文档库 最新最全的文档下载
当前位置:文档库 › Flexible, Aligned Carbon Nanotube Conducting Polymer Electrodes for a Lithium-Ion Battery

Flexible, Aligned Carbon Nanotube Conducting Polymer Electrodes for a Lithium-Ion Battery

Flexible, Aligned Carbon Nanotube Conducting Polymer Electrodes for a Lithium-Ion Battery
Flexible, Aligned Carbon Nanotube Conducting Polymer Electrodes for a Lithium-Ion Battery

Flexible,Aligned Carbon Nanotube/Conducting Polymer Electrodes for a Lithium-Ion Battery

Jun Chen,?Yong Liu,?Andrew I.Minett,?Carol Lynam,?Jiazhao Wang,?and Gordon G.Wallace*,?

ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute,Uni V ersity of

Wollongong,NSW2522,Australia,and Institute for Superconducting and Electronic Materials,Uni V ersity of

Wollongong,NSW2522,Australia

Recei V ed April10,2007

Re V ised Manuscript Recei V ed May29,2007 Carbon nanotubes(CNTs)present a new material for the construction of electrodes.The large-scale production of aligned carbon nanotube(ACNT)arrays was first reported by Dai and co-workers,1providing an opportunity to develop highly ordered,high-surface-area electrodes with excellent electronic and mechanical properties.Although the latter two attributes are realized in the vertical direction,there is a need to develop simple methods of making ACNT composites that are mechanically robust and with sufficient conductivity in the horizontal direction.Such interconnects would give rise to a practically useful electrode structure for use in applica-tions such as energy storage,2actuators,3and sensors.4 Aligned CNT growth,while producing innovative struc-tures,suffers from a lack of good electrical connectivity between the aligned tubes.Growth on conducting substrates that would provide this electrical connection has met with limited success;recently,direct growth on metal alloys5has been reported.Depositing metals selectively on top of CNT arrays to achieve this electrical connection6is fraught with difficulties.To realize the potential of these arrays in applications such as flexible displays,their removal from the substrate used for growth is necessary.Invariably, removal of the CNT array from surfaces results in damage, including breakdown of any metal coated on top to achieve an electrical connection.To address this issue of a lack of robust electrical connection between nanotubes in an array, we present here an approach for preparing a nanostructured ACNT/conducting polymer https://www.wendangku.net/doc/6518704569.html,anic conducting polymers have proven to be useful in the development of polymer-based composites.7-9In the novel nanostructure created here,the CNTs are held together by a conducting polymer composite layer.The nanotubes remain vertically oriented and protrude from the conducting polymer layer (90%of the tube length is exposed).The electrochemistry of the nanostructured electrodes produced and their use as the anode material in Li-ion batteries are presented.

In this study,poly(3,4-ethylenedioxythiophene)(PEDOT) was utilized as the conducting polymer because of the excellent electrochemical activity and electronic conductivity attainable with this material.A thin PEDOT film was deposited onto the ACNT array by chemical vapor-phase polymerization(CVP).The procedure used to form the nanostructured electrode from a quartz plate is summarized in Scheme1.Aligned multiwall carbon nanotubes were produced by pyrolysis of iron(II)phthalocyanine as described by Dai.1,10Following production of the aligned CNTs on a quartz plate,a thin PEDOT film(100nm thickness across the entire film)was deposited onto ACNT arrays by CVP using ferric p-toluenesulfonate(Fe(III)tosylate)as oxidant. The SEM image of this ACNT/PEDOT composite film(inset a in Scheme1)indicates that the PEDOT deposited by VPP formed a continuous film on the top of the ACNT array.It was found that the PEDOT film was not sufficiently mechanically robust to support the ACNT array.It was not possible to remove the ACNT/PEDOT film from the quartz plate as a free-standing film.To overcome this problem,we cast a second coating,consisting of poly(vinylidene fluoride) (PVDF),onto the PEDOT film from a10%(w/w)PVDF acetonitrile solution.The PVDF layer(0.5μm thickness across the entire film)provided the mechanical robustness required to peel the resultant flexible electrode film from the quartz plate.An example of this free-standing,highly flexible composite is shown in inset b of Scheme1.The composite film could be rolled up without any visual signs of degradation.The resulting free-standing and flexible ACNT-based membrane electrode was then used as the anode material in a rechargeable lithium-ion battery.

Scanning electron microscopy(SEM)images(Figure1) of the ACNT/PEDOT/PVDF membrane electrode show a clear array structure(Figure1a)supported by a PEDOT/ PVDF composite film.The roots of the carbon nanotubes are held tightly by the underlying PEDOT/PVDF layer (Figure1b,obtained for a stretched(15%strain)electrode). The ACNT/PEDOT/PVDF electrode structure remains intact, even upon strainging,highlighting the robustness of the composite electrode.The aligned carbon nanotube layer was found to be adherent and was not removed by rubbing or abrasion on a hard surface.

The conductivity of the ACNT/PEDOT/PVDF electrode was determined using a standard4-probe system(Jandel

*Corresponding author.E-mail:gwallace@https://www.wendangku.net/doc/6518704569.html,.au.

?Intelligent Polymer Research Institute,University of Wollongong.

?Institute for Superconducting and Electronic Materials,University of Wollongong.

(1)Yang,Y.;Huang,S.;He,H.;Mau,A.W.H.;Dai,L.J.Am.Chem.

Soc.1999,121,10832.

(2)Lin,K.;Xu,Y.;He,G.;Wang,X.Mater.Chem.Phys.2006,99,

190.

(3)Baughman,R.H.;Cui,C.;Zakhidov,A.A.;Iqbal,Z.;Barisci,J.N.;

Spinks,G.M.;Wallace,G.G.;Mazzoldi,A.;Rossi,D.D.;Rinzler,

A.G.;Jaschinski,O.;Roth,S.;Kertesz,M.Science1999,284,1340.

(4)Wei,C.;Dai,L.;Roy,A.;Tolle,T.B.J.Am.Chem.Soc.2006,128,

1412.

(5)Talapatra,S.;Kar,S.;Pal,S.K.;Vajtai,R.;Ci,L.;Victor,P.;

Shaijumon,M.M.;Kaur,S.;Nalamasu,O.;Ajayan,P.M.Nature Nanotechnol.2006,1,112.

(6)Takesue,I.;Haruyama,J.;Kobayashi,N.;Chiashi,S.;Maruyama,

S.;Sugai,T.;Shinohara,H.Phys.Re V.Lett.2006,96,57001.

(7)Migahed,M.D.;Fahmy,T.;Ishra,M.;Barakat,A.Polym.Test.2004,

23,361.

(8)Zhang,X.;Zhang,J.;Liu,Z.Carbon2005,43(10),2186.

(9)Song,H.K.;Palmore,G.T.R.Ad V.Mater.2006,18,1764.

(10)Dai,L.;Patil,A.;Gong,X.;Guo,Z.;Liu,L.;Liu,Y.;Zhu,D.Chem.

Phys.Chem.2003,4,1150.

3595

Chem.Mater.2007,19,3595-3597

10.1021/cm070991g CCC:$37.00?2007American Chemical Society

Published on Web06/22/2007

Model RM2).The ACNT/PEDOT/PVDF membrane elec-trode had an electronic conductivity over 200S cm -1,which is significantly higher than that measured for an ACNT/PVDF electrode (between 2and 20S cm -1)prepared under identical conditions without the conductive PEDOT layer in the middle.This result is an average of 10measurements across the sample,with less than 10%deviation between each measurement,which demonstrates the uniformity of the

film structure.The PEDOT layer is obviously critical in producing interconnectivity between the aligned parallel tubes.

The electrochemical characteristics of the ACNT/PEDOT/PVDF nanostructured electrode were determined using a three-electrode cell filled with 1.0M NaNO 3/H 2O and comprising a working electrode (ACNT/PEDOT/PVDF),an auxiliary electrode (platinum mesh),and an Ag/AgCl refer-ence electrode at room temperature.The cyclic voltammo-gram (CV)(Figure 2,plot 1)shows a rectangular shape,indicative of the highly capacitive nature of the ACNT/PEDOT/PVDF electrode with rapid charge -discharge char-acteristics 11when compared with PEDOT/PVDF (Figure 2,plot 2).This electrode was cycled for 50cycles,and no obvious degradation was observed.

Using methods described elsewhere,12we assembled a 1cm 2nanostructured ACNT/PEDOT/PVDF electrode into a lithium-ion battery for testing (Neware,Electronic Co.).The lithium-ion testing cell was assembled in an argon-filled glove box (Mbraun,Unilab,Germany)by stacking a porous polypropylene separator containing liquid electrolyte between the ACNT/PEDOT/PVDF electrode and a lithium-foil counter electrode.The electrolyte used was 1.0M LiPF 6in a 50:50(v/v)mixture of ethylene carbonate and dimethyl carbonate supplied by Merck KgaA,Germany.The cell was cycled at room temperature between 0.0and 2.0V at a constant current density of 0.1mA cm -2for the time required to reach the potential limit.

The typical charge -discharge (inset a in Figure 3)profiles display stable charge -discharge curves during cycling;indicative of stable electrochemical performance by this free-standing ACNT/PEDOT/PVDF membrane electrode.The discharge capacity versus the cycle number for the above cell is shown in Figure 3.The first cycle of this electrode exhibits an enormous irreversible capacity,which can be attributed to the formation of a solid electrolyte interface (SEI)layer on the surface of the electrodes.13However,a highly stable discharge capacity of 265mA h g -1is observed

(11)Conway,B.E.Electrochemical Supercapacitor:Scientific Funda-mentals and Technological Application ;Kluwer Academic/Plenum Publisher:New York,1999.

(12)Chen,J.;Wang,J.;Wang,C.;Too,C.O.;Wallace,G.G.J.Power

Sources 2006,708.

(13)Frackowiak,E.;Gautier,S.;Gaucher,H.;Bonnamy,S.;Beguin,F.

Carbon 1999,37,61.

Scheme 1.Illustration of the Procedures for the Preparation of a Free-Standing and Highly Conductive ACNT/PEDOT/

PVDF Membrane Electrode

a

a

(a)Spin-coating a thin iron (III)tosylate film onto an ACNT modified quartz plate;(b)CVP growth of a PEDOT film on the top of ACNT forest;(c)casting of a thin PVDF film;and (d)electrode structure peeled from the quartz plate as a free-standing robust

material.

Figure 1.SEM images of ACNT/PEDOT/PVDF membrane electrodes:(a)after peeling (subsequent to stretching),and (b)deliberately stretched (~

15%).

Figure 2.Cyclic voltammogram of (1)ACNT/PEDOT/PVDF,and (2)PEDOT/PVDF membrane electrodes in 1.0M NaNO 3/H 2O at a scan rate of 20mV s -1.

3596Chem.Mater.,Vol.19,No.15,2007

Communications

after 50cycles.This is significantly higher than the value obtained previously for SWNT paper (173mA h g -1)under identical working conditions.14This is attributed to the high accessible surface area (140cm 2/cm 2)of the aligned carbon nanotubes,which,when coupled with the robust polymer layer,provides a mechanically stable array.The CNTs in ACNT/PEDOT/PVDF electrode keep their nanostructured architecture,while the CNTs in SWNT paper prepared via vacuum filtration aggregate to form bundle of CNTs and thereby decrease the electroactive surface area of the elec-trode.This is reflected in the stable long-term electrochemical performance of these electrodes in a Li-ion battery.No degradation was observed over 50charge -discharge cycles.Another significant improvement is that this free-standing ACNT/PEDOT/PVDF electrode with excellent electronic and mechanical properties does not require a metal substrate (copper foil),as is normally employed to support the active materials in a lithium-ion battery.15For a typical anode (1cm 2),this equates to 14mg of copper compared to 2mg of PVDF,which still could be decreased by optimizing the process.This would significantly decrease the weight of the anode in a lithium-ion battery,or allow more active material per unit mass to increase the capacity per battery unit.The other advantage of this copper-free electrode is that it may contribute to the improvement of the long-term battery performance;without copper dissolution caused by impurities in the electrolyte.Due to the chemical and electrochemical stability of PEDOT and PVDF,the impurities in the electrolyte would not cause the same problem as that for copper foil during the long-term battery performance.This may explain the stable electrochemical performance observed when used in a lithium-ion battery.

Our preliminary results indicate that this novel “free-standing”ACNT/PEDOT/PVDF membrane electrode,which is lightweight,flexible,highly conductive,and mechanically robust,could be easily fabricated into a rechargeable battery without using a metal substrate or binder.In this Li-ion battery,the weight of the electrode is reduced significantly compared with a conventional electrode made by coating a mixture containing an active material onto the metal sub-strate.The results also show that the capacity of the ACNT/PEDOT/PVDF electrode is 50%higher than that observed for free-standing SWNT paper.This study has important implications for the use of aligned carbon nanotube/conduc-tive polymer composites as a new class of electrode materials in developing flexible rechargeable lithium-ion batteries and may lead to other applications of carbon nanotubes in flexible electronic devices.The scaled-up production and increase in the dimensions of the aligned carbon nanotube electrode structure may prove challenging and are currently under investigation.Detailed studies into factors such as controlling the length and density of ACNTs and the effects of these on electrode performance are being carried out and will be discussed in a later paper.

In a typical experiment,following production of the aligned CNTs on a quartz plate,a PEDOT film was deposited onto the CNT array by chemical vapor phase polymerization.A thin film of ferric p -toluenesulfonate (Fe(III)tosylate)was coated on the ACNT array using a spin coater (Laurell Tech.Co.)at a speed of 1000rpm for 1min from a 10%(w/w)Fe(III)tosylate solution in ethanol.The Fe(III)tosylate coated ACNT array was placed directly into an oven at 80°C for 3min to quickly evaporate the ethanol,thereby forming a good-quality continuous Fe(III)tosylate film.The sample was then exposed to 3,4-ethylenedioxythiophene (EDOT)monomer vapor in the vapor-phase polymerization (VPP)chamber at 60°C.16After 30min,the sample was removed from the chamber and a blue film was visible on the quartz plate indicating the formation of PEDOT.Following air-drying for 1h,the PEDOT-coated ACNT array was washed in pure ethanol to remove unreacted EDOT monomer as well as Fe ions.The PEDOT-modified ACNT array was then dried in a fume-hood.

Acknowledgment.We thank the Australian Research Coun-cil for continued financial support.Ongoing discussions on aligned CNTs with Professor Liming Dai (University of Dayton,U.S.A.)are also gratefully acknowledged.

CM070991G

(14)Ng,S.H.;Wang,J.;Guo,Z.P.;Chen,J.;Wang,G.X.;Liu,H.K.

Electrochim.Acta 2005,51,23.

(15)Zhao,M.;Dewald,H.D.;Staniewicz,R.J.Electrochim.Acta 2004,

49,683.

(16)Winther-Jensen,B.;Chen,J.;West,K.;Wallace,G.G.Macromol-ecules 2004,37,

5930.

Figure 3.Discharge capacity vs the cycle number of ACNT/PEDOT/PVDF electrode in a Li-ion testing cell under a constant current density of 0.1mA cm -2.

Communications Chem.Mater.,Vol.19,No.15,20073597

step7与wincc flexible仿真

使用Wincc Flexible与PLCSIM进行联机调试是可行的,但是前提条件是安装Wincc Flexible时必须选择集成在Step7中,下面就介绍一下如何进行两者的通讯。 Step1:在Step7中建立一个项目,并编写需要的程序,如下图所示: 为了演示的方便,我们建立了一个起停程序,如下图所示: Step2:回到Simatic Manager中,在项目树中我们建立一个Simatic HMI Station的对象,如果Wincc Flexible已经被安装且在安装时选择集成在Step7中的话,系统会调用Wincc Flexible程序,如下图所示:

为方便演示,我们这里选择TP270 6寸的屏。 确定后系统需要加载一些程序,加载后的Simatic Manager界面如下图所示:

Step3:双击Simatic HMI Station下Wincc Flexible RT,如同在Wincc Flexible软件下一样的操作,进行画面的编辑与通讯的连接的设定,如果您安装的Wincc Flexible软件为多语言版本,那么通过上述步骤建立而运行的Wincc Flexible界面就会形成英语版,请在打开的Wincc Flexible软件菜单Options-〉Settings……中设置如下图所示即可。 将项目树下通讯,连接设置成如下图所示: 根据我们先前编写的起停程序,这里只需要使用两个M变量与一个Q变量即可。将通讯,变量设置成如下图所示:

将画面连接变量,根据本文演示制作如下画面: 现在我们就完成了基本的步骤。

Step4:模拟演示,运行PLCSIM,并下载先前完成的程序。 建立M区以及Q区模拟,试运行,证实Step7程序没有出错。 接下来在Wincc Flexible中启动运行系统(如果不需要与PLCSIM联机调试,那么需要运行带仿真器的运行系统),此时就可以联机模拟了。 本例中的联机模拟程序运行如下图所示:

winccfleXible系统函数

WinCC Flexible 系统函数 报警 ClearAlarmBuffer 应用 删除HMI设备报警缓冲区中的报警。 说明 尚未确认的报警也被删除。 语法 ClearAlarmBuffer (Alarm class number) 在脚本中是否可用:有 (ClearAlarmBuffer) 参数 Alarm class number 确定要从报警缓冲区中删除的报警: 0 (hmiAll) = 所有报警/事件 1 (hmiAlarms) = 错误 2 (hmiEvents) = 警告 3 (hmiSystem) = 系统事件 4 (hmiS7Diagnosis) = S7 诊断事件 可组态的对象 对象事件 变量数值改变超出上限低于下限 功能键(全局)释放按下 功能键(局部)释放按下 画面已加载已清除 数据记录溢出报警记录溢出 检查跟踪记录可用内存很少可用内存极少 画面对象按下 释放 单击 切换(或者拨动开关)打开 断开 启用 取消激活 时序表到期 报警缓冲区溢出

ClearAlarmBufferProtoolLegacy 应用 该系统函数用来确保兼容性。 它具有与系统函数“ClearAlarmBuffer”相同的功能,但使用旧的ProTool编号方式。语法 ClearAlarmBufferProtoolLegacy (Alarm class number) 在脚本中是否可用:有 (ClearAlarmBufferProtoolLegacy) 参数 Alarm class number 将要删除其消息的报警类别号: -1 (hmiAllProtoolLegacy) = 所有报警/事件 0 (hmiAlarmsProtoolLegacy) = 错误 1 (hmiEventsProtoolLegacy) = 警告 2 (hmiSystemProtoolLegacy) = 系统事件 3 (hmiS7DiagnosisProtoolLegacy) = S7 诊断事件 可组态的对象 对象事件 变量数值改变超出上限低于下限 功能键(全局)释放按下 功能键(局部)释放按下 画面已加载已清除 变量记录溢出报警记录溢出 检查跟踪记录可用内存很少可用内存极少 画面对象按下 释放 单击 切换(或者拨动开关)打开 断开 启用 取消激活 时序表到期 报警缓冲区溢出 SetAlarmReportMode 应用 确定是否将报警自动报告到打印机上。 语法 SetAlarmReportMode (Mode) 在脚本中是否可用:有 (SetAlarmReportMode) 参数 Mode

winccflexible系统函数

WinCC Flexible 系统函数报警 ClearAlarmBuffer 应用 删除HMI设备报警缓冲区中的报警。 说明 尚未确认的报警也被删除。 语法 ClearAlarmBuffer (Alarm class number) 在脚本中是否可用:有 (ClearAlarmBuffer) 参数 Alarm class number 确定要从报警缓冲区中删除的报警: 0 (hmiAll) = 所有报警/事件 1 (hmiAlarms) = 错误 2 (hmiEvents) = 警告 3 (hmiSystem) = 系统事件 4 (hmiS7Diagnosis) = S7 诊断事件 可组态的对象 对象事件 变量数值改变超出上限低于下限 功能键(全局)释放按下 功能键(局部)释放按下 画面已加载已清除 数据记录溢出报警记录溢出 检查跟踪记录可用内存很少可用内存极少 画面对象按下 释放 单击 切换(或者拨动开关)打开 断开 启用 取消激活 时序表到期 报警缓冲区溢出 ClearAlarmBufferProtoolLegacy 应用

该系统函数用来确保兼容性。 它具有与系统函数“ClearAlarmBuffer”相同的功能,但使用旧的ProTool编号方式。语法 ClearAlarmBufferProtoolLegacy (Alarm class number) 在脚本中是否可用:有 (ClearAlarmBufferProtoolLegacy) 参数 Alarm class number 将要删除其消息的报警类别号: -1 (hmiAllProtoolLegacy) = 所有报警/事件 0 (hmiAlarmsProtoolLegacy) = 错误 1 (hmiEventsProtoolLegacy) = 警告 2 (hmiSystemProtoolLegacy) = 系统事件 3 (hmiS7DiagnosisProtoolLegacy) = S7 诊断事件 可组态的对象 对象事件 变量数值改变超出上限低于下限 功能键(全局)释放按下 功能键(局部)释放按下 画面已加载已清除 变量记录溢出报警记录溢出 检查跟踪记录可用内存很少可用内存极少 画面对象按下 释放 单击 切换(或者拨动开关)打开 断开 启用 取消激活 时序表到期 报警缓冲区溢出 SetAlarmReportMode 应用 确定是否将报警自动报告到打印机上。 语法 SetAlarmReportMode (Mode) 在脚本中是否可用:有 (SetAlarmReportMode) 参数 Mode 确定报警是否自动报告到打印机上: 0 (hmiDisnablePrinting) = 报表关闭:报警不自动打印。

使用WinCCFlexible2008SP4创建的项目(精)

常问问题 02/2015 使用WinCC Flexible 2008 SP4创建的项目如何移植到博途软件中? 移植, WinCC Flexible 2008 SP4, WinCC V13 C o p y r i g h t S i e m e n s A G C o p y r i g h t y e a r A l l r i g h t s r e s e r v e d 目录 1 基本介绍 (3 1.1 软件环境及安装要求 .......................................................................... 3 1.1.1 软件环境 ............................................................................................ 3 1.1.2 安装要求 ............................................................................................ 3 2 操作过程.. (4 2.1 设备类型在博途软件中包含 ................................................................ 4 2.1.1 移植过程 ............................................................................................ 4 2.2 设备类型在博途软件中不包含 ............................................................ 6 2.2.1 移植过程 .. (6 3 常见错误及解决方法 (8 3.1 项目版本不符 ..................................................................................... 8 3.2

基于Step7和WinccFlexible联合仿真教程

基于Step7和WinccFlexible联合仿真教程目录 0 项目要求:..................................................................... .............................................. 2 1 项目分析与规 划: .................................................................... .................................... 2 2 系统IO口分配:..................................................................... ..................................... 2 3 系统接线原理 图: .................................................................... .................................... 2 4 系统控制方式规划:..................................................................... .. (2) 5 系统硬件选择与组态...................................................................... . (3) 6 PLC程序设计...................................................................... ........................................ 19 7 触摸屏通讯设置、画面设计与变量控制....................................................................... 25 8 项目仿真测 试 .....................................................................

西门子触摸屏软件Wincc flexible 使用总结

西门子触摸屏软件Wincc flexible 使用总结Wincc Flexible使用: 1. 退出系统的命令是Stopruntime。 2. 尽量不要用超级兔子或优化大师清理注册表和系统垃圾,因为会有S7和Flexible的文件 一起被清楚掉,这样容易造成使用故障,如组态错误或不能下载,卡巴斯基也不用。 3. Flexible的键控的触摸屏中K键是全局键,其设置要在模板里设置。 1. 使用按钮时,注意: A:颜色变化 B:功能实现 C:对应的按键 2:要使用按钮的动画中的可见性选项,需要设置此变量类型为位0,不行的话就设置为整型。 4. 要想在触摸屏处于运行状态时下载程序,需要在Romate control旁打勾。 5. 可以通过DP口写触摸屏(连到MPI上)的程序,不要这时要启用路由功能。 6. 触摸屏可以通过DP传输,在硬件里组态到MPI上面,实际连接到DP口,编程线也接 到DP口上,下载即可,不要启用路由功能。 7. M变量只有释义后才能在Flexible中看到。 8. 如果在编译时出现“无效参数”或类似的查不出原因的错误,就在菜单-----选项里选择 删除临时文件,就可以解决这个问题。

9. 对于一些指示变量变化的信号,必须指示传感器的信号,可以添加一个符号库,然后在 布局里设置其背景为透明的,填充颜色模式为实心的,设置其前景色、背景色都是灰色 的,然后在动画---外观里设置其指向需要显示的变量,设置在不同值时不同的前景色即 可。 10. 在屏上显示控制面板时,不能下载。 11. 如果连接的PLC名称改变,可以在选项里选择重新连接,不过前提是PLC 的名称必须 和原来变量连接的PLC的名称一致。 12. 按钮的焦点颜色和宽度指的是按钮被激活时,在按钮上显示的边框的颜色和宽度,一般 把宽度设为1,颜色无所谓。 13. 如果要实现中英文切换,步骤如下:a,在项目语言里,设置编辑语言和参考语言;b, 在画面里做一个按钮,设置单击时的动作是设置-----》Setlanguage,函数选择Toggle的 话,表示单击一次改变一下语言,函数选择en-GB的话表示单击后切换到英文,选择 zh-CN的话,单击后切换到中文;c,在设备设置-----》语言和字体里设置两种语言的显 示格式;d,在语言设置------》项目文本里设置相应的按钮对应的英文翻译。 14. 建立配方步骤:a,在配方里新建一个配方;

用WINCC flexible软件下载旧的触摸屏

用WINCC flexible软件下载旧的触摸屏(OP170B)出现软件版本与触摸屏版本不相同,在传送里面有个OS更新,点开后数据线要连上,点更新OS,如果还是出现以上问题,可能是装了WINCC flexible软件后,又安装了ProTool软件。那就看它的操作系统镜像路径是不是选择的C:\Program Files\Siemens\SIMATIC WinCC flexible\WinCC flexible Images\Mobile_OP_TP170B\Mobile_OP_TP170B_V7_2_0_0.img 如果不是就有可能选择的是C:\SIEMENS\PROTOOL\Utility\ProSave\Images\Mobile_OP_TP170B 这个路径,要改成上面的那个路径 1. 在ProTool项目的“控制器”中双击新建的PLC选择驱动,根据相 应的PLC选择S7-200或S7-300/400。 2. 选择“参数”,为OP分配地址,默认为1;选则相应的协议 (PPI/MPI/DP)和波特率,要和PLC通信口的协议和速率一致;分配相应的PLC地址(默认为2),机架号和槽号,注意槽号一般输入CPU的位置,S7-300一般为2,S7-400一般为3。 3. 如果ProTool是集成在STEP7中的,就需要在“连接OP至网 络”中选择通信网络(MPI/DP),再到“选择通信同级”中选择相应网络中的CPU,这样通信协议、波特率以及通信地址、机架号和插槽号等信息会自动从STEP7中同步到ProTool中,不用输入。2.https://www.wendangku.net/doc/6518704569.html,/File001/File_5970.html 3.wincc flexible 2007安装后少template_zh cn.tmp文件 悬赏分:50 - 解决时间:2009-4-18 11:07 我的wincc flexible 2007 安装后在C盘simatic wincc flexible 2007\caches\1.2.0.0_155.1\Resd\template_zh cn.tmp,没有template_zh cn.tmp,请安装这个软件的人,给我发一下这个文件,邮箱:leipeng_911@https://www.wendangku.net/doc/6518704569.html, 提问者:lpabc1986 - 助理二级

winccflexible组态概述

Wincc_Flexible组态简介 WinCC flexible,德国西门子(SIEMENS)公司工业全集成自动化(TIA)的子产品,是一款面向机器的自动化概念的HMI软件。WinCC flexible 用于组态用户界面以操作和监视机器与设备,提供了对面向解决方案概念的组态任务的支持。WinCC flexible与WinCC十分类似,都是组态软件,而前者基于触摸屏,后者基于工控机。 HMI由硬件和软件两部分组成,硬件部分包括处理器、显示单元、输入单元、通信接口、数据存贮单元等,其中处理器的性能决定了HMI 产品的性能高低,是HMI的核心单元。根据HMI的产品等级不同,处理器可分别选用8位、16位、32位的处理器。HMI软件一般分为两部分,即运行于HMI硬件中的系统软件和运行于PC机Windows操作系统下的画面组态软件(如WinCC flexible)。使用者都必须先使用HMI的画面组态软件制作“工程文件”,再通过PC 机和HMI 产品的串行通信口,把编制好的“工程文件”下载到HMI的处理器中运行。 HMI人机界面产品的基本功能包括: 1、设备工作状态显示,如指示灯、按钮、文字、图形、曲线等; 2、数据、文字输入操作,打印输出 3、生产配方存储,设备生产数据记录 4、简单的逻辑和数值运算 5、可连接多种工业控制设备组网 HMI的选型指标包括: 1、显示屏尺寸及色彩、分辨率、HMI的处理器速度性能、 2、输入方式:触摸屏或薄膜键盘 3、画面存贮容量,注意厂商标注的容量单位是字节(byte)、还是位(bit) 4、通信口种类及数量,是否支持打印功能

本模块主要介绍西门子TP 270触摸屏,其接口外形如图3-2所示,接口功能描述见表3-1。 图3-2 西门子TP 270接口排列图 表3-1接口功能描述 编号描述应用 1 接地连接用于连接到机架地线 2 电源连接到电源+24V DC 3 接口IF1B RS 422/RS 485(未接地)接口 4 接口IF1A 用于PLC 的RS 232接口 5 接口IF2 用于PC、PU、打印机的RS 232接口 6 开关用于组态接口IF1B 7 电池连接连接可选备用电池 8 USB接口用于外部键盘,鼠标等的连接 9 插槽B 用于CF卡 10 以太网接口(只用于MP 270B) 连接RJ45以太网线 11 插槽A(只用于MP 270B) 用于CF卡

相关文档