应能保证大体积产品的无菌保证水平。 5、选择最高无菌保证水平的灭菌工艺,可能会与产品的质量,如有关物质、稳定性等方面有冲突,如何平衡这一矛盾?另外,国外上市的是粉针剂,国内申报时是否还需要进行灭菌工艺的选择研究? 答:实际上,在进行灭菌工艺选择研究过程中就应该进行不同灭菌条件下样品质量变化的研究,选择灭菌工艺的过程也是平衡无菌保证水平和(样品质量)理化指标的过程,在产品有临床需求的情况下,灭菌工艺的选择应以其自身能达到的最高无菌保证水平为原则。对国外上市的粉针剂,国内申报时也应对其采用粉针剂型进行研究,如主药确系对热、对水分不稳定,则可以采用与国外相同的粉针剂;如果主药不是对热、对水分不稳定,则应根据主药的性质选择无菌保证水平高的剂型。 6、最终灭菌工艺的选择原则是首选F0≥12,而不是F0≥8;还是只要达到F0≥8即可?答:可参考欧盟灭菌工艺选择的决策树。 7、决策树中残存概率法是否亦优先选择121℃的温度条件?

ISO13485灭菌过程确认控制程序

灭菌过程确认控制程序 (YY/T0287-2017 idt ISO13485-2016) 1、目的 确保产品灭菌符合GB18280的要求。 2、适用范围 适用本公司产品的委外灭菌的控制。 3、职责 3.1技术部负责灭菌外包方的选择和组织评价及灭菌过程的确认。 3.2质量部负责对灭菌产品初始污染菌的检测和产品灭菌后的检测、验证。 3.3管理者代表负责辐射灭菌确认方案、报告的批准。 4、工作程序 4.1委外灭菌过程评审和批准的准则: a)灭菌单位必须具有法人资格和灭菌资质,提供法人证书、营业执照和灭菌资之证明; b)灭菌单位须具有优良的辐照灭菌设备,并经过可靠验证; c)必须具有可操作的灭菌设备操作规程; d)设备操作人员须经过专业培训; e)本单位产品的清洗、包装环境须符合YY0033的要求,产品的初始包装须经过验证确认; f)灭菌工艺参数须经双方共同进行验证确定; g)灭菌单位严格按照验证过的灭菌工艺参数进行灭菌操作,并能提供灭菌过程的灭菌操作记录或报告;

h)质量部负责对每一批次产品在灭菌后进行无菌检测,检测结果为无菌; i)技术部负责组织灭菌过程确认小组,根据以上情况对委外的灭菌过程进行确认,必要时进行再确认; 4.2灭菌确认小组 灭菌确认小组由技术部、质量部、生产部相关人员组成,组长由管理者代表担任。 4.3对灭菌单位资质、设备及操作人员的确认 4.3.1技术部依据4.1的相关要求对灭菌单位的资质情况、质量管理体系规范、设备状况及人员培训情况进行现场调查了解,并索取相关资料。 4.3.2管理者代表负责组织确认小组依据调查资料对灭菌单位进行评价,如评价合格,确定为合格的灭菌协作单位。 4.4灭菌工艺验证 4.4.1灭菌验证小组的组成 灭菌验证小组由“中心”及灭菌单位双方的技术、质量以及检验员、操作员等相关人员、专家组成。 4.4.2灭菌验证前的准备; a)产品经过初始污染菌检测 b)产品初包装经验证确认合格; c)制定灭菌工艺验证方案。 4.4.3验证小组按验证方案进行验证,做好验证过程的纪录。 4.4.4灭菌效果检测 灭菌后的产品由质量部进行无菌检测,检测结果应是无菌。根据检测结果并综

灭菌工艺验证申报资料的要求

灭菌工艺验证申报资料的要求 目 录 I. 前言 (1) A. 目的 (1) B. 灭菌工艺验证的文件 (1) II. 终端灭菌工艺的资料 (1) A. 对产品及灭菌程序的说明 (1) 1. 药品及容器-胶塞系统 (1) 2. 灭菌程序 (1) 3. 灭菌釜(Autoclave)的程序及性能指标 (1) 4. 灭菌釜(Autoclave)的装载方式 (2) 5. 灭菌过程的监控方法和控制手段 (2) 6. 生产用灭菌釜(Autoclave)的再确认 (2) 7. 再灭菌 (2) B. 灭菌程序的热力学确认 (2) 1. 热分布及热穿透试验 (2) 2. 热监控器 (2) 3. 装载方式对热力学影响 (2) 4. 批记录中应有的信息 (2) C. 灭菌工艺的有效性 (3) 1. 污染菌的特性及鉴别 (3) 2. 生物负荷的控制标准 (3) 3. 生物指示剂的鉴别、耐热性及稳定性 (3) 4. 污染菌耐热性与生物指示剂耐热性的比较 (3) 5. 微生物挑战性试验 (4) D. 环境的微生物监控 (4) E. 容器-胶塞系统及包装的完整性 (4)

1. 生产过程的模拟试验 (4) 2. 在最苛刻条件下完整性的证据 (4) 3. 多腔室包装 (4) 4. 试验的灵敏度 (4) 5. 在产品有效期内的完整性 (4) F. 细菌内毒素试验及其方法 (5) G. 无菌检查的方法及判定标准 (5) III. 其他终端灭菌程序 (5) A. 环氧乙烷灭菌法 (5) 1. 对灭菌器的说明 (5) 2. 灭菌程序的参数 (5) 3. 微生物学的方法 (5) 4. 稳定性监控 (6) B. 放射灭菌法 (6) 1. 设备及程序 (6) 2. 产品的包装 (6) 3. 多剂量分布试验 (6) 4. 微生物试验方法及其管理 (6) 5. 稳定性监控 (6) IV. 无菌生产工艺的资料 (6) A. 厂房和设施 (6) 1. 平面图 (6) 2. 设备的位置 (6) B. 生产作业概况 (7) 1. 药液的过滤 (7) 2. 存放时间的有关标准 (7) 3. 关键作业 (7) C. 容器、胶塞、设备及组分的灭菌及去热原处理 (7) 1. 采用无菌分装工艺的产品 (7)

诺氟沙星胶囊生产工艺验证方案及报告

工艺验证报告

* * * *制药厂

1概述 * * * *胶囊的工艺验证是在厂房、设备、公用设施的验证合格后,按既定的验证方案,分别在011001、011101、011102连续生产的三批产品中进行。现将验证工作情况作以下报告。 2验证结果 2.1收料 2.1.1目的:确认该过程不影响原、辅料的质量。 2.1.2环境检查: (1)生产场所的洁净级别,温、湿度符合有关要求。 (2)设备及场所具有清场合格证。 2.1.3结论:经验证该过程可保证物料的质量不受影响,验证记录见附件1。 2.2粉碎、过筛工序 2.2.1目的:确认该工序能够得到细度合格的物料。 2.2.2环境检查: (1)生产场所的洁净级别,温、湿度符合有关要求。 (2)设备及场所具有清场合格证。 2.2.3结论:按方案进行验证,其结果表明该工序能够得到细度达140目 的原料细粉,验证记录见附件2。

2.3称量、配料工序 2.3.1目的:确认该过程能够保证物料的品种、数量符合要求。 2.3.2环境检查: (1)生产场所的洁净级别,温、湿度符合有关要求。 (2)设备及场所具有清场合格证。 2.3.3结论:经验证该过程能保证物料种类、数量的准确无误,验证记录 见附件3。 2.4制粒工序 2.4.1干混过程 2.4.1.1目的:确认该过程能够将物料混合均匀,并确定干混时间。 2.4.1.2环境检查: (1)生产场所的洁净级别,温、湿度符合有关要求。 (2)设备及场所具有清场合格证。 2.4.1.3结论:在环境、设备等符合要求的条件下,按方案进行操作,检 测结果表明:干混2min时,不同点取样,其主药含量测定值之间的RSD 大于3%;干混3min和4min时,不同点取样,含量测定值之间的RSD 均小于3%。检测结果表明方案中设定3min、4min时间均能使药物混合均匀,考虑到设备等影响因素,将此过程的干混时间定为3min,验证记录见附件4。 2.4.2制粒过程

相关文档
相关文档 最新文档