文档库 最新最全的文档下载
当前位置:文档库 › 2005_Automotive Radar – Status and Perspectives

2005_Automotive Radar – Status and Perspectives

2005_Automotive Radar – Status and Perspectives
2005_Automotive Radar – Status and Perspectives

Automotive Radar – Status and Perspectives

Josef Wenger

DaimlerChrysler AG, Research & Technology

D-89081 Ulm, Germany

josef.wenger@https://www.wendangku.net/doc/6d18226978.html,

Abstract—After introduction of the first radar based autonomous cruise control (ACC) system in the Mercedes S-class in 1999, ACC is meanwhile available from many OEMs in high and mid class models. Beside ACC for improved driver comfort, increasingly safety applications are addressed using long range radar (LRR) technology at 77 GHz, 24 GHz ultra-wide band (UWB) short range radar (SRR) systems or a combination of both. First cars of the new Mercedes S-class equipped with LRR and SRR for new safety and comfort functions have just entered the market.

Automotive radar; driver assistance systems; active safety; mm-wave technology

I.I NTRODUCTION

In 1999 Mercedes-Benz has been the first car manufacturer who introduced radar based autonomous cruise control (ACC) system in the S-class. Meanwhile radar-based ACC is available in many high and mid class models and beside the ACC comfort function 77 GHz radar sensors are also used and offered for safety functions like pre-crash sensing and collision mitigation. Today car companies and suppliers are already working on the development of the next generations of long range radar (LRR) at 77 GHz, which will show improvements with respect to maximum and minimum range, wider field of view, improved range and angular resolution and accuracy, self alignment and blockage detection capability.

In addition to forward looking LRR short range radar (SRR) sensors with coverage up to 30 meters are under development for a variety of further applications today. SRR will be used to expand ACC to stop-and-go operation, to perform pre-crash warning, to act as parking aid, or to warn during backing up or changing lanes [1].

Every year 1.2 million people are known to die in road accidents worldwide and as many as 50 million are injured. Within the European Union more than 40,000 fatalities and 1.7 million injuries are caused by road accidents each year. Therefore the European Commission (EC) has set, in its White Paper on the Common Transport Policy of September 2001 [2], an ambitious target to reduce road deaths by 50% by the end of 2010.

Automotive radar systems - especially the newly developed short range radar systems - have been identified as a significant technology for the improvement of road safety by the EC. Thus SRR is one of the key topics of the e-Safety program of the EC and is seen as a major instrument to improve road safety.

This contribution will give an overview on the status and perspective of automotive radar sensors and envisaged applications for future comfort and safety systems. In addition the status of the actual automotive radar frequency regulation is given and the development steps towards future radar technology are discussed.

II.POTENTIAL FOR ACCIDENT REDUCTION

The ability to further reduce accidents by passive means (air-bags, seatbelts, etc.) has been virtually exhausted, but a huge potential still exists in active safety measures. While passive safety systems are aiming to minimize the consequences of a car accident after it has taken place, it is necessary to start implementing active safety systems to reduce the number of people killed or seriously injured in road accidents even further.

The reduction of accidents will be based on the principle that the sooner drivers notice an obstacle, the better they are able to avoid it. Therefore new technologies allowing for the detection of objects around a car are required. Accident statistics show clearly the potential of early warning or braking: ?50% of intersection, head-on, and rear-end collisions could be avoided by earlier driver reaction.

?94% of all traffic accidents involve human errors, which would be favorably influenced by collision

warning systems.

?SRR could address 88% of all causes of rear-end crashes.

III.S TATUS OF R ADAR B ASED A UTOMOTIVE A PPLICATIONS Automotive radar is a key technology especially due to its inherent advantages like weather independence and direct acquisition of range and velocity when compared to alternative sensors like video, laser, and ultrasonic. Additionally radar offers the vehicle manufacturers the stylistic advantage of mounting behind a plastic bumper.

A.76-77 GHz LRR Systems

ACC systems like Mercedes’ DISTRONIC are used to relieve the driver of part of his task of keeping distance and warn him in critical situations, thus making driving less strenuous, especially in flowing traffic. The driver remains fit for a significantly longer period of time. The responsibility for

the safe handling of the vehicle remains with the driver under all circumstances ant at any time.

The system provides information about traffic situations ahead of the vehicle, thus making it possible to react to altered traffic conditions by accelerating, braking or changing gear. The driver is given visual information and in case of a critical situation an acoustic warning. Typical situations in which ACC can be used are on motorways or dual carriageways, where the driver has a lot of load taken from his shoulders, especially when holding station within the traffic flow. ACC can be activated typically at speeds of 30 km/h to 180 or 200 km/h. Typically ACC systems are mounted in the radiator-grille or

front bumper, operating in the 77 GHz band (Fig. 1).

Figure 1. DISTRONIC radar sensor and mounting position.

ACC systems from ContiTemic A.D.C. are available in different Mercedes models and in the ACTROS truck. But also other car manufacturers and suppliers like Jaguar or Cadillac with Delphi, Volkswagen with TRW, BMW or Audi with Bosch or Volvo and MAN in their trucks with TRW offer ACC for highway operation as an option and others plan to do this in the near future.

Based on a 76 GHz LRR sensor Toyota offers even a pre-crash system in the Lexus RX 330 from Denso working as a brake assist and reversible belt pre-tensioner since 2003. Honda developed a 'Collision Mitigation brake System' (CMS) based on Fujitsu Ten’s 76 GHz radar for predicting rear-end collisions and controlling brake operations in the Inspire.

B. 24 GHz Short Range Radar Short range radar sensors can enable a variety of applications as depicted in Fig. 2:

? ACC support with Stop&Go functionality

? Collision warning ? Collision mitigation

? Blind spot monitoring

? Parking aid (forward and reverse) ? Lane change assistant

? Rear crash collision warning Especially the combination of LRR and SRR provides valuable data for advanced driver assistance systems. Part of this will be realized for the first time in the new Mercedes Benz S-Class, which has just been released. In situations where drivers are forced to brake, the new Brake Assist PLUS system will calculate and generate the braking force needed for a given situation within fractions of a second based on the radar information.

Collision warning

Collision mitigation

Blind spot detection

Stop & Go for ACC

Parking aid

Precrash

Backup Parking aid Blind spot detection Lane change assistant

Rear crash collison

Figure 2. Possible applications using SRR.

Here two radar systems are combined to monitor the traffic situation in front of the vehicle: newly developed ultra-wide band short range radar based on 24 GHz technology works together with the proven 77 GHz DISTRONIC cruise control system [3]. Whereas the DISTRONIC radar is designed to be able to track three motorway lanes over a distance of up to 150 meters with an angle of nine degrees, the new SRR uses an angle of 80 degrees to monitor the immediate area up to 30

meters in front of the vehicle (Fig. 3).

Figure 3. Combination of LRR and SRR for advanced safety features.

While the conventional Brake Assist requires a reflex activation of the brake pedal, the new system recognizes the

driver’s intention to brake when he or she puts clear pressure on the pedal, after which it automatically optimizes the braking

pressure. One of the key preconditions for preventing rear-end collisions against the preceding car is thus fulfilled.

The SRR sensors used in the new S-class have been

developed by Tyco M/A-Com and are based on a pulsed radar

concept according to Fig. 4. The RF front end consists of the transmit circuitry, the receive circuitry and the control and processing circuits. An object is detected by measuring the elapsed time between a transmitter pulse and a correlated

received signal. With this time-gated correlation receiver

architecture a detection range of 0.2 to 30 m, a range (object) resolution of 15 cm and a range accuracy of 7.5 cm can be

achieved. Up to 10 objects with range, bearing and velocity

information can be classified [4].

The individual sensors are connected via a local network to the radar decision unit, which is on its part connected via the car controller area network (CAN) bus to the different

electronic control units of the car. UWB SRR is also developed by other suppliers like TDK or Siemens VDO. A limited range

of applications can be achieved using SRR with a bandwidth compatible with ISM-band regulations and are developed by companies like Valeo or Hella/InnoSent.

Figure 4. Schematic diagram of a 24 GHz SRR front-end.

IV.A UTOMOTIVE RADAR FREQUENCY REGULATIONS

While a world-wide regulation for automotive 76-77 GHz radar systems has been established, there is a quite different situation for UWB SRR operation at 24 GHz. For the high range resolution necessary for sufficient object separation a bandwidth of 4 GHz is necessary. Therefore a consortium of automobile manufacturers and suppliers known as the SARA (Short Range Automotive Radar Frequency Allocation) Consortium is working on for the worldwide frequency allocation for 24 GHz UWB automotive radar. In the USA, approval of the 24 GHz band was already granted unlimited in time and system numbers in 2002 by the US regulation authorities.

In Europe, the decision on allocation of the 24 GHz frequency band for automotive short-range radar has been approved by the European Commission in January 2005 [3]. According to this decision the frequency band of 21.625-26.625 GHz is allocated for the temporary use of UWB automotive short range radar from July 1st, 2005 until June 30, 2013. Included is the task to work towards an early introduction of equipment operating in the 77-81 GHz band by means of research and development program.

From mid of 2013 new cars have to be equipped with SRR sensors which operate in the frequency range between 77-81 GHz with the following regulations [3]:

?79 GHz frequency range (77-81 GHz) is designated for SRR equipment on a non-interference and non-

protected basis with a maximum mean power density

of -3 dBm/MHz e.i.r.p. associated with an peak limit of

55 dBm e.i.r.p

?The maximum mean power density outside a vehicle resulting from the operation of one SRR equipment

shall not exceed -9 dBm/MHz e.i.r.p.

This approach of a temporary use of 24 GHz has been chosen by the EC to provide the time necessary for the development of the 79 GHz technology, which is not yet mature for SRR sensors.

V.FUTURE RADAR DEVELOPMENTS

A.77 GHz LRR Systems

Nearly all well-known automotive radar suppliers like ContiTemic A.D.C., Bosch, TRW, Delphi, Fujitsu Ten, Mitsubishi Electric, Denso, or Hitachi are working on sensors for next generation ACC systems. Thereby further development activities are focused on reducing sensor and sensor adjustment cost on one hand. On the other the aspired goals for the sensors are a higher distance range from less than 1m to up to 200 m, up to ±10° opening angle in long range and a relative velocity range of up to ±260 km/h. The number of beams is harmonized with beam size to achieve early object separation allowing the distinction of open alleyway and in lane traffic. Hidden cars covered by preceding vehicles are detected by ground clutter reflection based on higher sensitivity.

The potential of radar for automotive applications has been evaluated within the DaimlerChrysler Research Center for several years. Based on fundamental work on millimeter-wave imaging a prototype of a mobile instrumentation radar system for on-line radar image acquisition and real-time visualisation was specified and realised. Although the overall system design aims at high performance and versatility, its basic features have the perspective of mean to long term commercialisation. Installed in a test car the system serves for the detailed evaluation and demonstration of the capabilities of radar imaging, data acquisition, design, and test of processing algorithms, and as a basis for the implementation of new comfort or safety applications. Its operation parameters can be varied in wide ranges in order to achieve different image areas, resolution, and sensitivity. The acquisition parameters for high resolution radar data are given below, detailed information may be found in [5].

? Center frequency 76.5 GHz

? Maximum field of view ± 10°

? Azimuth beam width 1°

? Elevation beam width 5°

? Range

resolution 1m

? Velocity

resolution 1

km/h

? System sensitivity -20 dBsm @ 150 m

B.79 GHz UWB SRR System and Technology

The ECC frequency decision [6] forces the development of 79 GHz SRR sensors within a time frame of only 8.5 years connected with the condition to report on the development status of 79 GHz SRR technology. Considering the development cycles of automobiles this is a very short time period.

Specifications for a 79 GHz SRR sensor are as follows:

?Frequency 79

GHz

?Bandwidth 4000

MHz ?Maximum field of view ± 80°

?Range

30

m

?Range Accuracy ± 5 cm

?Bearing accuracy ± 5°

With higher frequencies semiconductor power output decreases with roughly 20 dB per decade, parasitic effects are more stringent, and packaging and testing are more difficult. The main challenges for 79 GHz UWB SRR technology are given below:

?low chip and component costs

?low assembly costs

?improved performance

?reduced power consumption

?improved electrostatic discharge (ESD) and electro-magnetic interference (EMI) properties

?high cycle times / update rates

To push the development of the necessary chip technology a joint research project on “Automotive high frequency electronics – KOKON” was started in September 2004, funded by the German Ministry of Education and Research (BMBF) [5]. The consortium consists of two semiconductor companies (Atmel and Infineon), two automotive radar sensor manufacturers (Bosch and ContiTemic), and one automotive OEM (DaimlerChrysler) supported by institutes and universities.

Silicon Germanium (SiGe) has been identified as the chip technology which may fulfill the technological requirements and the cost constraints and which might be an alternative to already existing GaAs solutions used in 77 GHz LRR systems [8]. Within the KOKON project the development of both 77 GHz LRR and 79 GHz SRR radar chip technology is investigated. As spin-off cost reduction and performance improvement of 77 GHz LRR sensors are expected.

With Silicon Germanium hetero bipolar transistors (SiGe HBT) transit frequencies f T of 300 GHz and maximum frequency of oscillation f max of 350 GHz have been reported by an IBM research group [9]. Infineon which is partner of the KOKON consortium has achieved up to now f T of 225 GHz and f max of 300 GHz [10]. These frequencies are sufficiently high for the realization of 77 GHz and 79 GHz radar MMICs.

A key challenge at 79 GHz is the generation of sufficient output power. Using the Infineon technology fully integrated SiGe VCOs with powerful output buffer for 77 GHz LRR systems have already been demonstrated [11] showing very good performance. Also a low-noise and high-gain double-balanced mixer for 76.5 GHz automotive radar front-ends in SiGe bipolar technology has been realized using Infineon’s technology [12]. Additional key elements like LNA, frequency divider etc. have also been demonstrated. The final goal will be to integrate a 79 GHz UW

B SRR transceiver front-end on a single chip.

VI.CONCLUSION

Automotive radar is a key technology improving driving safety in future, especially due to its inherent advantages (weather independence, direct acquisition of range and velocity, ground clutter reflection detection). In this contribution the status and perspectives of automotive long and short range radar sensors has been shown. Novel LRR developments aim to increased system sensitivity, higher range and angular resolution and to a wider FOV. This enhancement over existing automotive radar sensors will allow a new quality of environmental sensing. In combination with UWB SRR new perspectives of comfort and safety features in future automobiles open up.

To meet the technological challenges with respect to small size, low weight, easy packaging, and low cost for future UWB SRR a research project funded by the German Ministry of Education and Research (BMBF) has been started exploiting SiGe technology for cost effective “radar on chip” solutions.

ACKNOWLEDGEMENT

The author wishes to acknowledge the funding of the German Ministry of Education and Research (BMBF) for the KOKON project and the KOKON consortium. He also thanks his colleagues from the DaimlerChrysler “Environment Recognition” department for their support.

REFERENCES

[1]H. H. Meinel, J. Wenger, H. Henftling, G. Rollmann, H. Dominik,

”Automotive Radar: From Long Range Collision Warning to Short Range Urban Employment,” 7th Topical Symposium on Millimeter Waves, TSMMW 2005, Seoul, Korea, pp. 244-247.

[2]http://europa.eu.int/comm/energy_transport/library/lb_texte_complet_en

.pdf.

[3]Press Release DaimlerChrysler, ”The new Mercedes-Benz S-Class:

Thinking ahead - setting the pace”, April 2005.

[4]I. Gresham, A. Jenkins et al., ”Ultra-wideband radar sensors for short-

range vehicular applications”, IEEE Trans. Microwave Theory and Techniques, Vol. 52, N0. 9, pp. 2105-2120, Sept. 2004.

[5]R. Schneider, J. Wenger, “Prototypic Realisation of Millimetre Wave

Radar Imaging; Advanced Microsystems for Automotive Applications 2003 (eds. J. Valldorf, W. Gessner), Springer-Verlag Berlin Heidelberg,

2003, pp. 97-111.

[6]The EC Decisions 2005-50-EC (24 GHz SRR) and 2004-545-EC

(79 GHz SRR) are available in the Internet: EC-Homepage

http://www.europa.eu.int/eur-lex.

[7]https://www.wendangku.net/doc/6d18226978.html,.

[8]M. Camiade, D. Domnesque, Z Ouarch,, A. Sion, “Fully MMIC-based

front end for FMCW automotive radar at 77GHz, European Microwave Week, GaAs 2000 Proceedings, pp. 280-283, 2000.

[9]M. Khater, J. -S. Rieh, et al., “SiGe HBT Technology with fmax/fT =

350/300 GHz and Gate Delay Below 3.3 ps”, IEDM 2004.

[10]J. Bock, H. Schafer, et al.,“SiGe bipolar technology for automotive

radar applications”, IEDM 2004.

[11]H. Li, H.-M. Rein, T. Suttorp. J. B?ck, “Fully integrated SiGe VCOs

with powerful output buffer for 77 GHz automotive radar systems and applications around 100 GHz”, IEEE Journal of Solid State Circuits,

Vol.39, No. 10, pp.1650-1658, October 2004.

[12]W. Perndl, H. Knapp, et al., “A low-noise, and high-gain double-

balanced mixer for 77 GHz automotive radar front-ends in SiGe bipolar technology”, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers, pp. 47-50, 2004.

隧道衬砌地质雷达无损检测技术

隧道衬砌质量地质雷达无损检测技术 1 前言 工艺概况 铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。 工艺原理 电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图1)。 图1 地质雷达基本原理示意图 电磁波在特定介质中的传播速度是不变的 ,因此根据地质雷达记录的电磁波传播时间ΔT ,即可据下式算出异常介质的埋藏深度H : H V T =??2 (1) 式中,V 是电磁波在介质中的传播速度,其大小由下式表示: V C =ε (2) 式中,C 是电磁波在大气中的传播速度,约为×108m/s ; ε为相对介电常数,不同的介质其介电常数亦不同。 雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为: 212 1εεεε+-=r (3)

反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。 雷达波的穿透深度主要取决于地下介质的电性和波的频率。电导率越高,穿透深度越小;频率越高,穿透深度越小。 2 工艺特点 电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在~左右。利用高频电磁脉冲波的反射,中心工作频率 400MHz/900 MHz/1500 MHz; 采用宽带短脉冲和高采样率,分辨率较高; 采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。 (1)操作简单,对工作环境要求不高; (2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上; (3)通过专业的RADAN 分析软件,专业的技术人员可以迅速的完成数据处理等。 3 适用范围 地质雷达有其适用范围和适用条件,目标体与周围介质是否存在足够的电性差异,是探测工作是否有效的前提,这种电性差异就是介电常数;应根据不同的检测对象和检测要求选用不同的天线类型;适用条件,探测的目标体与周围介质有较大的介电常数差异并具有较好的反射条件;上覆层导电性较弱;目标体具有一定的体积,引起的异常有一定的强度;具有一定的探测对比资料。 该技术适用于隧道衬砌质量施工过程控制和竣工验收的无损检测。 4 主要引用标准 《高速铁路隧道工程施工质量验收标准》(TB 10753-2010) 《铁路隧道工程施工质量验收标准》TBl0417-2003 《铁路隧道衬砌质量无损检测规程施工规范》(TB10223-2004) 《铁路工程物理勘探规程》(TB10013-2004) 《岩土工程勘察规范》(GB50021-2001)

线性调频脉冲雷达信号matlab仿真

二〇一年十月 课题小论文 题 目:线性调频(LFM )脉冲压缩雷达仿真学院:专 业: 学生姓名:刘斌学号:年 级: 指导教师:

线性调频(LFM )脉冲压缩雷达仿真 一.雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ),反映目 标对电磁波的散射能力。再经过时间R 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成: 1 ()() M i i i h t t σδτ==-∑(1.1)

车载装置升降系统的设计

本科毕业 院(系、部)名称: 专业名称: 学生姓名: 学生学号: 指导教师: 20**年5月25 日 河北科技师范学院教务处制

本科毕业设计任务书 车载装置升降系统 院(系、部)名称: 专业名称: 学生姓名: 学生学号: 指导教师: 20**年10月15 日 河北科技师范学院教务处制

一、主要研究内容 研究车载装置的升降系统与自动调平机械系统,,通过水平测绘仪的校正,使雷达车自动处于水平位置,并自动举升雷达天线 二、基本要求 要求该系统的机动性能好,对不同的地域条件,不同的环境适应能力强,要求调节水平位置、升降系统工作时实现自动化,而且要求工作位置稳定,在工作的过程中不能发生上下移动和左右摆动,即在一定的风速条件下也能稳定工作。 三、工作进度 20**.10.20 -20**.01.08 根据任务书,调查研究,查阅资料,完成开题报告,撰写文献综述与外文翻译。 20**.01.08-20**.05.25 进行毕业设计 20**.05.26-20**.05.31 提交毕业设计资料,教师进行审核,准备答辩 20**.06.01-20**.06.03 毕业设计答辩 参考文献 [1]吴宗泽. 机械设计手册[M].北京:化学工业出版社,2000,06. [2] 路甬祥主编.液压气动技术手册,机械工业出版社,2002。 [3] 早稻田大学教授加藤一郎编.机械手图册,上海科学技术出版社,1979 [4] 机械工业部编.1996机械产品目录,第7册.机械工业出版社, 1996 指导教师签名:教研室主任审查签名:

河北科技师范学院 本科毕业开题报告 院(系、部)名称: 专业名称: 学生姓名: 学生学号: 指导教师: 20**年11月25日 河北科技师范学院教务处制

雷达线性调频信号(LFM)脉冲压缩

西南科技大学 课程设计报告 课程名称: 设计名称:雷达线性调频信号的脉冲压缩处理 姓名: 学号: 班级: 指导教师: 起止日期: 2010.12.25-----2011.1.5

课程设计任务书 学生班级:学生姓名:学号: 设计名称:雷达线性调频信号的脉冲压缩处理 起止日期:2010、12、25——2011、1、03 指导教师: 课程设计学生日志

课程设计考勤表 课程设计评语表

雷达线性调频信号的脉冲压缩处理 一、 设计目的和意义 掌握雷达测距的工作原理,掌握匹配滤波器的工作原理及其白噪声背景下的匹配滤波的设计,线性调频信号是大时宽频宽积信号;其突出特点是匹配滤波器对回波的多普勒频移不敏感以及更好的低截获概率特性。LFM 信号在脉冲压缩体制雷达中广泛应用;利用线性调频信号具有大带宽、长脉冲的特点,宽脉冲发射已提高发射的平均功率保证足够的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲已提高距离分辨率,较好的解决了雷达作用距离和距离分辨率之间的矛盾;。而利用脉冲压缩技术除了可以改善雷达系统的分辨力和检测能力,还增强了抗干扰能力、灵活性,能满足雷达多功能、多模式的需要。 二、 设计原理 1、匹配滤波器原理: 在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器,设一线性滤波器的输入信号为)(t x : )()()(t n t s t x += 其中:)(t s 为确知信号,)(t n 为均值为零的平稳白噪声,其功率谱密度为2/No 。 设线性滤波器系统的冲击响应为)(t h ,其频率响应为)(ωH ,其输出响应: )()()(t n t s t y o o += 输入信号能量: ∞<=?∞ ∞-dt t s s E )()(2 输入、输出信号频谱函数: dt e t s S t j ?∞ ∞--=ωω)()( )()()(ωωωS H S o = ωωωπωωd e S H t s t j o ?∞ -=)()(21)( 输出噪声的平均功率: ωωωπ ωωπd P H d P t n E n n o o ??∞∞-∞∞-==)()(21)(21)]([22 ) ()()(2)()(21 2 2 ωωωπ ωωπ ωωd P H d e S H SNR n t j o o ? ? ∞ ∞ -∞ ∞-=

地质雷达测量技术

地质雷达测量技术 内容提要:本文在简述地质雷达基本原理的基础上,介绍了地质雷达检测隧道衬砌质量的工作方法,通过理论分析、实际资料计算、实测效果等方面说明采用地质雷达技术检测隧道衬砌质量的必要性和可靠性。 关键词:地质雷达测量技术 1 前言 地质雷达(Geological Radar)又称探地雷达(Ground Penetrating Radar),是一项基于不破坏受检母体而获得各项检测数据的检测方法,在我国已在数百项工程中得到了应用,并取得了显著成效。同时,随着交通、水利、市政建设工程等基础设施的大力发展,以及国家对工程质量的日益重视,工程实施过程中仍急需用物理勘探的手段解决大量的地质难题,因此,地质雷达极其探测技术市场前景十分广阔。 地质雷达作为一项先进技术,具有以下四个显著特点:具有非破坏性;抗电磁干扰能力强;采用便携微机控制,图象直观;工作周期短,快速高效。它不仅用于管线探测,还可用于工程建筑,地质灾害,隧道探测,不同地层划分,材料,公路工程质量的无损检测,考古等等。 2 地质雷达技术原理 地质雷达是运用瞬态电磁波的基本原理,通过宽带时域发射天线向地下发射高频窄脉冲电磁波,波在地下传播过程中遇到不同电性介质界面时产生反射,由接收天线接收介质反射的回波信息,再由计算机将收到的数字信号进行分析计算和成像处理,即可识别不同层面反射体的空间形态和介质特性,并精确标定物体的深度(图1)。

图1 地质雷达检测原理图 3 雷达的使用特性 3.1无损、连续探测,不破坏原有母体,避免了后期修补工作,可节约大量的时间和费用。 3.2 操作简便,使用者经过2-3天培训就能掌握。 探测时,主机显示器实时成像,操作人员可直接从屏幕上判读探测结果,现场打印成图,为及时掌握施工质量提供资料,提高了检测速度和科学水平。并且通过数据分析,还可以了解道路的结构情况,发现道路路基的变化和隐性灾害,使日常管理和维护更加简单。 3.3 测量精度高,测试速度快。在车载工作方式下,测试速度大大提高,当车速达80Km/h时,系统仍能正常工作。 3.4 收、发天线离地面的探测高度可以针对不同的埋地目标进行调整,以达到最佳的探测能力和探测分辨率:同时还可以调节收发天线之间的距离寻找系统工作的最好效果。 3.5 测点密度不受限制,便于点测和普查。 工作方式的灵活使得用户可以连续普查某一段工程的质量,也可随时对异常区域进行重点探测 和分析。 3.6 便于维护与保养。 本系统采用了结构化设计,对于使用不当或其它原因造成的质量问题,简单地更换接插件即可保证雷达的正常工作。 3.7 可扩充配置。 通过选择相应的发射源和收发天线,再配上相应的处理软件,就可以在中、深层探测范围,如地下管线、地基空洞、钢筋分布、堤坝密实程度等方面扩大应用。 4 地质雷达在检测隧道衬砌质量中的应用 新建隧道施工中为确保隧道衬砌质量,采用传统“钻、看”的检测方法显然已不能满足“多断面、全方位”的检测要求,业主和施工单位都在探索采用无损检测技术有效监控和确保隧道衬砌质量的新方法。 隧道衬砌的质量检测包括1)隧道衬砌厚度,2)隧道衬砌背后未回填的空区,3)隧道衬砌的密实程度,4)施工时坍方位置及坍方的处理情况。5)有时还可检测围岩中地下水向隧道侵入的位置。4.1 工作方法

2019年时政:2月21日国内篇

[键入文字] 2019 年时政:2 月21 日国内篇 1、脱贫攻坚三年行动开局良好我国农村贫困发生率降至1.7% 记者从国新办吹风会上获悉:2018 年我国减少农村贫困人口1386 万,连续6 年超额完成千万减贫任务,贫困发生率下降到1.7%,全国已有153 个贫困县宣布脱贫摘帽,2018 年预计还有284 个贫困县退出。 2、长江经济带环境污染犯罪可从重处罚 随着环境污染犯罪案件多发高发,执法司法机关普遍反映实践中存在着确定管辖 难、调查取证难、司法鉴定难、法律适用难等突出问题,亟待通过顶层设计予以解 决。 20 日,最高人民法院、最高人民检察院、公安部、司法部、生态环境部首次就办理环境污染刑事案件有关问题联合出台《关于办理环境污染刑事案件有关问题座谈会纪要》,要求统一法律适用和政策把握,依法准确有效惩治环境污染犯罪,形成各部门依法惩治环境污染犯罪的合力。 此次《纪要》也对长江经济带区域污染环境犯罪规定了相关从重处罚的情形,规定 对于发生在长江经济带11 省(直辖市)的跨省(直辖市)排放、倾倒、处置有放射性的废物、含传染病病原体的废物、有毒物质或者其他有害物质的,将从重处罚。 3、农业农村部要求做好斑海豹幼崽救护工作 近日,大连破获一起特大盗捕斑海豹案件。案件发生后,农业农村部要求严查此事 并务必做好斑海豹幼崽救护工作,同时派员会同辽宁省农业农村厅赶赴大连,就案件 处理和斑海豹救治情况进行指导和对接。 下一步,农业农村部还将指导协调地方渔业渔政部门,妥善做好斑海豹幼崽收容救 助工作,待专家和兽医联合评估认可具有野外生存能力后再分批放归野外。农业农村 部还将进一步加强海洋馆等繁育场所规范管理,切断可能的非法贸易链条,联合有关 1

车载雷达

目录 1选题背景 (1) 1.1雷达车的特点 (1) 1.2 国内外高机动雷达发展状况 (2) 2 方案论证 (4) 2.1 主要技术指标 (4) 2.2 技术可行性 (4) 2.3 升降天线车的液压系统说明 (5) 2.4 测试系统的组成及功能 (6) 2.5 主要技术难点分析 (8) 2.6 与国内外同类产品技术对比分析 (8) 2.7 推广应用价值 (8) 3 过程论述 (8) 3.1 雷达举升机构的力学分析 (8) 3.2 缸的设计 (12) 3.3 缸的连接及材料 (16) 3.4 塔架的设计 (23) 3.5 机动式车载雷达稳定性设计分析 (24) 4 结论总结 (31) 5 致谢 (32) 6参考文献 (33)

1 选题背景 1.1雷达车的特点 现代高技术战争对雷达的越野作战与战场生存能力提出了越来越高的要求,以达到战时快速组网及补充战损的目的,高度的机动能力已经成为现代军事雷达的必备素质;因此,对于雷达设计师来说,在考虑整机电性能指标、可靠性、可维性、可保障性、安全性、可操作性、经济性及加工工艺性等因素的同时,还须从结构上对其机动性作出精心构思。 总的来说,雷达的高机动性须保证雷达具有这样一种能力,即组成雷达的诸多功能环节能够共同形成一种良好的应变能力,在保证性能可靠的前提下,使其在遭到敌方打击之前,能够方便、迅速地撤收,并且转移到新的阵地上重新进入正常的工作状态,以达到保护自己、克敌制胜的目的;因此,在结构总体上须重点考虑下列问题。 运输行驶能力主要包括以下几点: (1).越野能力:战时雷达整机将面临复杂恶劣的地理环境情况,如土路、泥泞路等,此时仍然要求雷达能够以一定的速度可靠地行驶;雷达载车的性能对整机的运输行驶能力有直接影响,因此,载车的越野能力是选型时首先要考虑的问题,其基型车必须满足《军用越野汽车机动性要求》的各项规定:一般来说,机动型雷达载车选型的原则是优先选用国产列装的越野载重基型车辆。 整机各运输单元机动、越野能力的主要指标包括各运输单元重量、行驶速度、最大爬坡度、接近角、离去角、涉水深度、越坡沟宽度、最小转弯直等参数。 (2).通过能力:即雷达整机各运输单元外形尺寸在公路、铁路运输时须符合国家有关运轴限界的要求。 1) 公路运输:应满足公路运输限界。 2) 铁路运输:应满足铁路装载荃本限界. 3) 雷达总重不超过小型桥梁的承重能力。 (3).雷达天线升降机构:按传动系统的不同,可分为机电式和液压式。机电式升降机构技术较为成熟,是一种传统的结构形式,但是,机电式升降机构的控制及传动结构均较为复杂, 同时单位驱动负载的重量较大,在要求架设高度较高、负载较大时尤其如此。液压式传动系统与机电式传动系统相比,在输出同样功率的条件下,体积和质量可以减小很多,同时承载能力大,可以完成较大重量雷达天线的高架。并且采用液压传动还可大大简化机械结构,从而减

车载雷达液压升降系统设计

车载雷达液压升级系统设计 摘要 随着国际形势的动荡,局部战争的不断爆发,现代武器装备的不断更新,现代战争已进入了电子战,信息战时代,传统的机动型雷达已经不能满足现代战争的需要。各国为了提高自己的防卫,跟踪,识别和反击能力,高机动地面雷达应运而生。 天线快速,可靠地机动架设和撤收是车载雷达的基本要求之一。按传动系统的不同,雷达天线升降机构可分为机电式和液压式。与机电式相比,在输出同样功率的条件下,液压式的体积和质量小,承载能力大,可以完成较大重量雷达天线的架设,还可大大简化机械结构,减少机械零部件的数目,也便于实现自动控制。随着科技的发展,液压式传动系统已逐渐在雷达天线升降机构中被采用。本设计采用一种翻转式液压举升机构及其液压系统,可实现对较大型天线的高架,并且在天线的举升过程中,天线的姿态不变,架撤收过程平稳,可靠,快速 关键词:液压升降系统;汽车;雷达;

The design of car radar hydraulic upgrade system Abtract Turmoil as the international situation, local wars breaking out, constantly updated, modern weapons and equipment of modern warfare has entered the electronic warfare, information warfare era, the traditional mobile radar can not meet the needs of modern warfare. Countries in order to improve their defense, tracking, identification, and fight back ability, high-motorized ground radar came into being. Fast, reliable motorized antenna erection and dismantling is one of the basic requirements of the automotive radar. For differences in the transmission system, the radar antenna lifting mechanism can be divided into electro-mechanical and hydraulic. With electromechanical compared to the same output power conditions, the hydraulic volume and mass of small carrying capacity, the larger weight of the radar antenna can be completed erection, but also greatly simplifies the mechanical structure, reducing the number of mechanical parts, also easy to achieve automatic control. With the development of science and technology, the hydraulic drive system has been gradually the radar antenna lifting mechanism is used. This design uses a flip-hydraulic lifting mechanism and its hydraulic system, can be elevated to the larger antenna, and in the process of lifting of the antenna, the antenna of the same attitude, erecting the closing process is smooth, reliable, fast Keywords: hydraulic lift system; cars; radar;

基于MATLAB的线性调频信号的仿真..

存档编号________ 基于MATLAB的线性调频信号的仿真 教学学院 届别 专业 学号 指导教师 完成日期

内容摘要:线性调频信号是一种大时宽带宽积信号。线性调频信号的相位谱具有平方律特性,在脉冲压缩过程中可以获得较大的压缩比,其最大优点是所用的匹配滤波器对回波信号的多普勒频移不敏感,即可以用一个匹配滤波器处理具有不同多普勒频移的回波信号,这些都将大大简化雷达信号处理系统,而且线性调频信号有着良好的距离分辨率和径向速度分辨率。因此线性调频信号是现代高性能雷达体制中经常采用的信号波形之一,并且与其它脉压信号相比,很容易用数字技术产生,且技术上比较成熟,因而可在工程中得到广泛的应用。 关键词:MATLAB;线性调频;脉冲压缩;系统仿真

Abstract:Linear frequency modulation signal is a big wide bandwidth signal which is studied and widely used. The phase of the linear frequency modulation signal spectra with square law characteristics, in pulse compression process can acquire larger compression, its biggest advantage is the use of the matched filter of the echo signal doppler frequency is not sensitive, namely can use a matched filter processing with different doppler frequency shift of the echo signal, these will greatly simplified radar signal processing system, and linear frequency modulation signal has a good range resolution and radial velocity resolution. So linear frequency modulation signal is the modern high performance radar system often used in one of the signal waveform, and compared with other pulse pressure signal, it is easy to use digital technologies to produce, and the technology of the more mature, so in engineering can be widely applied. Keywords:MATLAB, LFM, Pulse compression, System simulation

钠激光雷达在临近空间探测方面的最新进展

第37卷,增刊 红外与激光工程 2008年9月 V ol.37 Supplement Infrared and Laser Engineering Sep. 2008 收稿日期:2008-07-04 作者简介:程永强(1981-),男,陕西渭南人,助理研究员,主要从事激光雷达及中高层大气方面研究。Email:chengyq@https://www.wendangku.net/doc/6d18226978.html, 钠激光雷达在临近空间探测方面的最新进展 程永强,胡 雄,徐 丽,闫召爱,郭商勇 (中国科学院空间科学与应用研究中心,北京 100190) 摘要:介绍了Na 激光雷达的研究背景,详细阐述了Na 激光雷达的国内外发展动态和Na 层测风测温激光雷达的基本探测原理,最后简要描述了发展Na 层测风测温激光雷达的重要意义。 关键词:激光雷达; Na 层测风测温; 临近空间 中图分类号:P4 文献标识码:A 文章编号:1007-2276(2008)增(激光探测)-0028-04 Advances of Na Lidar in near space detection CHENG Yong-qiang, HU Xiong ,XU Li, YAN Zhao-ai, GUO Shang-yong (Center for Space Science and Applied Research, Chinese Academy of Science, Beijing 100190, China) Abstract :The research background of Na lidar is introduced, then the latest advances and the detecting theory of Na wind/temperature lidar is described in detail, at last the important significance of developing Na wind / temperature lidar is explained. Key words :Lidar; Na wind / temperature lidar; Near Space 0 引 言 10 km 以上的地球大气称之为“中高层大气”[1] , 它是日地系统的一个重要中间环节,包括对流层的上部、平流层、中间层和热层。目前国际上临近空间(20~100 km )飞行器技术快速发展,临近空间因其飞行环境的特殊性和广阔的应用前景而受到高度关注。因此,中高层大气探测与研究在大气科学和空间物理中具有举足轻重的地位,在航天等高新科技领域也有重要的意义,也是优化人类的生存环境、保障人类社会可持续发展的需求。 光在大气中传播时,会被大气分子和气溶胶散射或吸收,这种大气分子对光的散射和吸收是使用激光对大气组成和特性进行探测的物理基础。目前,激光雷达(Lidar)是对中高层大气探测与研究的主要手段 之一[2]。根据激光束于大气物质相互作用机制,可设计不同的激光雷达[3],包括气溶胶激光雷达、拉曼激光雷达、共振荧光激光雷达、瑞利散射激光雷达等。 共振荧光激光雷达利用共振荧光过程,将激发光的频率调至散射物质的吸收线,通过散射回波信号来探测大气特性。由于波源或观察者的运动而出现观测频率与波源频率不同的现象,称之为多普勒效应。利用这种多普勒效应进行测风的激光雷达称为测风激光雷达。多普勒频移的大小和方向由分子运动速度方向与激光束方向的夹角决定。因此,通过测量散射光的多普勒谱线频移量就可获得大气风速;通过测量散射光的多普勒谱线展宽就可获得大气温度。Na 层测风测温激光雷达[4]利用中层顶区域内的钠原子作为示踪物,由接收到的共振荧光散射回波光子数反演大气温度、风场及Na 原子数密度廓线。其仅有20多

线性调频信号matlab仿真

实验一 雷达信号波形分析实验报告 一、 实验目的要求 1. 了解雷达常用信号的形式。 2. 学会用仿真软件分析信号的特性。 3了解雷达常用信号的频谱特点和模糊函数。 二、实验参数设置 信号参数范围如下: (1)简单脉冲调制信号: (2)载频:85MHz (3)脉冲重复周期:250us (4)脉冲宽度:8us (5)幅度:1V (2)线性调频信号 载频:85MHz 脉冲重复周期:250us 脉冲宽度:20us 信号带宽:15MHz 幅度:1V 三、 实验仿真波形 1.简单的脉冲调制信号 程序: Fs=10e6; t=0:1/Fs:300e-6; fr=4e3; f0=8.5e7; x1=square(2*pi*fr*t,3.2)./2+0.5; x2=exp(i*2*pi*f0*t); x3=x1.*x2; subplot(3,1,1);

plot(t,x1,'-'); axis([0,310e-6,-1.5,1.5]); xlabel('时间/s') ylabel('幅度/v') title('脉冲信号重复周期T=250US 脉冲宽度为8us') grid; subplot(3,1,2); plot(t,x2,'-'); axis([0,310e-6,-1.5,1.5]); xlabel('时间/s') ylabel('幅度/v') title('连续正弦波信号载波频率f0=85MHz') grid; subplot(3,1,3); plot(t,x3,'-'); axis([0,310e-6,-1.5,1.5]); xlabel('时间/s') ylabel('·幅度/v') title('脉冲调制信号') grid; 仿真波形: 0123x 10-4-101 时 间 /s 幅 度 / v 脉冲信号 重复周期T=250us 脉冲宽度为8us 1 2 3 x 10 -4 -1 1 时间/s幅度/v连续正弦波信号

课程设计(基于单片机的汽车倒车雷达设计)讲解

课程设计说明书 汽车倒车雷达设计 学生姓名XXX 班级机制1001班 学号201021xxxx16 日期2013.07.01—2013.07.12

随着社会经济的发展交通运输业日益兴旺,汽车的数量大幅增长,随着汽车的增多和停车位日趋紧张,泊车成为很多车主头痛的问题,这时倒车雷达就成了汽车的好助手。倒车雷达是汽车泊车安全辅助装置,能以比较直观的显示告知驾驶员后方障碍物的情况,解除了驾驶员泊车时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊的缺陷,提高了倒车的安全性。超声波测距法是常见的一种距离测距方法,本文介绍的就是利用超声波测距法设计的一种倒车防撞报警系统。控制系统核心部分就是超声波测距仪的研制。 设计通过多种发射接收电路设计方案比较,得出了最佳设计方案,并对系统各个单元的原理进行了介绍,对组成系统电路的芯片进行了介绍,并阐述了它们的工作原理,对超声波传感器的选用经过了仔细的思考,并详细的说明其功能和作用原理。文章介绍了系统系统的软件结构,通过编程来实现系统功能。 关键词:单片机;超声波;测距;传感器

1引言 (2) 1.1背景 (2) 1.2设计的要求和难点 (2) 2总体方案设计 (3) 2.1 系统构成图 (3) 2.2 工作原理 (3) 3硬件设计 (5) 3.1 超声波发射与接收电路 (5) 3.1.1 发射电路 (5) 3.1.2 接收电路 (7) 3.2 ADC0832转换器特点与接线图 (9) 3.3 传感器型号及说明 (12) 4软件设计 (13) 4.1 系统流程图 (13) 4.2 编程程序 (15) 5设计小结 (17) 参考文献 (18)

第二讲 国内外地质雷达技术发展状况

第二讲国内外地质雷达技术发展状况(历史与现状) 探地雷达的历史最早可追溯到20世纪初,1904年,德国人Hulsmeyer首次将电磁波信号应用与地下金属体的探测。1910年Leimback和Lowy以专利形式在1910年的专利,他们用埋设在一组钻孔里的偶极子天线探测地下相对高的导电性质的区域,并正式提出了探地雷达的概念。1926年Hulsenbeck第一个提出应用脉冲技术确定地下结构的思路,指出只要介电常数发生变化就会在交界面会产生电磁波反射,而且该方法易于实现,优于地震方法[1,2]。但由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,使得探地雷达技术和应用受到了很多的限制,初期的探测仅限于对波吸收很弱的冰层厚度(1951,B.O.Steenson,1963,S.Evans)和岩石和煤矿的调查(J.C.Cook)等。随着电子技术的发展,直到70探地雷达技术才重新得到人们的重视,同时美国阿波罗月球表面探测实验的需要,更加速了对探地雷达技术的发展,其发展过程大体可分为三个阶段: 第一阶段,称为试验阶段,从20世纪70年代初期到70年代中期,在此期间美国,日本、加拿大等国都在大力研究,英国、德国也相继发表了论文和研究报告,首家生产和销售商用GPR的公司问世,即Rex Morey和Art Drake成立的美国地球物理测量系统公司(GSSI),日本电器设备大学也研制出小功率的基带脉冲雷达系统。此期间探地雷达的进展主要表现在,人们对地表附近偶极天线的辐射场以及电磁波与各种地质材料相互作用的关系有了深刻的认识,但这些设备的探测精度、地下杂乱回波中目标体的识别、分别率等方面依然存在许多问题。 第二阶段,也称为实用化阶段,从20世纪70年代中后其到80年代,在次期间技术不段发展,美国、日本、加拿大等国相继推出定型的探地雷达系统,在国际市场,主要有美国的地球物理探测设备公司(GSSI)的SIR系统,日本应用地质株式社会(OYO)的YL-R2地质雷达,英国的煤气公司的GP管道公司雷达,在70年代末,加拿大A-Cube公司的Annan和Davis等人于1998年创建了探头及软件公司(SSI),针对SIR系统的局限性以及野外实际探测的具体要求,在系统结构和探测方式上做了重大的改进,大胆采用了微型计算机控制、数字信号处理以及光缆传输高新技术,发展成了EKKO Ground Penetrating Radar 系列产品,简称EKKO GPR系列。瑞典地质公司(SGAB)也生产出RAMAC 钻孔雷达系统,此外,英国ERA公司、SPPSCAN公司,意大利IDS公司、瑞典及丹麦也都在生产和研制各种不同型号的雷达。80年代全数字化的GPR问世,具有划时代的意义,数字化GPR不仅提供了大量数据存储的解决方案,增强了实时和现场数据处理的能力,为数据的深层次后处理带来方便,更重要的是GPR 因此显露出更大的潜力,应用领域得以向纵身拓展。 第三阶段,从上个世纪80年代至今,可称为完善和提高阶段。在此期间,GPR技术突飞猛进,更多的国家开始关注探地雷达技术,出现了很多探地雷达的研究机构,如荷兰的应用科学研究组织和代尔夫大学,法国_德国的Saint-Louis 研究所(ISL),英国的DERA,瑞典的FOA,娜威科技大学和地质研究所,比利时的RMA,南非的开普敦大学,澳大利亚昆士兰大学,美国的林肯实验室和Lawrence Livermore国家实验室以及日本的一些研究机构等等。同时,探地雷达也得到了地球物理和电子工程界的更多关注,对天线的改进、信号的处理、地下目标的成像等方面提出了许多新的见解。GSSI公司在商业上取得了极大的成功,

【CN110082734A】汽车车载毫米波雷达外部标定的标定装置、标定系统及标定方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910349602.0 (22)申请日 2019.04.28 (71)申请人 安徽瑞泰智能装备有限公司 地址 243000 安徽省马鞍山市当涂县承接 产业转移示范园区北京大道嘉善科技 园内 (72)发明人 舒金林 邓书朝 童宝宏 晋入龙  孙晋军 孙畅 柳敏 秦然然  (74)专利代理机构 芜湖思诚知识产权代理有限 公司 34138 代理人 阮爱农 (51)Int.Cl. G01S 7/40(2006.01) G01S 13/93(2006.01) (54)发明名称汽车车载毫米波雷达外部标定的标定装置、标定系统及标定方法(57)摘要本发明公开了汽车车载毫米波雷达外部标定的标定装置、标定系统和标定方法。本发明汽车车载毫米波雷达外部标定的标定装置,它包括底板、吸波反射机构,吸波反射机构放置在底板上;吸波反射机构包括若干块吸波材料板、若干个雷达反射装置、上支撑底座,吸波材料板和雷达反射装置均固定在上支撑底座上,每个雷达反射装置的前面至少设置有一个吸波材料板,上支撑底座放置在底板上。在汽车生产线或汽车维修服务站中使用本发明外部标定的标定装置和标定系统,可以实现对雷达安装位置的标定,用于校正汽车车载毫米波雷达支架装置的安装位置,从而保证汽车所装的雷达位置正确,从而提高了 车辆的安全性能。权利要求书2页 说明书7页 附图3页CN 110082734 A 2019.08.02 C N 110082734 A

权 利 要 求 书1/2页CN 110082734 A 1.汽车车载毫米波雷达外部标定的标定装置,其特征是:它包括底板(9)、吸波反射机构,吸波反射机构放置在底板(9)上;吸波反射机构包括若干块吸波材料板(4)、若干个雷达反射装置(5)、上支撑底座(6),吸波材料板(4)和雷达反射装置(5)均固定在上支撑底座(6)上,每个雷达反射装置(5)的前面至少设置有一个吸波材料板(4),上支撑底座(6)放置在底板(9上。 2.根据权利要求1所述的标定装置,其特征是:雷达反射装置(5)优选为四个,每个雷达反射装置(5)包括上部的标准反射目标、下部的底座,两者固接,底座固定在上支撑底座(6)上;雷达反射装置(5)上部的标准反射目标是RCS(雷达散射截面积)为0dB的标准角反射器。 3.根据权利要求1所述的标定装置,其特征是:所述的吸波材料板(4)为雷达波专用吸波材料,其个数不少于雷达反射装置(5)的个数。 4.根据权利要求1所述的标定装置,其特征是:标定装置还包括左右移动机构,左右移动机构包括左右驱动电机(1)、横向传动齿轮(2)、横向传动齿条(3)、下支撑底座(7)、运动滚轮组(8),支撑块(11)、齿条支撑块(12);下支撑底座(7)位于上支撑底座(6)的下面、两者相接触,运动滚轮组(8)设置在下支撑底座(7)的下面,且与底板(9)相接触,左右驱动电机(1)的输出端连接横向传动齿轮(2),横向传动齿轮(2)与横向传动齿条(3)相啮合,左右驱动电机(1)通过支撑块(11)固定在底板(9)上,横向传动齿条(3)的左端从左边的齿条支撑块(12)中穿过、其右端固定在右边的支撑块(12)中,左边的齿条支撑块(12)固定在底板(9)上,右边的齿条支撑块(12)固定在下支撑底座(7)的底面上。 5.根据权利要求4所述的标定装置,其特征是:左右移动机构还包括左右移动辅助机构,左右移动辅助机构包括两个移动单元,两个移动单元相对于横向移动齿条(3)前后对称设置;每个移动单元均包括横向移动导杆(13)、左右两个小支撑块(14),横向移动导杆(13)的左端从左边的小支撑块(14)中穿过、其右端固定在右边的小支撑块(14)中,左边的小支撑块(14)固定在底板(9)上,右边的小支撑块(14)固定在下支撑底座(7)的底面上。 6.根据权利要求1或4所述的标定装置,其特征是:标定装置还包括上下移动机构,上下移动机构包括上下驱动电机(10)、纵向传动齿轮(15)、纵向传动齿条(16);上下驱动电机(10)的输出端连接纵向传动齿轮(15),纵向传动齿轮(15)与纵向传动齿条(16)相啮合,纵向传动齿条(16)一端为自由端,另一端与连接块(17)固接,连接块(17)固定在上支撑底座 (6)上,上下驱动电机(10)通过支撑座(21)固定在下支撑底座(7)上。 7.根据权利要求6所述的标定装置,其特征是:上下移动机构还包括导向板(20),导向板(20)固定在支撑座(21)上,其与纵向传动齿条(16)之间通过V形槽配合。 8.根据权利要求6所述的标定装置,其特征是:上下移动机构还包括上下移动辅助机构,上下移动辅助机构包括两个移动单元,两个移动单元相对于纵向移动齿条(16)前后对称设置;每个移动单元均包括纵向移动导杆(18)、导向套(19),纵向移动导杆(18)的下端固定在下支撑底座(7)上,导向套(19)套在纵向移动导杆(18)外、其下端固定在上支撑底座(6)上。 9.汽车车载毫米波雷达外部标定的标定系统,其特征是:它包括一套权利1-8任一所述的汽车车载毫米波雷达外部标定的标定装置,还包括一个实施标定毫米波雷达安装位置的雷达标定区域、已安装毫米波雷达传感器的待标定车辆、标定控制柜; 其中,雷达标定区域位于汽车总装车间检测线的前部或汽车维修服务站; 2

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 - 0 - 西安电子科技大学

一、雷达工作原理 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、线性调频(LFM)信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。 LFM信号的数学表达式: - 1 -

- 2 - (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: ( 2.2) 其中B K T =是调频斜率,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图 (图2.1.典型的LFM 信号(a )up-LFM(K>0)(b )down-LFM(K<0)) 将式1改写为: (2.3) 其中

相关文档
相关文档 最新文档