文档库 最新最全的文档下载
当前位置:文档库 › BSDF 材料散射和外观特性测量系统 IS-SA

BSDF 材料散射和外观特性测量系统 IS-SA

BSDF 材料散射和外观特性测量系统 IS-SA
BSDF 材料散射和外观特性测量系统 IS-SA

BSDF材料散射和外观特性测量系统IS-SA BSDF是Bidirectional scattering distribution function的简称,学术上称之为双向散射分布函数。(更多知识请关注开玄光电)

BSDF是研究物体表面粗糙度之光学性质。由于物体表面上有凹凸不平的微小表面,一道入射光线射到表面而产生散射现象,用BSDF来表示这种散射现象。其中双向(Bidirectional)系指入射光与接受散射光的方向,因不同的入射光角度所产生的散射性质亦不相同。

BSDF双向散射分布函数,描述光从物体表面向不同方向散射。BSDF方程包含入射光方向以及散射光方向,顾名曰“双向”。用公示表述,BSDF的定义为,每单位入射光照度产生的散射辐射,或

因为辐射的单位是watts/m2-sr,而照度的单位是watts/m2,所以BSDF的单位为1/sr(辐射强度的倒数)。

注意,这个关于BSDF的方程中,将表面的投射视为“发射”散射辐射,所以式

上式可化为

BSDF(Bidirectional Scattered Distribution Function,即双向散射分布函数)由BTDF(Bidirectional Transmittance Distribution Function,即双向透射分布函数)与BRDF(Bidirectional Reflectance Distribution Function,即双向反射分布函数)构成。

双向反射分布函数(Bidirectional Reflectance Distribution Function,BRDF)用来定义给定入射方向上的辐射照度(irradiance)如何影响给定出射方向上的辐射率(radiance)。更笼统地说,它描述了入射光线经过某个表面反射后如何在各个出射方向上分布——这可以是从理想镜面反射到漫反射、各向同性(isotropic)或者各向异性(anisotropic)的各种反射。

BRDF的定义公式为:

光线照到一个物体,首先产生了反射,吸收和透射,所以BRDF的关键因素即为多少光被反射、吸收和透射(折射)了,是怎样变化的。这时的反射多为漫反射。而要知道这些光线反射透射的变化就需要清楚三样东西,物体的表面材质、

光线的波长(即它是什么样的光,是可见太阳光,节能灯光还是紫外线)和观察者与物体之间的位置关系。三维世界角度可以类似是球体的,光线角度除了纵向180°的变化,还有横向360的不同发散方向。会有相应的入射光,反射光,入射角和反射角,它们在物体表面的法平面和切平面上的关系成为了BRDF的关键参数。由于人类眼睛对光的特殊敏感性,我们之所以能看到物体都是通过光线在物体上的发射和转移实现的。而双向反射分布这样的函数表示可以更好地描述光线在物体上的变化,反射光线同时发向分布在法线两边的观察者和光源两个方向,从而使人在计算机等模拟环境下,视觉上可以看到更好的物体模拟效果,仿佛真实的物体存在。

BTDF与BRDF类似,只不过它是用来描述相对面上的散射情况。

综上所述,可以将BSDF看作BRDF与BTDF的扩展集。其实不论BSDF、BRDF 还是BTDF,这些函数的概念都可以被描述为一个以任意两个角度输入的黑盒子,一个是入射光线,另一个是出射光线(反射或透射)。这个黑盒子会输出一个值,该值定义了输入和输出的光能量之间的比例为给定的一对角度。黑匣子的内容可能是一个数学公式,用以模拟和近似实际表面的行为,它也可能是一个算法,在产生输出的基础上测量数据的离散样本。

BSDF主要应用在计算机仿真物体表面明亮度,与真实人眼所看物体之明亮度相符;也可应用在背光模块之光学模拟,例如扩散膜的散射性质等等。另外,在材料的光学性能研究领域,双向散射分布函数(BSDF)已经是一个被广泛认可的综合指标,在航天遥感、地理信息、海洋开发、自然灾害监测、气候研究、军工信息等领域得到广泛的应用。随着数字化和信息化的发展,BSDF的研究也开始了数学建模和数字仿真。

因此,BSDF的测试日渐成为光学材料仿真与应用中不可或缺的一环,对测量BRDF/BTDF的要求也越来越高。IS-SA便是测量BSDF仪器中的一款领导产品,其主要特征如下图:

IS-SA能够在各种光照条件下对表面散射特性进行定量分析,可用来测量塑料、金属、纺织品、玻璃、纸张、涂面、抛光表面、人体皮肤、工程表面等表面散射。

用IS-SA对扩散膜进行测量,这些扩散膜可用于图像、性能增强或背光显示。IS-SA用来区分不同膜的不同效果,也用于对跨片的工艺质量和生产控制的均匀性进行检测。更好的是IS-SA能够充分表征BRDF和BTDF的数据需求。

IS-SA可用以设计照明系统的光学部件特性。光学系统由多种元件组成,一些元件产生光,另一些引导或修改它。IS-SA中有多种可用于光学系统反射或传输的材料性质,如反射面或扩散膜表面,这些数据能够更准确的进行整体光学系统建模。

IS-SA可用于全息薄膜的测量。IS-SA的数据可以通过全息胶片区分不同的全息图、确定空间均匀性,或是用于比较样品的目标设计性能。

IS-SA也可用于计算机仿真与绘制,一般通过测量目的进行区分:对比材料特征,检查材料差异,并检测空间或时间的变化。这些信息可用于一般的科学或工程分析、材料开发、生产控制、绘制渲染等等。

更多BSDF介绍请关注开玄光电

MSA培训资料--第四版

2011-3-21 Measurement Systems Analysis 主讲:品冠顾问陈远景 TS对测量系统分析的要求1测量系统分析的重要性2测量基础术语及知识3测量系统误差来源及影响4测量系统主要统计特性5测量系统研究准备6计量型测量系统分析方法7计数型测量系统分析方法8课程主要内容 第四版MSA主要变化 9

TS对测量系统分析的要求 ?7.6.1 测量系统分析 为分析各种测量和试验设备系统得出的结果中呈现的变差,应进行统计研究。此要求应适 用于控制计划中提及的测量系统。所使用的分析方法及接受准则应符合顾客关于测量系统分析的参考手册的要求。如果得到顾客的批准,也可使用其他分析方法和接受准则。 ?测量系统分析与控制计划及APQP的关系 控制计划中“评价及测量技术”栏目中所体现的测量和试验系统都必须进行测量系统分析。APQP的小组准备工作中,项目进度策划应考虑所需的测量系统分析,过程设计和开发阶段(第三阶段)应确定测量系统分析计划,产品和过程确认(第四阶段)应按计划进行所需的 测量系统评价。 ?测量系统分析与PPAP的关系 PPAP要求对新的或改进后的量具、测量、试验系统进行分析。保存并在客户要求时提交。 ?测量系统分析与SPC的关系 进行SPC研究的测量系统应在进行SPC研究前进行测量系统分析,且结果须符合接受准则。 ?测量系统分析与FMEA的关系 FMEA中未体现对测量系统分析的要求。 2011-3-23?测量系统分析与APQP的关系

2011-3-25?测量系统分析与APQP的关系 测量系统分析的重要性 测量数据的作用: ?用于判定产品的符合性(控制用测量系统); ?用于判定过程是否稳定(分析用测量系统); ?对过程进行调整的依据; ?通过回归分析(或分析研究法)确定两个或两个 以上变量是否存在重要关系的依据。 测量数据质量(偏倚和变差)低的危害:数据质量定义:测量系统稳定运行情况下,利用 多次测量结果的统计特性来评价(与参考值越接近 则数据质量越高)。 ?错误地判定产品的符合性; ?错误地判定过程的稳定性(如掩盖过程的变差,即产生α,β风险); ?错误地对过程进行调整; ?错误地得出变量之间的重要关系。 拆错定时炸弹线后果预测错是否有地震后果

第三章 测试系统的基本特性

第三章 测试系统的基本特性 习 题 3-1 某压力测量系统由压电式传感器、电荷放大器和笔式记录仪组成。压电式压力传感器的灵敏度为90pC/kPa ,将它与一台灵敏度调到0.005V/pC 的电荷放大器相联。电荷放大器输出又接到灵敏度调成20mm/V 的笔式记录仪上。试计算该测量系统的总灵敏度。又当压力变化为3.5kPa 时,记录笔在纸上的偏移量是多少? 3-2 某压力传感器在其全量程0~5MPa 范围内的定度数据如题3-2表,试用最小二乘法求出其拟合直线,并求出该传感器的静态灵敏度和非线性度。 3-3 题表所列为某压力计的定度数据。校准时加载压力范围0~10kPa, 校准分加载(正行程)和卸载(反行程)两种方式进行。试根据3-3表中数据在坐标纸上画出该压力计的定度曲线;用最小二乘法求出拟合直线,并计算该压力计的非线性度和回程误差。 压力传感器的定度数据 题3-2表 校准压力 (MPa ) 读数压力 (MPa ) 0 0 0.5 0.5 1.0 0.98 1.5 1.48 2.0 1.99 2.5 2.51 3.0 3.01 3.5 3.53 4.0 4.02 4.5 4.51 5.0 5.0 压力计定度数据 题3-3表 指示压力(kPa ) 校准压力(kPa )正行程 反行程 0 -1.12 -0.69 1 0.21 0.42 2 1.18 1.65 3 2.09 2.48 4 3.33 3.62 5 4.5 4.71 6 5.26 5.87 7 6.59 6.89 8 7.73 7.92 9 8.68 9.10 10 9.80 10.20 3-4 用一个时间常数0.35s τ=的一阶装置去测量周期分别为1、和的正弦信号,问各种情况的相对幅值误差将是多少? s 2s 5s 3-5 已知某被测信号的最高频率为100Hz ,现选用具有一阶动态特性的测试装置去测量该信号,若要保证相对幅值误差小于5%,试问应怎样要求装置的时间常数τ?在选定τ之后,求信号频率为50Hz 和100Hz 时的相位差。 3-6 试证明一阶系统在简谐激励作用下,输出的相位滞后不大于90。 D 3-7 一气象气球携带一种时间常数为15s τ=的一阶动态特性温度计,以5m/s 的速度通过大气层,设大气层中温度随高度按每升高30m 下降0.15℃的规律变化,气球将温度和高度的数据用无线电拍回地面。在3000m 处所记录的温度为-1℃时的真实高度是多少? 3-8 试说明具有二阶动态特性的测试装置阻尼比大多采用0.6~0.7ζ=的原因。 3-9 一力传感器具有二阶动态特性,传递函数为22()2n n n H s s s ω2ζωω=++。已知传感器的固有频率为800Hz ,阻尼比为0.14。问所用该传感器对400Hz 的正弦交变力进行测量时,振幅比()A f 和相角差()f ?各为多少?又若该传感器的阻尼比改为0.7,则()A f 和() f ?

检测系统的基本特性

第2章 检测系统的基本特性 2.1 检测系统的静态特性及指标 2.1.1检测系统的静态特性 一、静态测量和静态特性 静态测量:测量过程中被测量保持恒定不变(即dx/dt=0系统处于稳定状态)时的测量。 静态特性(标度特性):在静态测量中,检测系统的输出-输入特性。 n n x a x a x a x a a y +++++= 332210 例如:理想的线性检测系统: x a y 1= 如图2-1-1(a)所示 带有零位值的线性检测系统:x a a y 10+= 如图2-1-1(b)所示 二、静态特性的校准(标定)条件――静态标准条件。 2.1.2检测系统的静态性能指标 一、测量范围和量程 1、 测量范围:(x min ,x max ) x min ――检测系统所能测量到的最小被测输入量(下限) x max ――检测系统所能测量到的最大被测输入量(上限)。 2、量程: min max x x L -= 二、灵敏度S dx dy x y S x =??=→?)( lim 0 串接系统的总灵敏度为各组成环节灵敏度的连乘积 321S S S S = 三、分辨力与分辨率 1、分辨力:能引起输出量发生变化时输入量的最小变化量min x ?。 2、分辨率:全量程中最大的min x ?即min max x ?与满量程L 之比的百分数。 四、精度(见第三章) 五、线性度e L max .. 100%L L F S e y ?=± ? max L ?――检测系统实际测得的输出-输入特性曲线(称为标定曲线)与其拟合直线之

间的最大偏差 ..S F y ――满量程(F.S.)输出 注意:线性度和直线拟合方法有关。 最常用的求解拟合直线的方法:端点法 最小二乘法 图2-1-3线性度 a.端基线性度; b.最小二乘线性度 四、迟滞e H %100. .max ??= S F H y H e 回程误差――检测系统的输入量由小增大(正行程),继而自大减小(反行程)的测试 过程中,对应于同一输入量,输出量的差值。 ΔHmax ――输出值在正反行程的最大差值即回程误差最大值。 迟滞特性 五、稳定性与漂移 稳定性:在一定工作条件下,保持输入信号不变时,输出信号随时间或温度的变化而出 现缓慢变化的程度。 时漂: 在输入信号不变的情况下,检测系统的输出随着时间变化的现象。 温漂: 随着环境温度变化的现象(通常包括零位温漂、灵敏度温漂)。 2.2 检测系统的动态特性及指标 动态测量:测量过程中被测量随时间变化时的测量。 动态特性――检测系统动态测量时的输出-输入特性。 常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入;

MSA作业指导手册

测量系统分析(M S A)作业指导书测量系统分析(M S A)作业指导书 文件编号:RL/WI010 共页 编制/日期: 审核/日期: 批准/日期: 版本号:A 受控状态: 发放代码: 一汽四环制泵附件厂

2007年3月20日生效 目录 二、参考文件.......................................................... 三、术语.............................................................. 四、测量系统分析...................................................... (一)分析的原则...................................................... (二)稳定性分析...................................................... (三)偏倚分析........................................................ (四)线性分析........................................................ (五)双性(GRR或R&R)分析........................................... (六)计数型量具的测量系统分析........................................

一、目的 为公司各类简单的计量型、计数型量具的测量系统分析提供指导。 二、参考文件 测量系统分析参考手册第三版 三、术语 1、Procedure)、环境(E) 2、测量系统:对测量单元进行量化或对被测的特性进行评估,所使用的仪器或量 具、标准、操作、方法、夹具、软件、人员、环境及假设的集合。 3、分辨力:测量装置和标准的测量解析度、刻度限制、或最小可检出的单位。与最 小可读单位研究,即通常所说的最小刻度值,但当仪器刻度较粗略时,允许将最 小刻度值估读为原来的一半作为仪器的可视分辨力。 4、重复性:当测量条件已被确定和定义——在确定的零件、仪器、标准、方法、操 作者、环境和假设之下,测量系统内部的变差。 5、再现性:传统上将再现性称为“评价人之间”的变差(AV)。指的是不同评价人使 用相同的仪器对同一产品上的同一特性,进行测量所得的平均值的变差。但对于 操作者不是变差的主要原因的测量过程,上述说法是不正确的。ASTM的定义为:现现性是指测量的系统之间或条件之间的平均值变差。它不但包括评价人的变 差,同时还可能包括:量具、试验室及环境的不同,除此之外,还包括重复性。

MSA测量系统分析参考手册(doc 204页)

内部资料严禁翻印测量系统分析 参考手册 第三版 1990年2月第一版 1995年2月第一版;1998年6月第二次印刷 2002年3月第三版 ?1990?1995?2002版权 由戴姆勒克莱斯勒、福特和通用汽车公司所有

测量系统分析 参考手册 第三版 1990年2月第一版 1995年2月第一版;1998年6月第二次印刷 2002年3月第三版 ?1990?1995?2002版权 由戴姆勒克莱斯勒、福特和通用汽车公司所有

本参考手册是在美国质量协会(ASQ)及汽车工业行动集团(AIAG)主持下,由戴姆勒克莱斯勒、福特和通用汽车公司供方质量要求特别工作组认可的测量系统分析(MSA)工作组编写,负责第三版的工作组成员是David Benham(戴姆勒克莱斯勒)、Michael Down (通用)、Peter Cvetkovski(福特),以及Gregory Gruska(第三代公司)、Tripp Martin(FM 公司)、以及Steve Stahley(SRS技术服务)。 过去,克莱斯勒、福特和通用汽车公司各有其用于保证供方产品一致性的指南和格式。这些指南的差异导致了对供方资源的额外要求。为了改善这种状况,特别工作组被特许将克莱斯勒、福特和通用汽车公司所使用的参考手册、程序、报告格式有及技术术语进行标准化处理。 因此,克莱斯勒、福特和通用汽车公司同意在1990年编写并以通过AIAG分发MSA手册。第一版发行后,供方反应良好,并根据实际应用经验,提出了一些修改建议,这些建议都已纳入第二版和第三版。由克莱斯勒、福特和通用汽车公司批准并承认的本手册是QS-9000的补充参考文件。 本手册对测量系统分析进行了介绍,它并不限制与特殊生产过程或特殊商品相适应的分析方法的发展。尽管这些指南非覆盖测量系统通常出现的情况,但可能还有一些问题没有考虑到。这些问题应直接向顾客的供方质量质量保证(SQA)部门提出。如果不知如何与有关的SQA部门联系,在顾客采购部的采购员可以提供帮助。 MSA工作组衷心感谢:戴姆勒克莱斯勒汽车公司副总裁Tom Sidlik、福特汽车公司Carlos Mazzorin,以及通用汽车公司Bo Andersson的指导和承诺;感谢AIAG在编写、出版、分发手册中提供的帮助;感谢特别工作组负责人Hank Gryn(戴姆勒克莱斯勒)、Russ Hopkins (福特)、Joe Bransky(通用),Jackie Parkhurst(通用(作为代表与ASQ及美国试验与材料协会(国际ASTM)的联系。编写这本手册以满足汽车工业界的特殊需要。 戴姆勒克莱斯勒、福特和通用汽车公司于2002后取得了本手册的版权和所有权。如果需要,可向AIAG订购更多的本手册,和/或在得到AIAG的许可下,复制本手册的部分内容,在各供方组织内使用。(AIAG联系电话:248-358-3570)。 2002年3月

第三章 测试系统的基本特性

第三章 测试系统的基本特性 (一)填空题 1、某一阶系统的频率响应函数为1 21)(+= ωωj j H ,输入信号2 sin )(t t x =,则输出信号)(t y 的频率为= ω,幅值= y ,相位= φ。 2、试求传递函数分别为5.05.35 .1+s 和2 22 4.141n n n s s ωωω++的两个环节串联后组成的系统 的总灵敏度。为了获得测试信号的频谱,常用的信号分析方法有、 和 。 3、当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y ?=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。4、传感器的灵敏度越高,就意味着传感器所感知的越小。5、一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度(3)回程误差(4)阻尼系数 2、从时域上看,系统的输出是输入与该系统 响应的卷积。(1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1))()(21ωωQ Q (2))()(21ωωQ Q +(3)) ()() ()(2121ωωωωQ Q Q Q +(4)) ()(21ωωQ Q ?4、一阶系统的阶跃响应中,超调量 。 (1)存在,但<5%(2)存在,但<1(3)在时间常数很小时存在 (4)不存在 5、忽略质量的单自由度振动系统是 系统。(1)零阶 (2)一阶 (3)二阶 (4)高阶 6、一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数(4)阻尼比 7、用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的

[实验二]望远系统特性参数的测量

[实验二] 望远系统特性参数的测量一、实验目的 通过对望远系统特性参数的实际测量,进一步掌握望远系统的基本成像原理,同时加深对其各参数的理解。 二、实验内容 实际测量望远系统的出瞳及出瞳距的大小。 三、实验仪器 平行光管、待测望远系统(经纬仪或水平仪)、倍率计等。 四、测量原理 对于望远系统来而言,物镜框就是孔径光阑,也为入瞳;物镜框经后面的目镜所成的像即为望远系统的出瞳D′,出瞳 ′ 到望远系统目镜最后一面的顶点的距离就是出瞳距离,如 P 图2-1所示。

图 2-1 利用倍率计可以简单而比较精确的测量出出瞳直径及出瞳距。倍率计的结构原理如图2-2所示,其光学系统是一个低倍的显微镜,物镜的放大率是1倍,目镜是倍,分划板上刻有用来测量出瞳像直径的标尺,其刻划范围为。此外,显微镜可以在外筒内前后移动,在显微镜筒上有一根长度标尺,刻划范围为,格值为(在外筒上有一窗口可见到此标尺)。当显微镜在外筒内移动时,标尺可指示出它的位置,以方便的测量出出瞳距。 5.12mm 10mm 80~0mm 1 图 2-2 五、测量步骤 (一)望远系统出瞳直径的测量 1、测量前将被测望远系统的目镜视度调整到零,使仪器处于正常工作状态。 2、将平行光管、被测望远系统、倍率计如图2-3依次放置,并调整三者共轴等高。

图2-3 3、通过倍率计观察望远系统物镜框所成之像,并对出瞳亮斑调焦,从而使被测系统的出瞳在倍率计分划板中心部位上成清晰的像,此时从倍率计分划板上的刻线值即可正确地读出被测系统的出瞳直径的大小。 D′ (二)望远系统出瞳距离的测量 1、当倍率计调焦在出瞳面上时,从倍率计外筒窗口上也 a 可以读得一个读数,此读数即为沿轴方向的出瞳面的位置。 1 2、然后,沿倍率计外筒拉动显微镜,将它调焦在被测系统目镜的最后一个表面顶点上,此时再次记下外筒窗口上的读 a p′。 数。两次读数之差就是被测系统的出瞳距 2 六、思考 1、如何测量望远镜的入瞳及入瞳距? 2、为什么大多数望远系统的孔径光阑都是位于物镜上?

测试装置的基本特性

第二章 测试装置的基本特性 (一)填空题 1、 某一阶系统的频率响应函数为1 21 )(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。 2、 试求传递函数分别为5.05.35.1+s 和2 224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。 3、 为了获得测试信号的频谱,常用的信号分析方法有 、 和 。 4、 当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y -=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。 5、 传感器的灵敏度越高,就意味着传感器所感知的 越小。 6、 一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题 1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度 (3)回程误差 (4)阻尼系数 2、 从时域上看,系统的输出是输入与该系统 响应的卷积。 (1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、 两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1) )()(21ωωQ Q (2))()(21ωωQ Q + (3)) ()()()(2121ωωωωQ Q Q Q +(4))()(21ωωQ Q - 4、 一阶系统的阶跃响应中,超调量 。 (1)存在,但<5% (2)存在,但<1 (3)在时间常数很小时存在 (4)不存在 5、 忽略质量的单自由度振动系统是 系统。 (1)零阶 (2)一阶 (3)二阶 (4)高阶 6、 一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数 (4)阻尼比 7、 用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的 时间作为时间常数。 (1)0.632 (2)0.865 (3)0.950 (4)0.982 (三)判断对错题(用√或×表示) 1、 一线性系统不满足“不失真测试”条件,若用它传输一个1000Hz 的正弦信号,则必然导致输出波形失真。( ) 2、 在线性时不变系统中,当初始条件为零时,系统的输出量与输入量之比的拉氏变换称为传递函数。( ) 3、 当输入信号)(t x 一定时,系统的输出)(t y 将完全取决于传递函数)(s H ,而与该系统

测量系统分析方法82638

测量系统分析(MSA)方法 测量系统分析(MSA)方法**** 1.目的 对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。 2.范围 适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。 3.职责 质管部负责测量系统分析的归口管理; 公司计量室负责每年对公司在用测量系统进行一次全面的分析; 各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。 4.术语解释 测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。 偏倚(Bias):指测量结果的观测平均值与基准值的差值。 稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。 重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。 再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。 分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。 可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为。有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。关于有效分辨率,在99%置信水平时其标准估计值为GR&R。 分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。 盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所测为那一只产品的条件下,获得的测量结果。 计量型与计数型测量系统:测量系统测量结果可用具体的连续的数值来表述,这样的测量系

第三章测试装置的基本特性

第三章测试装置的基本特性 第一节测试装置的组成及基本要求 一、对测试系统的基本要求 测试过程是人们获取客观事物有关信息的认识过程。在这一过程中,需要利用专门的测试系统和适当的测试方法,对被测对象进行检测,以求得所需要的信息及其量值。对测试系统的基本要求自然是使测试系统的输出信号能够真实地反映被测物理量的变化过程,不使信号发生畸变,即实现不失真测试。任何测试系统都有自己的传输特性,如果输入信号用x(t)表 示,测试系统的传输特性用h(t)表示,输 出信号用y(t)表示,则通常的工程测试问 题总是处理x(t)、h(t)和y(t)三者之间的 关系,如图2-1所示,即 1)若输入x(t)和输出y(t)是已知量, 图3-1 则通过输入、输出可推断出测试系统的传 输特性h(t)。 2)若测试系统的传输特性h(t)已知,输出y(t)亦已测得,则通过h(t)和y(t)可推断出对应于该输出的输入信号x(t)。 3)若输入信号x(t)和测试系统的传输特性h(t)已知,则可推断出测试系统的输出信号y(t)。 本章主要讨论系统传递(传输)特性的描述方法。 二、测试系统的组成 一个完善的测试系统是由若干个不同功能的环节所组成的,它们是实验装置、测试装置(传感器、中间变换器)、数据处理装置及显示或记录装置,如图2-2所示。 当测试的目的和要求不同时,以上四个部分并非必须全部包括。如简单的温度测试系统只需要一个液柱式温度计,它既包含了测量功能,又包含了显示功能。而用于测量 图3-2

机械构件频率响应的测试系统,则是一个相当复杂的多环节系统,如图2-3所示。 实验装置是使被测对象处于预定状态下,并将其有关方面的内在特性充分显露出来,它是使测量能有效进行的一种专门装置。例如,测定结构的动力学参数时,所使用的激振系统就是一种实验装置。它由信号发生器、功率放大器和激振器组成。信号发生器提供正弦信号,其频率可在一定范围内变化,此正弦信号经功率放大器放大后,去驱动激振器。激振器产生与信号发生器的频率相一致的交变激振力,此力通过力传感器作用于被测对象上,从而使被测对象处于该频率激振下的强迫振动状态。 测试装置的作用是将被测信号(如激振力、振动产生的位移、速度或加速度等)通过传感器变换成电信号,然后再经过后接仪器的再变换、放大和运算等,将其变成易于处理和记录的信号。测试装置是根据不同的被测机械参量,选用不同的传感器和相应的后接仪器而组成的。例如图中采用测力传感器和测力仪组成力的测试装置,同时又采用测振传感器和测振仪组成振动位移(或振动速度、振动加速度)的测试装置。 数据分析处理装置是将测试装置输出的电信号进一步分析处理,以便获得所需要的测试结果。如图中的双通道信号分析仪,它可对被测对象的输入信号(力信号)x (t )与输出信号(被测对象的振动位移信号)y (t )进行频率分析、功率谱分析、相关分析、频率响应函数分析、相干分析及概率密度分析等,以便得到所需要的明确的数据和资料。 显示或记录装置是测试系统的输出环节,它将分析和处理过的被测信号显示或记录(存储)下来,以供进一步分析研究。在测试系统中,现常以微处理机、打印机和绘图仪等作为显示和记录的装置。 在测试工作中,作为整个测试系统,它不仅包括了研究对象,也包括了测试装置,因此要想从测试结果中正确评价研究对象的特性,首先要确知测试装置的特性。 理想的测试装置应该具有单值的、确定的输入、输出关系。其中以输出和输入成线性关系为最佳。在静态测量中,虽然我们总是希望测试装置的输入输出具有这种线性关系,但由于在静态测量中,用曲线校正或输出补偿技术作非线性校正尚不困难,因此,这种线性关系并不是必须的;相反,由于在动态测试中作非线性校正目前还相当困难,因而,测试装置本身应该力求是线性系统,只有这样才能作比较完善的数学处理与分析。一些实际测试装置 ,

测量系统分析(MSA)

测量系统分析(MSA) 1目的和围 规测量系统分析,明确实施方法、步骤及对数据的处理、分析。 2规性引用文件 无 3定义 3.1测量系统:用来对测量单元进行量化或对被测的特性进行评估,其所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合;也就是说,用来获得测量结果的整个过程。 3.2稳定性:是测量系统在某持续时间测量同一基准或零件的单一特性时获得的测量值总变差。 稳定性是整个时间的偏倚的变化。 3.3分辨率:为测量仪器能够读取的最小测量单位。别名:最小读数单位、刻度限度、或探测度、分辨力;要求低于过程变差或允许偏差(tolerance)的十分之一。Minitab中常用的分辨率指标:可区分的类别数ndc=(零件的标准偏差/ 总的量具偏差)* 1.41,一般要求它大于等于5才可接受,10以上更理想。 3.4过程总波动TV=6σ。σ——过程总的标准差 3.5准确性(准确度):测量的平均值是否偏离了真值,一般通过量具计量鉴定或校准来保证。 3.5.1真值:理论正确值,又称为:参考值。 3.5.2偏倚:是指对相同零件上同一特性的观测平均值与真值的差异。%偏倚=偏倚的平均绝对值/TV。 3.5.3线性:在测量设备预期的工作量程,偏倚值的差值。用线性度、线性百分率表示。 3.6精确性(精密度):测量数据的波动。测量系统分析的重点,包括:重复性和再现性 3.6.1重复性:是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差。重复性又被称为设备波动(equipment variation,EV)。 3.6.2再现性:是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。再现性又被称为“评价人之间”的波动(appraiser waration,AV)。 3.6.3精确性%公差(SV/Toler),又称为%P/T:是测量系统的重复性和再现性波动与被测对象质量特性 σ/ (USL-LSL) *100%。 公差之比,%P/T=R&R/(USL-LSL)*100%=6 MS σ/6σ*100%。 3.6.4精确性%研究变异(%Gage R&R、%SV)= R&R/TV*100%=6 MS 线性

测试系统的基本特性

第4章测试系统的基本特性 4.1 知识要点 4.1.1测试系统概述及其主要性质 1.什么叫线性时不变系统? 设系统的输入为x (t )、输出为y (t ),则高阶线性测量系统可用高阶、齐次、常系数微分方程来描述: )(d )(d d )(d d )(d 01111t y a t t y a t t y a t t y a n n n n n n ++++--- )(d )(d d )(d d )(d 01111t x b t t x b t t x b t t x b m m m m m m ++++=--- (4-1) 式(4-1)中,a n 、a n -1、…、a 0和b m 、b m -1、…、b 0是常数,与测量系统的结构特性、输入状况和测试点的分布等因素有关。这种系统其内部参数不随时间变化而变化,称之为时不变(或称定常)系统。既是线性的又是时不变的系统叫做线性时不变系统。 2.线性时不变系统具有哪些主要性质? (1)叠加性与比例性:系统对各输入之和的输出等于各单个输入的输出之和。 (2)微分性质:系统对输入微分的响应,等同于对原输入响应的微分。 (3)积分性质:当初始条件为零时,系统对输入积分的响应等同于对原输入响应的积分。 (4)频率不变性:若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号。 4.1.2测试系统的静态特性 1.什么叫标定和静态标定?采用什么方法进行静态标定?标定有何作用?标定的步骤有哪些? 标定:用已知的标准校正仪器或测量系统的过程。 静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 静态标定方法:在全量程范围内均匀地取定5个或5个以上的标定点(包括零点),从零点开始,由低至高,逐次输入预定的标定值(称标定的正行程),然后再倒序由高至低依次输入预定的标定值,直至返回零点(称标定的反行程),并按要求将以上操作重复若干次,记录下相应的响应-激励关系。 标定的主要作用是:确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度

(完整版)测试装置的基本特性

第二章测试装置的基本特性 本章学习要求 1.建立测试系统的概念 2.了解测试系统特性对测量结果的影响 3.了解测试系统特性的测量方法 为实现某种量的测量而选择或设计测量装置时,就必须考虑这些测量装置能否准确获取被测量的量值及其变化,即实现准确测量,而是否能够实现准确测量,则取决于测量装置的特性。这些特性包括静态与动态特性、负载特性、抗干扰性等。这种划分只是为了研究上的方便,事实上测量装置的特性是统一的,各种特性之间是相互关联的。系统动态特性的性质往往与某些静态特性有关。例如,若考虑静态特性中的非线性、迟滞、游隙等,则动态特性方程就称为非线性方程。显然,从难于求解的非线性方程很难得到系统动态特性的清晰描述。因此,在研究测量系统动态特性时,往往忽略上述非线性或参数的时变特性,只从线性系统的角度研究测量系统最基本的动态特性。 2.1 测试系统概论 测试系统是执行测试任务的传感器、仪器和设备的总称。当测试的目的、要求不同时,所用的测试装置差别很大。简单的温度测试装置只需一个液柱式温度计,而较完整的动刚度测试系统,则仪器多且复杂。本章所指的测试装置可以小到传感器,大到整个测试系统。 玻璃管温度计 轴承故障检测仪 图2.1-1 在测量工作中,一般把研究对象和测量装置作为一个系统来看待。问题简化为处理输入量x(t)、系统传输特性h(t)和输出y(t)三者之间的关系。常见系统分析分为如下三种情况: 1)当输入、输出能够测量时(已知),可以通过它们推断系统的传输特性。-系统辨识 2)当系统特性已知,输出可测量,可以通过它们推断导致该输出的输入量。-系统反求 3)如果输入和系统特性已知,则可以推断和估计系统的输出量。-系统预测 图2.1-2 系统、输入和输出 2.1.1 对测试系统的基本要求 理想的测试系统应该具有单值的、确定的输入-输出关系。对于每一输入量都应该只有单一的输出量与之对应。知道其中一个量就可以确定另一个量。其中以输出和输入成线性关系最佳。许多实际测量装置无法在较大工作范围内满足线性要求,但可以在有效测量范围内近似满足线性测量关系要求。一般把测试系统定常线性系统考虑。 2.1.2 线性系统及其主要性质 若系统的输入x(t)和输出y(t)之间的关系可以用常系数线性微分方程来描述 a n y(n)(t)+a n-1y(n-1)(t)+…+a1y(1)(t)+a0y(0)(t) = b m x(m)(t)+b m-1x(m-1)(t)+b1x(1)(t)+b0x(0)(t) (2.1-1)

测量系统分析(MSA)

测量系统分析(MSA) 1目得与范围 规范测量系统分析,明确实施方法、步骤及对数据得处理、分析。 2规范性引用文件 无 3定义 3.1测量系统:用来对测量单元进行量化或对被测得特性进行评估,其所使用得仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设得集合;也就就是说,用来获得测量结果得整个过程。 3.2稳定性:就是测量系统在某持续时间内测量同一基准或零件得单一特性时获得得测量值总变差。 稳定性就是整个时间得偏倚得变化。 3.3分辨率:为测量仪器能够读取得最小测量单位。别名:最小读数单位、刻度限度、或探测度、分辨力;要求低于过程变差或允许偏差(tolerance)得十分之一。Minitab中常用得分辨率指标:可区分得类别数ndc=(零件得标准偏差/ 总得量具偏差)* 1、41,一般要求它大于等于5才可接受,10以上更理想。 3.4过程总波动TV=6σ。σ——过程总得标准差 3.5准确性(准确度):测量得平均值就是否偏离了真值,一般通过量具计量鉴定或校准来保证。 3.5.1真值:理论正确值,又称为:参考值。 3.5.2偏倚:就是指对相同零件上同一特性得观测平均值与真值得差异。%偏倚=偏倚得平均绝对值/TV。 3.5.3线性:在测量设备预期得工作量程内,偏倚值得差值。用线性度、线性百分率表示。 3.6精确性(精密度):测量数据得波动。测量系统分析得重点,包括:重复性与再现性 3.6.1重复性:就是由一个评价人,采用一种测量仪器,多次测量同一零件得同一特性时获得得测量值变差。重复性又被称为设备波动(equipment variation,EV)。 3.6.2再现性:就是由不同得评价人,采用相同得测量仪器,测量同一零件得同一特性时测量平均值得变差。再现性又被称为“评价人之间”得波动(appraiser waration,AV)。 3.6.3精确性%公差(SV/Toler),又称为%P/T:就是测量系统得重复性与再现性波动与被测对象质量 σ/ (USL-LSL) *100%。 特性公差之比,%P/T=R&R/(USL-LSL)*100%=6 MS σ/6σ*100%。 3.6.4精确性%研究变异(%Gage R&R、%SV)= R&R/TV*100%=6 MS 线性

测量系统分析MSA手册教材

内部资料严禁翻印 测量系统分析 参考手册 第三版 由戴姆勒克莱斯勒、福特和通用汽车公司所有

本参考手册是在美国质量协会(ASQ)及汽车工业行动集团(AIAG)主持下,由戴姆勒克莱斯勒、福特和通用汽车公司供方质量要求特别工作组认可的测量系统分析(MSA)工作组编写,负责第三版的工作组成员是David Benham(戴姆勒克莱斯勒)、Michael Down (通用)、Peter Cvetkovski(福特),以及Gregory Gruska(第三代公司)、Tripp Martin(FM 公司)、以及Steve Stahley(SRS技术服务)。 过去,克莱斯勒、福特和通用汽车公司各有其用于保证供方产品一致性的指南和格式。这些指南的差异导致了对供方资源的额外要求。为了改善这种状况,特别工作组被特许将克莱斯勒、福特和通用汽车公司所使用的参考手册、程序、报告格式有及技术术语进行标准化处理。 因此,克莱斯勒、福特和通用汽车公司同意在1990年编写并以通过AIAG分发MSA手册。第一版发行后,供方反应良好,并根据实际应用经验,提出了一些修改建议,这些建议都已纳入第二版和第三版。由克莱斯勒、福特和通用汽车公司批准并承认的本手册是QS-9000的补充参考文件。 本手册对测量系统分析进行了介绍,它并不限制与特殊生产过程或特殊商品相适应的分析方法的发展。尽管这些指南非覆盖测量系统通常出现的情况,但可能还有一些问题没有考虑到。这些问题应直接向顾客的供方质量质量保证(SQA)部门提出。如果不知如何与有关的SQA部门联系,在顾客采购部的采购员可以提供帮助。 MSA工作组衷心感谢:戴姆勒克莱斯勒汽车公司副总裁Tom Sidlik、福特汽车公司Carlos Mazzorin,以及通用汽车公司Bo Andersson的指导和承诺;感谢AIAG在编写、出版、分发手册中提供的帮助;感谢特别工作组负责人Hank Gryn(戴姆勒克莱斯勒)、Russ Hopkins (福特)、Joe Bransky(通用),Jackie Parkhurst(通用(作为代表与ASQ及美国试验与材料协会(国际ASTM)的联系。编写这本手册以满足汽车工业界的特殊需要。 戴姆勒克莱斯勒、福特和通用汽车公司于2002后取得了本手册的版权和所有权。如果需要,可向AIAG订购更多的本手册,和/或在得到AIAG的许可下,复制本手册的部分内容,在各供方组织内使用。(AIAG联系电话:248-358-3570)。 2002年3月

MSA测量系统分析参考手册范本

部资料严禁翻印 测量系统分析 参考手册 第三版

1990年2月第一版 1995年2月第一版;1998年6月第二次印刷 2002年3月第三版 ?1990?1995?2002 由戴姆勒克莱斯勒、福特和通用汽车公司所有

前言 本参考手册是在美国质量协会(ASQ)及汽车工业行动集团(AIAG)主持下,由戴姆勒克莱斯勒、福特和通用汽车公司供方质量要求特别工作组认可的测量系统分析(MSA)工作组编写,负责第三版的工作组成员是David Benham(戴姆勒克莱斯勒)、Michael Down(通用)、Peter Cvetkovski(福特),以及Gregory Gruska(第三代公司)、Tripp Martin(FM 公司)、以及Steve Stahley(SRS技术服务)。 过去,克莱斯勒、福特和通用汽车公司各有其用于保证供方产品一致性的指南和格式。这些指南的差异导致了对供方资源的额外要求。为了改善这种状况,特别工作组被特许将克莱斯勒、福特和通用汽车公司所使用的参考手册、程序、报告格式有及技术术语进行标准化处理。 因此,克莱斯勒、福特和通用汽车公司同意在1990年编写并以通过AIAG分发MSA手册。第一版发行后,供方反应良好,并根据实际应用经验,提出了一些修改建议,这些建议都已纳入第二版和第三版。由克莱斯勒、福特和通用汽车公司批准并承认的本手册是QS-9000的补充参考文件。 本手册对测量系统分析进行了介绍,它并不限制与特殊生产过程或特殊商品相适应的分析方法的发展。尽管这些指南非覆盖测量系统通常出现的情况,但可能还有一些问题没有考虑到。这些问题应直接向顾客的供方质量质量保证(SQA)部门提出。如果不知如何与有关的SQA部门联系,在顾客采购部的采购员可以提供帮助。 MSA工作组衷心感:戴姆勒克莱斯勒汽车公司副总裁Tom Sidlik、福特汽车公司Carlos Mazzorin,以及通用汽车公司Bo Andersson的指导和承诺;感AIAG在编写、出版、分发手册中提供的帮助;感特别工作组负责人Hank Gryn(戴姆勒克莱斯勒)、Russ Hopkins(福特)、Joe Bransky(通用),Jackie Parkhurst(通用(作为代表与ASQ及美国试验与材料协会(国际ASTM)的联系。编写这本手册以满足汽车工业界的特殊需要。 戴姆勒克莱斯勒、福特和通用汽车公司于2002后取得了本手册的和所有权。如果需要,可向AIAG订购更多的本手册,和/或在得到AIAG的许可下,复制本手册的部分容,在各供方组织使用。(AIAG联系:248-358-3570)。 2002年3月

六西格玛管理工具的离散数据测量系统分析

六西格玛管理工具的离散数据测量系统分析 一、离散数据测量系统的重复性和再现性 1、重复性 当某个检验员两次判断同一部品的外观缺陷,判断结果之间可能存在差异。这称作离散数据测量系统的重复性误差。 2、再现性 两个检验员判断同一部品的外观缺陷,可能得出不同的结论,这称作离散数据测量系统的再现性误差。 3、离散数据的测量 是将被测量对象与某个标准做比较、并根据其是否满足标准做出“接受”或“不接受”的过程,离散数据测量系统有效性是确认该测量系统鉴别被测量对象“好”与“坏”的能力。 4、根据离散数据测量系统的特点,在对离散数据测量系统进行分析 分析时应同时选择“好”、“坏”、和“边缘状态”的样本进行分析。 二、离散数据测量系统分析的目的 离散数据测量系统分析的目的有以下几个: 1、确认单个检验员重复检验的一致程度即确认重复性误差的大小。 2、确认多个检验员检验结果之间的一致性即确认再现性误差的大小。 3、确认检验员的检验结果与标准之间的一致性。 4、确认离散数据测量系统总的测量误差。 三、离散数据测,系统分析的条件和要求 1、需要最少30个以上的样品,包括良品、不良品及边缘品。 2、两个以上的检验员。 四、离散数据测量系统分析的方法与步骤 1、由两个检验员抽取30个样品 首先由每个检验员随机测量(检验)每个样品1次,记录测量结果,间隔3天后每个检验员重新测量每个样品一次,记录测量结果。 2、对测量数据进行分析 ①需要确认的项目为: ·重复性百分比--量化检验员个人误差 ·再现性百分比--量化检验员之间的误差 ·一致性百分比--量化测量系统总误差 ·与标准一致性的百分比--量化测量准确度 注意,在连续数据测量系统分析中,一般并不需要评估测量准确度,因为连续数据测量系统分析有个前提条件,就是测量仪器必须在校正有效期内,这保证了测量系统的测量准确度,故不需评价。

测量系统分析

一、第二阶段(M 测量阶段)总结 定义阶段已经产生了一个项目章程和项目团队,并对需要改进的过程进行了概述,列出了顾客关心的关键质量特性CTQs 。在测量阶段,需要从数据的角度来理解流程的现状,从而寻找问题的源头或位置,即寻找聚焦的问题。测量阶段的知识将有助于您缩小范围进入分析阶段寻找影响CTQ 的潜在根本原因。测量阶段一项重要部分就是要建立项目过程能力水平的基线。 M 阶段已经完成,A 阶段工作正在有条理的进行着,针对M 阶段项目所遇到的相关分析工具以及技术性问题,我做了如下的总结讨论。 的内容。 量具的重复性和再现性研究(Gage R&R),实际上就是执行一系列的实验,来研究测量系统的重复性和再现性相对于被测对象而言是否足够。实验包括:(1)多个操作者、多个样品、多次测量实验;(2)数据必须均衡,每个操作者须测量每个样品相同次数;(3)例:3个操作者分别测量7个样品,每个测量2次;(4)样品就能代表过程中的变化范围;(5)操作者应随机盲目地进行测试,最好不要知道自己是在做实验,不能带有“偏见性”;同时在记录结果时,操作者不应知道在测量哪个样品。 (1) MSA 测量系统的分类:(1)1人多机的MSA ——自动监测,人的干预较少;(2)多人1 机的MSA ——手动监测,人工干预较多;(3)多人多机的MSA ——自动、手动同时监测,人工干预较多;(4)人机混合的MSA ——难度最大,属于连贯性监测;(5)PT 与PTV 的区别——在进行MSA 时,PTV 很容易就满足条件,而PT 则不容易被满足。

(2)例1:测量某工件的长度分别为200mm、220mm、240mm、260mm,长度的规格值在±2mm之间,对所测量的数据进行PT及PTV的分析。①PTV1:长度测量仪器可以分开,指200mm、220mm、240mm、260mm能够被测量仪器识别的参数;②PT1:200mm±2mm、220mm±2mm、240mm±2mm、260mm±2mm,指能够分辨出具体长度的仪器识别参数(3)例2:假设工件的跨度从20mm改变为40mm,则PT及PTV将如何改变,测量仪器的精确度不变①PTV2:200mm、240mm、280mm、320mm,用同样精密的仪器测量,PTV2比PTV1更容易合格;②PT2:200mm±2mm、240mm±2mm、280mm±2mm、320mm ±2mm,采用同样精密度的仪器,PT2比PT1更容易合格 总体而言,观测到的过程偏差(σ Total)往往由过程的真正偏差(σ part-to-part )和测 量系统的重复性和再现性(σ R&R )两部分组成,测量系统研究就是要评估:测量系统的重复性和再现性偏差相对于观测到的过程偏差而言是否足够小。 测量系统指标判断准则 (1) (2) (3) 测量系统往往存在一下问题: (1)偏差或准确性差——测量平均值与被测件真值有很大差异 (2)精确性差—同样过程、同一被测件,多次测量值很大差异;“重复性不好”、“再现性不好” (3)量具不稳定——测量值随着时间的变化产生较大差异 (4)分辨率不够——般要求分辨率至少是被测件公差范围的1/10或更高 《一》连续数据的测量系统分析 1、基础知识介绍 (1)期望特性与测试方法 (2)重复性与再现性的试验方法

相关文档