文档库 最新最全的文档下载
当前位置:文档库 › 比较二次函数值的大小

比较二次函数值的大小

比较二次函数值的大小
比较二次函数值的大小

利用抛物线的特点巧比较函数值的大小

例、已知二次函数()2

=-+的图像经过A()1y、B)2y

32

y x m

、C)3y三个点则1y、2y、3y的大小关系为()

A

y>2y> 3y B2y>1y>3y

1

C

y>3y> 2y D3y>2y>1y

1

1、此题可以采用代入法分别计算出

y、2y、3y的大小再比较

1

2、也可采用对称性将A、B、C三点转化到对称轴的同一侧

再利用函数的增减性比较大小

这两种方法计算均略显麻烦

下面介绍一种实用且简单的比较方法

观察抛物线不难发现这样的规律:

当开口向上时,此时抛物线上的点与对称轴的距离越远函数值越大

当开口向下时,此时抛物线上的点与对称轴的距离越远函数值越小

利用这个发现做本题:

在本题中抛物线开口向上,对称轴是x=2,此时抛物线上的点与对称轴的距离越远函数值越大

A、B、C三点到对称轴是x=2的距离分别是222

且有222即A点最远、C点最近

y>2y> 3y

所以

1

使用这种方法比较函数值的大小时,你只需要比较它们到对称轴的距离就行了。

专题10二次函数比较大小和二次函数的平移(解析版)-2020-2021学年九年级数学上册常考题专练

专题10二次函数比较大小和二次函数的平移 解题步骤: 假设抛物线过三个点:A (x 函数平移解题技巧:二次函数平移的具体方法如下: 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移” 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

1.若点()()121,,2,A y B y 在抛物线()2 1112 y x =-+-上,则12,y y 的大小关系是___________. 【答案】12y y > 【解析】 【分析】 根据函数的解析式得到函数图象的对称轴,根据函数的性质即可得到答案. 【详解】 ∵()2 1112 y x =- +-, ∴函数图象的对称轴是直线x=-1,开口方向向下, ∵点()()121,,2,A y B y 在抛物线()2 1112 y x =- +-上,且1<2, ∴由对称轴右侧y 随着x 的增大而减小得到12y y >, 故答案为:12y y >. 【点睛】 此题考查二次函数的性质,根据顶点式解析式确定图象的开口方向,对称轴得到增减性,由此判定函数值的大小,正确掌握函数图象的性质是解题的关键. 2.已知A (3,y 1)、B (4,y 2)都在抛物线y=x 2+1上,试比较y 1与y 2的大小:__________. 【答案】y 1<y 2 【解析】把A(3(y 1((B(4(y 2(代入抛物线y=x 2+1,可得y 1=10(y 2=17,所以y 1(y 2. 3.点A (2,y 1)、B (3,y 2)在二次函数y =﹣x 2﹣2x+c 的图象上,则y 1与y 2的大小关系为y 1_____y 2(填“>”“<” 或“=”). 【答案】〉 【解析】 【分析】 先根据解析式求出对称轴x=b 2a -=-1,再根据函数开口方向且321>>-,即可比较y 1与y 2的大小. 【详解】 ∵抛物线的对称轴为x=b 2a - =-1,函数开口向下,

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,

而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+ y ax c

的性质:上加下减。 3. ()2 y a x h =- 的性质:左加右减。

二次函数与实际问题(面积最值问题)教学设计解读

[教学设计 ] 二次数学的实际运用 ——图形面积的最值问题 【知识与技能】 :通过复习让学生系统性地掌握并认识如何用函数的思想解决几何问题中面积最值问题, 培养其整体性思想。 【过程与方法】 :能通过设置的三个问题, 概括出二次函数解决这类问题的基本思路和基本方法, 并学会用数学问题的结论,分析是否是实际问题的解,掌握类比的数学思想方法。 【情感态度与价值观】 :体会函数建模思想的同时, 体会数学与现实生活的紧密联系, 培养学生认真观察, 不断反思,主动纠错的能力和乐于思考,认真严谨、细心的好习惯。感受多媒体的直观性和愉悦感。 【重点】 :如何利用二次函数的性质解决实际问题——图形面积的最值问题 【难点】 :如何探究在自变量取值范围内求出实际问题的解 【教学过程】 【活动 1】 :导入引言: 二次函数在实际问题中的应用常见类型有抛物线形问题和最值问题。而最值问题考试类型有两类 (1利润最大问题; (2几何图形中的最值问题:面积的最值,用料的最佳方案等,本节课,我们学习如何用二次函数解决实际问题中图形面积的最值问题。 【活动 2】 :师生互动,合作学习 我们来看一道简单的例题

例 1:李大爷要借助院墙围成一个矩形菜园 ABCD ,用篱笆围成的另外三边总长为 24米,则矩形的长宽分别为多少时,围成的矩形面积最大? 师(让学生思考 :题目中已知量是什么? 未知量是什么?如何理解“矩形面积最大”问题?是什么影响了矩形面积的变化呢?我们一起来看下面的动画演示(通过动画演示,让学生感受量的变化 师:在演示中你们看到了什么?想到了什么?你能列出函数解析式吗? 学生解决:若设矩形一边长为 X ,当 X 在变长时,另一边变短,当 X 变短时,另一边变长,则面积 S 也随之发生了变化;设宽 AB 为 X 米,则长为 24-2X (m 所以面积 S=X(24-2X=-2X2+24X=-2(X-122 +288 师:分析归纳解函数问题的一般步骤是什么? (板书 : 第一步,正确理解题意 , 分析问题中的常量和重量; 第二步,巧设未知数,用未知数表示已知量和未知量,列二次函数解析式表示它们的关系; 第三步,计算,将一般式转化为顶点式,求出数学问题的最值。 师:请问这时解出的数学问题的解是不是实际问题的解,如何检验呢?(在师生共同研讨的过程中找出计算中学生容易犯的错误,分析解答是否符合实际问题 小结:求解完答案后,我们要善于检查,分析,反思数学问题的解是否是实际问题的解。 活动 3:变式训练,巩固应用。

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

关于比较一次函数的函数值与二次函数的函数值大小之我见

关于比较一次函数的函数值与二次函数的函数值大小之我见 多力昆·阿布都热西提 2014.6.3

关于比较一次函数的函数值与二次函数的 函数值大小之我见 多力昆·阿布都热西提 在初中数学中,一次函数的图像和二次函数的图像的复杂的和潜在的概念现象大部分的师生分析问题陷入困惑。数学教师对这一点的忽略引起了学生对这个容的探究精神的欠缺。 数学没有明确概念,解决问题一定会受阻,如果概念里模糊,问题与学过知识之间的技术处理一定会失败。我认为,一次函数的图像与二次函数的图像之间的函数值的大小问题应该分层次分析。 下面,我来分析二次函数的图像与一次函数的图像之间存在的模糊问题的看法。 1、在同一个平面直角坐标中,二次函数y 1 = ax2+bx+c和一次函 数y 2 =ax+b的函数值的大小问题 (1)判断二次函数的图像与一次函数的图像的关系,如果二次函 数y 1 = ax2+bx+c的图像与一次函数的图像相交,则函数值相等,即 y 1= y 2 。 由上可得:ax2+bx+c=ax+b。 整理得:ax2+(b-a)x+c-b=0。 检验:Δ=b2—4ac=(b—a)2—4a(c—b) 第一:当Δ>0时,二次函数的图像与一次函数相交于不同的两个点。

设交点的坐标为(x 1,y 1 ),(x 2 ,y 2 ), 在y= ax2+bx+c中,当a>0(x 1< x 2 )时,x 1 y 1 , 当x> x 2或x< x 1 时,y 2 < y 1 (图1)在y= ax2+bx+c中,当a<0(x 1 < x 2)时,x 1 y 2 。当x> x 2 或x< x 1 时,y 2 > y 1 。(图2) 图1 图2 在图1中,在直线x= x 1与直线x= x 2 之间,一次函数的图像在 二次函数的上方,即,y 1> y 2 在直线x= x 1 的右边与直线x= x 2 的右 边,一次函数的图像在二次函数的下方,即y 1> y 2 。 在图2,在直线x= x 2 之间,二次函数的图像在一次函数的图像, 即:y 1> y 2 。在直线x= x1的左边与直线x= x2的右边,一次函数的 图像在二次函数的图像上方,即y2> y1。 第二,当Δ=0时,一次函数的图像与二次函数的图像有一个交 点,此时,设交点的坐标为(x 0,y ),在y 1 =ax2+bx+c,当a>0时, 在x= x 0的条件下,y 1 > y 2 ,(图3)。在x≠ x 的条件下,y 1 > y 2 ,(图 4)。

函数值的大小比较

二次函数、反比例函数比较大小 一、二次函数的大小比较方法: 1、特殊值代入法: 直接根据题目要求,分别代入具体的数值,再比较大小。 2、利用函数的增减性: 当各点都在对称轴的一侧时,利用函数的增减性进行比较。 3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。) (1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。 当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1>y 2 【推理:由x 2-(a b 2- )>a b 2--x 1得x 2+x 1>a b -得221x x +>a b 2-;即x 2离对称轴距离较远;由x 2-(a b 2- )<a b 2--x 1,得x 2+x 1<a b -,得221x x +<a b 2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。 当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1>y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1<y 2,推理同(1) 4、图象法: 结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。(第一、二象限的函数值总是大于第三、四象限的函数值) 5、移点法: 利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。

二次函数典型题解题技巧

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就 清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就 确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大 小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全 等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快 速的找出题目的结论问题,在本题中,需要用到的点只有M 、C 、A 、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD∥x 轴且点C (0,3), ∴设点D 的坐标为(x ,3) . ∵直线y= x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) .

人教版初三数学下册比较函数值的大小

盘点“比较函数值大小的方法” 杨光冬 湖北省孝感市肖港初级中学 邮编432023 初中数学第二十八章《锐角三角函数》学完后,整个第三学段的函数就结束了. 每年中考前的系统复习中, 我们经常遇到比较两函数值(或多个函数值)大小的考题,学生遇到这类题型得分率虽然较高,但笔者在课堂教学中发现,学生对这类题型的掌握并不系统,针对这种现象,笔者在此对比较函数值大小的比较方法作一个总的盘点,希望对大家的教学有所帮助. 一、同一函数中比较函数值的大小 解法1:运用增减性比大小 例1:点A (-3,y 1)、B (-5,y 2)均在双曲线x y 3 =上,试比较y 1和y 2的大小. 解析:因为反比例函数x y 3 = 的图象是双曲线,在每个象限内,y 随x 的减小而增大 且点A (-3,y 1)、B (-5,y 2)在第三象限的同一支曲线上,所以12y y >. 例2:点A (-3,y 1)、B (-5,y 2)均在抛物线322 ++=x x y 上,试比较y 1和y 2的大小. 解析:因为抛物线322 ++=x x y 的对称轴是直线1-=x ,其开口向上,所以在对称轴左侧的抛物线上y 随x 的减小而增大,因此12y y >. 解法2:运用正负性比较反比例函数值的大小 例3:点A (-3,y 1)、B (1,y 2)均在双曲线x y 3 -=上,试比较y 1和y 2的大小. 解析:因为反比例函数x y 3 -=的图象是双曲线,在每个象限内,y 随x 的减小而减小, 但是点A (-3,y 1)、B (1,y 2)不在同一支曲线上,所以不能用增减性比较1y 和2y 的大小. 又因为A (-3,y 1)、B (1,y 2)分别位于第二、第四象限的图象上,所以0 >y ,0. 解法3:运用距离比较二次函数值的大小 例4:点A (-2,y 1)、B (3.5,y 2)、C (5,y 3)均在 抛物线y =x 2-2x -3上,试比较y 1、y 2和y 3的大小. 解析:因为点A (-2,y 1)、B (3.5,y 2)、C (5,y 3) 不在对称轴(直线1=x )同侧的抛物线上,所以不 能直接用增减性比较y 1和y 2、y 3的大小,此时我们 可以用抛物线的对称性将A (-2,y 1)先转化到对称轴 右侧的抛物线上,使A 、B 、C 三点在对称轴的同侧,

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232--∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32 R a ax x y ∈++=在]1,1[-上的最大值。

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题

————————————————————————————————作者: ————————————————————————————————日期:

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232 --∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32R a ax x y ∈++=在]1,1[-上的最大值。

一次函数和二次函数相交的问题

类型一:已知一次函数和二次函数解析式求交点坐标并比较大小 类型二:已知相关点的坐标求解一次函数和二次函数的解析式并比较大小 如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求一次函数与二次函数的解析式; (2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围. 练习1:如图所示,二次函数的图象与x轴相交于A、B两点,与y轴相交于点C,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求D点的坐标和一次函数、二次函数的解析式;(2 )根据图象写出使一次函数值大于二次函数值的x的取值范围. 练习2:在同一直角坐标系,开口向上的抛物线与坐标轴分别交于A(-1,0),B(3,0),C (0,-3),一次函数图象与二次函数图象交于B、C两点.

(1)求一次函数和二次函数的解析式. (2)当自变量x 为何值时,两函数的函数值都随x 的增大而增大? (3)当自变量x 为何值时,一次函数值大于二次函数值. (4)当自变量x 为何值时,两函数的函数值的积小于0. 类型三:与一次函数和二次函数的交点有关的面积类问题。 练习1:如图,A (-1,0)、B (2,-3)两点在一次函数y 1=-x+m 与二次函数y 2=ax 2 +bx-3的图象上. (1)求m 的值和二次函数的解析式.(2)二次函数交y 轴于C ,求△ABC 的面积. 变式:已知一次函数y 1=-x+m 与二次函数y 2=ax 2+bx-3的图象交于两点A (-1,0)、B (2,-3),且二次函数与y 轴交于点C ,P 为抛物线顶点.求△ABP 的面积.

二次函数知识点及解题方法总结

二次函数知识点及解题方法总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:①将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,;②保持抛物线 2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 方法二: ①c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2):②c bx ax y ++=2沿轴平移:向左(右)平移m 个单位, c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 2. 平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”. 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前 者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数的实际的应用之利润最大值、面积最值问题

二次函数的实际应用——最大利润问题、面积最大(小)值问题 一:最大利润问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 442(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0

(完整版)二次函数小专题训练1-函数增减性与大小比较

二次函数专题训练1——对称性与增减性 1、抛物线y =a(x +1)2 +2的一部分如图所示,该抛物线在y 轴右侧部分与x 轴交点的坐标是( ) (A)( 2 1 ,0) (B)(1,0) (C)(2,0) (D)(3,0) 2、抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴 右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 3、已知关于x 的方程ax 2+bx +c =3的一个根为x 1=2,且二次函数y 轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 4、已知函数y =-12x 2-3x -5 2 ,设自变量的值分别为x 1,x 2,x 3,且-3<x 1<x 2<x 3,则对 应的函数值的大小关系是( ) A .y 3>y 2>y 1 B .y 1>y 3>y 2 C .y 2<y 3<y 1 D .y 3<y 2<y 1 5、从y =x 2 的图象可看出,当-3≤x ≤-1时,y 的取值范围是( ) A 、y ≤0或y ≥9 B 、0≤y ≤9 C 、0≤y ≤1 D 、1≤y ≤9 6、若二次函数y =ax 2 +c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( ) (A)a +c (B)a -c (C)-c (D)c 7、下列四个函数:①y =2x ;②y =-2x ;③y =3-2x ;④y =2x 2 +x(x≥0),其中,在自变 量x 的允许取值范围内,y 随x 增大而增大的函数的个数为( ) A. 1 B. 2 C. 3 D. 4 8、已知二次函数y =ax 2 +bx +c 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知 关于x 的一元二次方程ax 2 +bx +c =0的两个根分别是x 1=1.3和 x 2=( ) A.-1.3 B.-2.3 C.-0.3 D.-3.3 9、已知函数y =3x 2 -6x +k(k 为常数)的图象经过点A(0.85,y 1),B(1.1,y 2),C(2,y 3),则有( ) (A)y 1<y 2<y 3 (B)y 1>y 2>y 3 (C)y 3>y 1>y 2 (D)y 1>y 3>y 2 x y –1–2–3O

初中二次函数知识点详解及典型例题

知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2 ≠++=a c b a c bx ax y 是常数,,特别注意 a 不为零 那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程02 =++c bx ax 有 实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数 c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数,

函数值的大小比较

函数值的大小比较 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

二次函数、反比例函数比较大小 一、二次函数的大小比较方法: 1、特殊值代入法: 直接根据题目要求,分别代入具体的数值,再比较大小。 2、利用函数的增减性: 当各点都在对称轴的一侧时,利用函数的增减性进行比较。 3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。) (1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。 当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若 221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1>y 2 【推理:由x 2-(a b 2-)>a b 2--x 1得x 2+x 1>a b -得221x x +>a b 2-;即x 2离对称轴距离较远;由x 2-(a b 2-)<a b 2--x 1,得x 2+x 1<a b -,得221x x +<a b 2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。 当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若 221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1>y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1<y 2,推理同(1) 4、图象法: 结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。(第一、二象限的函数值总是大于第三、四象限的函数值)

二次方程根的分布与二次函数的最值

二次方程根的分布与二次函数在闭区间上的最值 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为 ()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下 面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于 k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>???-?? ()0 20 b k a a f k ?>???->? ??>?? ()0

二次函数根的分布和最值

( 二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 $ ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200 b a f ?>??? -?? ! ()0 0200 b a f ?>??? ->??>?? ()00??? - ()0 0200 b a f ?>??? ->??f

) 分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) ; 得出的结论 ()020 b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综合结论(不讨论 a ) [ ()0 20 b k a a f k ?>??? -?? ()0 20 b k a a f k ?>??? ->???>?? ()0

二次函数与角度问题

二次函数专题一:角度 一、有关角相等 1、已知抛物线2 y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线 5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就 清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就 确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大 小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全 等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快 速的找出题目的结论问题,在本题中,需要用到的点只有M 、C 、A 、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD∥x 轴且点C (0,3), ∴设点D 的坐标为(x ,3) . ∵直线y= x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M (-1,4). ∴设抛物线的解析式为 2 (1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP⊥AC 于点P ,MN⊥AB 于点N . 由(1)中抛物线 223y x x =--+可得 点A (-3,0),B (1,0), ∴AB=4,AO=CO=3,AC= ∴∠PAB=45°. ∵∠ABP=45°,∴PA=PB= ∴PC=AC-.

函数值大小的比较

6.(2011陕西,10,3分)若二次函数c x x y +-=62的图像过 ) ,23(),,2(),,1(321y C y B y A +-三点,则321y y y 、、大小关系正确的是() A .321y y y >> B .231y y y >> C .312y y y >> D .213y y y >> 考点:二次函数图象上点的坐标特征。 专题:函数思想。 分析:根据二次函数图象上点的坐标特征,将 ),23(),,2(),,1(321y C y B y A + -分别代入二次函 数的解析式y=x 2 ﹣6x+c 求得y 1,y 2,y 3,然后比较它们的大小并作出选择. 解答:解:根据题意,得y 1=1+6+c=7+c ,即y 1=7+c ; y 2=4﹣12+c=﹣8+c ,即y 2=﹣8+c ; y 3=9+2+6 2 错误!未找到引用源。﹣18﹣62错误!未找到引用源。+c=﹣7+c , 即y 3=﹣7+c ;∵8>﹣7>﹣8,∴7+c >﹣7+c >﹣8+c ,即y 1>y 3>y 2. 故选B . 点评:本题主要考查了二次函数图象上点的坐标特征(图象上的点都在该函数的图象上).解答此题时,还利用了不等式的基本性质:在不等式的两边加上同一个数,不等式仍成立. 32.(2010河南,11,3分)点A (2,y 1)、B (3,y 2)是二次函数y =x 2 ﹣2x +1的图象上两 考点:二次函数图象上点的坐标特征 分析:本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A 、B 的横坐标的大小即可判断出y 1与y 2的大小关系. 解答:解:∵二次函数y =x 2﹣2x +1的图象的对称轴是x =1,在对称轴的右面y 随x 的增大而增大,∵点A (2,y 1)、B (3,y 2)是二次函数y =x 2 ﹣2x +1的图象上两点,2<3,∴y 1<y 2.故答案为:<. 点评:本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键. 11、(2011?娄底)已知点A (x 1,y 1),B (x 2,y 2)是反比例函数y=的图象上的两点,若x 1<0<x 2,则有( ) A 、y 1<0<y 2 B 、y 2<0<y 1C 、y 1<y 2<0 D 、y 2<y 1<0 12、(2011?六盘水)若点(﹣3,y 1)、(﹣2,y 2)、(1,y 3)在反比例函数的图象上, 则下列结论正确的是( )

相关文档
相关文档 最新文档