文档库 最新最全的文档下载
当前位置:文档库 › 斜拉桥索力测试方法及误差研究

斜拉桥索力测试方法及误差研究

斜拉桥索力测试方法及误差研究
斜拉桥索力测试方法及误差研究

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥得概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索与索塔三种构件组成。它就是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉与主塔受压为主得桥梁。斜拉索作为主梁与索塔得联系构件,将主梁荷载通过拉索得拉力传递到索塔上,同时还可以通过拉索得张拉对主梁施加体外预应力,拉索与主梁得结点可以视为主梁跨度内得若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁得受力性能,显著提高了桥梁得跨越能力。根据主梁所用建筑材料得不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥得主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义得混凝土斜拉桥,从此,混凝土斜拉桥进入了人们得视野。 混凝土斜拉桥得主梁与索塔一般由混凝土材料构成,为了提高主梁与索塔得适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔与主梁以受压为主,可以充分利用钢丝或钢绞线优异得受拉能力与混凝土良好得受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁得抗裂能力。从设计方面瞧,既要考虑结构总体布置、结构体系选择得合理性,又要考虑釆用何种方法寻求成桥索力得最优解,还要考虑施工得便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理得施工流程,设法寻求合理得施工初拉力,还要做好施工过程中施工参数得动态控制与调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何与材料非线性以及施工方法等因素对设计与施工得影响。 二、斜拉桥索力优化方法 斜拉桥就是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节得特点,我们可通过对拉索索力得调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理得成桥状态,国内外许多学者都做了大量得研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态得索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束得索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束得索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥得最合理得成桥状态本来也没有一个统一得标准,所以很难说哪一种方法一定优于另外得方法。下面将各种方法得原理介绍如下: ①刚性支承连续梁法 这种方法就是使用最早得方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力得竖向分力

斜拉桥索力测试方法及原理综述

斜拉桥索力测试方法及原理综述 王玉田 (青岛理工大学土木工程学院青岛266033) 摘要斜拉索的索力大小直接决定着斜拉桥的工作状态,采用准确的方法进行合理的索力测试是保证斜拉桥顺利施工和安全运营的必要手段。本文针对目前斜拉桥索力测试中常用的方法及其原理进 行了阐述和比较,并指出了各种方法的特点和适用场合。 关键词斜拉桥索力测试综述 Summary of Methods and Theories to Cable Force Measurement of Cable—Stayed Bridges Wang Yu-tian (School of Civil Engineering, Qingdao Technological University, Qingdao, 266033) Abstract Cable force decides the working state of the cable-stayed bridge directly. Measuring the cable force of the cable-stayed bridge through some exact method is the guarantee to construction and operation. This paper summarises the methods and their theories usually uesed in cable force of cable-stayed bridge measuring. Furthermore, Features and their applying places are pointed out. Keywords cable—stayed bridges cable force measurement summary 斜拉索是斜拉桥的一个重要组成部分,斜拉索的工作状态是斜拉桥是否处于正常状态的主要决定因素,所以,能否对斜拉索索力进行精确的测量,在很大程度上决定着斜拉桥施工的成败和正常的运营。斜拉桥索力测试的方法很多,经过近年来的实践,许多方法已经被淘汰(如“扭力扳手测试法”,误差较大),目前常用的有以下几种: 1. 压力表测定法 目前,斜拉索均使用液压千斤顶张拉。该方法的原理就是根据千斤顶张拉油缸中的液压推算千斤顶的张拉力,并认为千斤顶的张拉力就等于拉索索力。所以,只要通过精密压力表或液压传感器测定油缸的液压,就可求得索力。通常使用0.3~0.5级的精密压力表,并应事先对液压系统进行标定,测得索力的精度可达到1%~2%。 压力表测定法简单易行,比较直观、可靠,是施工中控制索力最适用的方法。但该法所用仪器较笨重,移动不便,且经常有油不回零的情况,影响测试精度。并且不适合于已张拉好的斜拉索,如运营中的索力测试。 2. 压力传感器测定法 张拉时,在张拉连杆上粘贴应变片或利用穿心式压力传感器,也可在锚头和锚座之间安装测

斜拉桥荷载试验方案

××大桥 成桥荷载试验方案 ×××××××××××××× 2012年6月18日

第1章概况 (1) 1.1 桥梁概况 (2) 1.2 试验目的 (3) 1.3 试验依据 (3) 1.4 项目实施内容 (3) 第2章结构初始状态检查 (4) 2.1检查目的 (4) 2.2 检查主要内容 (4) 2.2.1 桥梁有关资料的搜集 (4) 2.2.2 主桥跨结构外观质量检查 (4) 2.2.3 桥面标高测量 (5) 2.2.4恒载作用下斜拉索索力的测定 (5) 第3章静力荷载试验方案 (6) 3.1 测试截面的确定 (7) 3.2 测点布置 (7) 3.2.1 应变测点 (7) 3.2.2 主梁、主塔变位测点 (8) 3.2.3 索力测试 (9) 3.3 试验荷载 (9) 3.4 试验工况及加载位置确定 (10) 3.4.1 试验工况 (10) 3.4.2 试验荷载布置 (10) 3.5 加载效率 (13) 3.6 加载分级 (13) 3.7测试方法 (14) 3.7.1应变测试方法 (14) 3.7.2位移测试方法 (14)

3.7.3索力测试方法 (14) 3.8加载程序及试验规定 (14) 3.8.1加载程序 (14) 3.8.2试验规则 (15) 第4章动力荷载试验实施方案 (15) 4.1 动力荷载试验原则 (16) 4.1.1 试验目的 (16) 4.1.2 测试项目与测试方法 (16) 4.2 动力试验测试内容 (16) 4.2.1脉动试验 (16) 4.2.2无障碍行车试验 (16) 4.3动力试验的测点布置 (17) 4.3.1 脉动试验 (17) 4.3.2. 无障碍行车试验 (17) 第5章试验分工协作、实施细则与计划安排 (17) 5.1 分工协作 (18) 5.1.1试验现场准备工作 (18) 5.1.2 试验测试准备工作 (18) 5.1.3 试验加载测试车辆的准备工作 (18) 5.2 试验进度计划及人员安排 (19) 5.2.1 试验进度计划安排 (19) 5.2.2 人员安排 (19)

无背索竖琴式斜拉桥—洪山大桥

无背索竖琴式斜拉桥—洪山大桥 无背索斜拉桥是一种全新概念的造型优美独特的桥梁结构形式,它的最大特点是利用塔柱倾斜来平衡桥面恒载和活载不设背索,改善了桥梁结构和自然景观之间的关系,打破了传统的直塔斜拉桥的设计理念! 自1992年西班牙塞维利亚建成世界上第一座无背索斜塔斜拉桥以来无背索斜拉桥这种造型优美独特的桥梁结构形式立即引起了世界桥梁界的普遍关注并在后续短短的十几年里,世界各国相继建成无背索斜拉桥10余座其中于2004年底建成通车的长沙市洪山大桥是无背索竖琴式斜拉桥又一突出实例主孔跨径为206M 是目前该类桥型世界之最。该桥位坐落于洪山庙休闲度假区,跨浏阳河,属市内北二环关键工程往南约2km即为机场高速,往北不到3km是长沙世界之窗西侧比邻长沙大学.地理位置十分重要市政府决心将该桥建成长沙市的标志性景观建筑物,选择了造型优美独特,景观效果杰出的无背索竖琴式斜拉桥方案。 洪山庙大桥主桥结构形式为无背索斜塔斜拉桥,主跨206米,桥宽33.2米,跨下没有一个桥墩。桥塔垂直高度为136.8m,若加上钢壳基座将超过150米,相当于一座高达50层楼的建筑。塔基采用扩大基础,基础平面尺寸为长31米,宽30米,基础高11米,基础下设25根2.0米深5米的抗滑桩。塔身倾角为58度,塔身与桥面完全靠13对竖琴式平行钢丝斜拉,塔身采用等截面薄壁空心钢筋砼结构,通过塔基与基础固结。塔身为全预应力混凝土箱型结构,主梁为钢混

叠合结构,钢结构部分母材均采用16Mnq。斜拉索采用直径7mm的高强低松弛镀锌钢丝经捆绞制成的成品索。南岸2#——3#墩辅助孔为预应力钢筋混凝土箱型梁,跨径30.305米。北岸主塔1#墩处异型块匝道梁体采用预应力钢筋混凝土箱型板梁,梁宽10米,高1.25米,单箱三室。为确保主桥施工的安全,采用钢主梁与混凝土斜塔先后施工的方法。钢梁采用多点连续顶推法施工,通过临时墩和导梁的设置,完成钢梁的安装就位。在该桥的设计与施工过程中,大胆运用了一系列新技术,包括斜塔主梁平衡施工技术、梁塔双控应力调索施工技术、14米超长钢混结构大挑梁设计与施工、大型六角型钢箱梁的扭转设计与施工。这些技术的运用,突破了传统的设计与施工组织方案,丰富了国际桥梁建设理论,填补了我国桥梁建设史上的空白。 洪山大桥是目前世界上跨径最大的无背索竖琴式斜拉桥,也是目前世界上唯一高度超百米的混凝土斜塔桥。由于不设背索,仅利用塔柱倾斜来平衡桥面恒载和活载使结构的受力和设计变得十分特殊!

斜拉桥索力测试方法及其发展趋势

斜拉桥索力测试方法及其发展趋势 黄尚廉唐德东 重庆大学光电工程学院光电技术及系统教育部重点实验室,重庆 400044 摘要:索是斜拉桥的主要受力构件之一,它的受力状态是桥梁安全与正常使用的重要指标。监测桥索的索力对于及时反映桥索的工作状态和调整桥索的结构内力是极为重要的,从而有效防止桥索的偏载和维护桥梁的运行安全。本文综述了常用索力测试方法,并分析了每种方法的基本原理和优缺点,指出它的发展趋势和需要研究和解决的问题。 关键字:桥索;索力;频率;磁弹效应 Method of measure cable stress and trend of development Huang Shang-lian Tang De-dong The Key Lab for Optoelectronic Technique and System, Ministry of Education, Dept. of Optoelectronic Engineer, Chongqing University, Chongqing 400044 Abstract: Steel cable is one of components which supports stress of cable stay bridge, which tense state is important index of bridge safety and nature use. In order to effectively avoid deflection load of cable and maintain bridge safe of using, monitoring cable tense stress state parameters is very important to feedback cable working states in time and adjust cables tense stress. This article present method of measure cable stress in common use, analyze its ultimate principle and its merits and defects, and point its development trend and problem of solving. Key words: bridge cable; cable tense; frequency; magnetoelastic phenomenon 1引言 随着人类生产生活水平的提高,对大跨度桥梁的建设需求越来越迫切,加上建桥技术和高强度材料的日益发展,斜拉桥逐步有能力胜任对大跨度发展的要求。如国内外已建的斜拉桥中,它们的跨度分别为:法国诺曼底桥856m,日本多多罗大桥890m,上海杨浦大桥602m,南京长江第二大桥628m,这些已向人们展示了斜拉桥强大的跨越能力。 斜拉桥为高次超静定结构,它依靠斜拉索为主梁提供弹性约束,桥跨结构的重量和桥上活载绝大部分或全部通过斜拉索传递到塔柱上,因此,索是斜拉桥的主要受力构件之一,它的受力状态直接影响斜拉桥本身的健康状态。由于在斜拉桥施工或成桥后的日常使用过程中,存在各种误差和偶然因素的联合作用,将使索的结构内力和线形偏离正常状态,因此及时监测斜拉桥索的受力状态是非常重要的,已成为斜拉桥健康监测的重要内容之一。 索力测定目前国内外一般采用4种方法[1]:(1)压力表测定;(2)压力传感器测定;(3)频率测定法;(4) 磁弹效应法。因此,如何选用合 高等学校博士学科点专向科研基金资助:20030611023 理有效的测试方法对斜拉桥施工监控和成桥后的健康监测具有重要意义。 2常用测试方法的原理及其优缺点 2.1 压力表法 用千斤顶张拉桥索时(如图1),通过精密压力表或液压传感器测定油缸的液压,就可求得索力[1][2]。这种方法简单易行,是施工中控制索力最实用的方法,其精度可达1%~2%。它可以用在斜拉桥施工过程中对索力的调整,但由于压力表本身的一些特性,有指针易偏位,高压时指针抖动激烈,读数人为误差大,负荷示值需转换等缺点,不可用于成桥后的动态索力监测。 图1 千斤顶张拉斜拉索示意图 2.2 压力传感器法 https://www.wendangku.net/doc/701025762.html,

矮塔斜拉桥全桥斜拉索调索施工工法.

矮塔斜拉桥全桥斜拉索调索施工工法 1 前言 “矮塔斜拉桥”也称“部分斜拉桥” ,是介于“斜拉桥”与“体外预应力箱梁桥” 之间的一种新型结构体系。矮塔斜拉桥和连续梁相比具有结构新颖跨度能力大、施工简单、经济优点;与斜拉桥相比具有施工方便、节省材料、主梁刚度大等优点。使得埃塔斜拉桥具有广阔的发展空间。 佛肇城际铁路桂丹立交特大桥预应力矮塔斜拉斜跨桂丹路与佛 山一环互通立交,主桥位于R=1800m的圆曲线上,孔跨为 (75+86+168+86+75 m采用塔梁固结并简支于桥墩之上的连续体系。 主梁为预应力混凝土结构,采用单箱双室变高度箱形无翼缘截面,斜拉索锚固于箱体之内。主梁斜拉索采用双塔双索面扇形分布,每个桥塔8对,共16对,梁顶面塔高为26m,最大斜拉索在桥面以上高度为24.355m,其高跨比为24.355:168=1:6.898,桥面宽14.9m,宽跨比为14.9:168=1:11.28, 梁上锚固点间距为14.9,塔上转向鞍横桥向间距15.4m。斜拉索采用喷涂钢绞线(中心丝与边丝各钢丝外表均单独形成环氧树脂涂膜,涂层厚度应在 0.12mm- 0.2mm之间)单层无粘接筋,单根钢绞线规格直径为15.24mm每根斜拉索有55根钢绞线组成。为了确保质量和施工进度,科学管理,积极采用新技术,经过归纳总结形成本工法。

图1.1 1/2 全桥立面图 2工法特点 2.1工序简单,施工进度快。 2.2施工条件得到了改善,劳动强度低,安全性强。 2.3采用单根等值法张拉,可以控制每根斜拉索各股钢绞线的离 散误差不 大于理论值的士 3% 2.4可以实现一对斜拉索对称、交叉单根张拉,同步整体张拉, 确保两根斜拉索间的差值不大于理论值的士 1% 2.5采用JMM-268动测仪进行索力监控,可以确保斜拉索整索索 力误差 不大于理论值的士 2% 2.6斜拉索采用多重防腐处理,锚固端灌注防腐油脂,延长了斜 拉索使用 寿命。 3适用范围 本工法适用于埃塔斜拉桥斜拉索调索施工。 4施工工艺流程及操作要点 在中跨合拢段施工完成后,纵向、竖向、横向预应力束张拉完 成后,进行全桥第一次斜拉索索力复测、桥面线形监控控制点复测, 由线形监控单位根据桥面高程目标值进行计算 (利用MIDAS 软件进行 数学建模计算),给出斜拉索调索索力,根据线形监控单位所给索力 7485 8600 16800/2=8400 j 1550 6x700= (拉索区) 6x700= (拉索区) 1350 拉索编号 C1 C8 C8拉索编号C1 2850 2850 5 」 q 1 - 1" I I |||1 nnrirsrinriri

索力测试原理

2.斜拉索索力 主要提供各根斜拉索的初始张拉力,并对张拉过程中各根钢绞线的均匀性及整根斜拉索索力值进行监控。根据张力弦振动公式: ρ δL F 21= (3) 式中:F ——弦的自振频率; L ——弦的长度; δ——弦的应力; ρ——弦的材料密度。 可知,明确了弦的材料和长度之后,测量弦的振动频率就可以确定弦的拉力。 当张紧的斜拉索横向抗弯刚度忽略不计时,其动平衡微分方程为: 假定斜拉索两端是铰接,解微分方程可得索力 式中:f n —斜拉索第n 阶自振频率(Hz ); L —斜拉索计算长度(m ); n —振动频率阶数。 如考虑斜拉索的抗弯刚度,则索力: 02222=??-???x y T t y g W g n f W L T n 2224=22 22224L EI n g n f W L T n π-=(4) (5) (6)

式中:EI —斜拉索抗弯刚度。 上式中第二项222L EI n π表现为斜拉索弯曲刚度对索力的修 正。 对于施州大桥的斜拉索是两端固定匀质受力的钢索,因此也可以似作为弦,将式(5)中的g WL /42提出来作为一个比例系数K ,则斜拉索的拉力T 与其基频F 可简化为如下关系: 2KF T = (7) 式中:K ——比例系数; F ——索的基频; T ——钢索索力(kN )。 其中基频 n f F n /= (8) 其中: f n ——斜拉索第n 阶自振频率(Hz ); n ——振频率的阶数。 因此,通过测量钢索的主振动频率,就可以求出钢索的拉力。其中(7)式中比例系数K 为 g W L K /42= (9) 其中: W ——索的单位长质量(kg/m ); L ——索两嵌固点之间的长度(m )。 通过对斜拉索单位长质量和各个索的计算索长的确定可以计算出各个斜拉索的比例系数见表3.2.1(表中BS1-BS14 、ZS1-ZS14分

简析无背索斜拉桥关键施工技术

简析无背索斜拉桥关键施工技术 发表时间:2018-05-18T11:22:56.673Z 来源:《基层建设》2018年第3期作者:廖新辉[导读] 摘要:斜拉桥作为目前国内最为流行的几种桥型之一,为国家的社会经济发展作出重大贡献。斜拉桥的设计与施工高度相关,为达到合理成桥状态,必须运用科学精细的施工控制系统对施工过程进行监测。 身份证件号码:43250319790929xxxx 摘要:斜拉桥作为目前国内最为流行的几种桥型之一,为国家的社会经济发展作出重大贡献。斜拉桥的设计与施工高度相关,为达到合理成桥状态,必须运用科学精细的施工控制系统对施工过程进行监测。 关键词:无背索斜拉桥;关键施工技术引言:无背索斜拉桥是斜拉桥的一种。其索塔向岸或向边跨方向倾斜,并仅在靠主跨一侧布置斜拉索,另一侧无拉索,故称为无背索斜拉桥。由于索塔倾斜,给人一种独特的不对称稳定感,因仅在索塔一侧布置斜拉索,又有一种轻盈又惊险的感觉,高耸的塔身更体现出气势和力度,形成壮丽的画面。 一、无背索斜拉桥的结构体系 1.1刚塔刚梁类 塔梁刚度相当,为一般斜拉桥的特殊情况,即无背索斜拉桥。其力学特征是索塔自重效应完全平衡主梁竖向荷效应后,主塔在恒载状态下根部只有轴向力而弯矩为0。这种结构体系应用较早,如西班牙Alamillo桥、哈尔滨太阳岛桥。 1.2柔塔刚梁类 其力学特征是桥塔自重效应不能完全平衡主梁竖向荷载效应。由塔、梁、索三者组成的结构依靠自身只能达到部分平衡。索塔可以成为一个轴心受压构件,而梁只能达到部分平衡,还需依靠主梁的强度和刚度分担一部分荷载效应。其力学特征与部分斜拉桥(亦称矮塔斜拉桥)类似。因此可引入竖向荷载分配系数f与拉索活载应力变幅,分别衡量恒载与活载状态下拉索和主梁各自承担竖向荷载的比值。因此,这类无背索斜拉桥,也可以称为无背索矮塔斜拉桥(或部分斜拉桥),以区别于一般无背索斜拉桥。如合肥铜陵路南淝河桥、河南新密市溱水路桥。 二、独塔无背索斜拉桥的力学特性 无背索斜拉桥的特别之处在于索塔的功能发生改变。索作为悬臂梁主要用来承担由斜拉索传递过来的梁面载荷。塔身的倾斜设计原理是利用自身重量去平衡斜拉索的索力,这是一个较为科学的设计。主梁、索塔之间利用斜拉索形成一个内部自我平衡的结构体系,在受力方面和常规的斜拉桥存在很大区别。 无背索斜拉桥的桥塔仅在一侧有索,如果只把桥塔当作受力分析的对象,可将其看作是自身重力、斜拉索索力二者综合作用下的悬梁臂。为了优化索塔的受力情况,将塔身置于倾斜状态,利用其本身重量所形成的力矩去平衡斜拉索的倾覆力矩,将是此类结构设计的一个整体性构思。 整体平衡概念较好解决索塔整体力矩平衡及塔索根部的受力问题,还要重视塔索结构中其他截面的受力情况。于索塔上任意某处取一截面,截面上部塔柱自重力矩减去相关的斜拉索索力对其作用的力矩即可得到该截面所要承受的力矩,很明显,这个力矩不能确定是否为0。整体平衡并不代表局部平衡,结构本身将会承受因局部不平衡载荷而生成的力矩。为了尽可能实现局部平衡,最好使所有梁、塔对应节段的载荷全都维持在一个平衡状态,这种情况下,相邻塔索节段之间将不传递水平力,只传递竖向力。 三、主要施工技术探讨 3.1主梁施工 主梁的施工工艺流程如下:1.处理桥位地基;2.布置满堂脚手架;3.铺设垫木;4.支模板;5.预压;6.绑扎钢筋;7.浇筑梁体混凝土。 桥位地基经分析确定为杂填土,因而适宜采用水泥搅拌桩。碗扣架布置满堂脚手架,在顶托的上端铺设垫木,将其用作分配梁及支模板。预压力取设计载荷的1.2倍。考虑支架非弹性变形的因素,应在实测弹性变形量的基础上预留一定拱度,并对底模标高进行适当调整,然后绑扎钢筋。按照横向分层、纵向分段的原则,由下坡端到上坡端浇筑梁体混凝土,还要兼顾“底板→腹板→顶板”的顺序。 3.2沉井基础施工 沉井基础的施工工艺流程如下:1.沉井刃脚预制;2.接高沉井;3.开挖下沉;4.沉井就位;5.浇封底砼;6.沉井内填土压实;7.封闭砼浇筑。 沉井基础的施工过程中,通常采用墩位现场预制、接高的方法进行。基础开挖大多采用人工、小型机具相互配合的方式进行,利用自重及压重实现泥浆润滑下沉的效果。用于封底的混凝土使用泵车进行浇筑,浇筑过程中需要按规定扦插、振捣。沉井填土及压实施工要分层进行。沉井顶面封闭混凝土浇筑施工时,应按照设计要求,将桥墩钢筋埋设在规定位置。 3.3主塔施工 主塔的施工工艺流程如下:1.支架法施工配重箱梁;2.临时支墩施工;3.安设劲性骨架;4.绑扎主塔底节钢筋;5.支模浇筑主塔节混凝土;6.接高劲性骨架;7.绑扎钢筋并翻模浇筑主塔混凝土。 配重箱梁底部分所承受的拉应力和主塔的高度成正比,当拉应力超出自身结构所能承受的范围时,则要判断是否需要加设支撑。在距离主墩(即109号墩)8m、18m、25.5m、30m等4个位置处进行扩大基础支撑的施工,并采用旋喷桩对其进行加固处理。旋喷桩彼此间距为0.6m,深度为12m,且要保证加固处理后的地基具备200MPa的承载力。 主塔身浇筑混凝土时,翻模设计为3节,每一节的高度为2m。完成顶节模板混凝土的浇筑后,通过安设劲性骨架的方式,接长塔身钢筋,然后把底节模板安置于第三节模板的上方。重复上述操作,直至主塔高度到达设计高度。浇筑混凝土后的模板通过两种作用完成支撑,一是钢筋拉杆,二是混凝土与模板之间的摩擦力。劲性骨架可帮助翻升模板完成定位。模板翻升、钢筋提升均需要塔吊从旁协助,另外,混凝土需要借助泵车送入模中。 长束真空压浆技术被用作主塔预应力管道的注浆施工。冬季气温较低时,混凝土的拌制过程中要适当加热拌合用水的温度,要掺加适量的防冻剂,条件许可的情况下,最好使用热空气对预应力孔道进行预热。 3.4斜拉索施工

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥的概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索和索塔三种构件组成。它是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉和主塔受压为主的桥梁。斜拉索作为主梁和索塔的联系构件,将主梁荷载通过拉索的拉力传递到索塔上,同时还可以通过拉索的张拉对主梁施加体外预应力,拉索与主梁的结点可以视为主梁跨度内的若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁的受力性能,显著提高了桥梁的跨越能力。根据主梁所用建筑材料的不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥的主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义的混凝土斜拉桥,从此,混凝土斜拉桥进入了人们的视野。 混凝土斜拉桥的主梁和索塔一般由混凝土材料构成,为了提高主梁和索塔的适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔和主梁以受压为主,可以充分利用钢丝或钢绞线优异的受拉能力和混凝土良好的受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁的抗裂能力。从设计方面看,既要考虑结构总体布置、结构体系选择的合理性,又要考虑釆用何种方法寻求成桥索力的最优解,还要考虑施工的便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理的施工流程,设法寻求合理的施工初拉力,还要做好施工过程中施工参数的动态控制和调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何和材料非线性以及施工方法等因素对设计和施工的影响。 二、斜拉桥索力优化方法 斜拉桥是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节的特点,我们可通过对拉索索力的调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理的成桥状态,国内外许多学者都做了大量的研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态的索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束的索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束的索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥的最合理的成桥状态本来也没有一个统一的标准,所以很难说哪一种方法一定优于另外的方法。下面将各种方法的原理介绍如下: ①刚性支承连续梁法 这种方法是使用最早的方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力的竖向分力与

基于ANSYS平台的斜拉桥调索方法研究

第!"卷第#期铁!!道!!学!!报$%&’!"!(%’# !))*年"月+,-.(/0,1234536(/./607/89,56428/:;:<=!))* 文章编号!>))>?"@*)!!))*")#?)>!"?)# 基于!"#$#平台的斜拉桥调索方法研究 叶梅新>!!韩衍群>!!张!敏! !>’中南大学土木建筑学院#湖南长沙!#>))A B$!’中铁大桥勘测设计院有限公司#湖北武汉!#@))B)" 摘!要!在斜拉桥的极限承载力分析中#首先需要提供一组斜拉索初始索力#使计算所得的成桥状态恒载作用 下的索力与设计成桥索力一致%这是一个需要反复调整&试算的过程#往往需要投入较多的人力和时间%本文利 用/(989二次开发的功能#开发了斜拉桥调索程序#使繁琐的调索过程在/(989中自动完成#减少了人力#提 高了工作效率%该程序已应用于我国正在修建的某一座三索面三主桁特大跨度公铁两用斜拉桥分析中#C*根斜 拉索的调索过程在/(989中自动完成#计算所得的成桥状态恒载作用下的索力与设计成桥索力误差在)’B D以 内%该程序的开发为以后其他斜拉桥的分析计算提供了方便#为以后类似问题的/(989二次开发提供了思路% 关键词!/(989$二次开发技术$大跨度$斜拉桥$调索 中图分类号!-##"’!A!!文献标识码!/ %&’&()*+,-!./0’12-34(56&7,)*&’,8 4(56&9’1(:&.;)2.3&’;(’&.,-!"#$# 84E F G?H G I>"!3/(8J I?K:I>"!L3/(M E G I! #>’5%&&F;F%N5G O G&J I P/Q R S G=F R=:Q J&4I;G I F F Q G I;"5F I=Q J&9%:=S-I G O F Q))A B"5S G I J$ !’L S%I;2G FE J U%QV Q G P;F.F R%I I J G<C#*)"#女#上海人#教授#博士生导师% >9?(26*S J I T J I K:I!>*@’R%Y 做法是考虑斜拉索的几何非线性效应#先假定一组初始索力以初应变的形式加到斜拉索上’#(#加上恒载并计算#提取计算所得斜拉索索力并检查该索力与设计成桥索力的误差是否在允许范围内#若误差过大#修改斜拉索初应变#再重新计算直至误差在允许的范围内#最后一次计算所用的一组斜拉索初应变乘以斜拉索考虑垂度效应修正后的弹性模量即为所要找的一组斜拉索初始索力%然而#斜拉桥#特别是本文提到的三索面特大跨度公铁两用斜拉桥是高次超静定柔性结构体系#各根索的索力相互影响#往往要反复调试很多次才 万方数据

斜拉桥检测

斜拉桥检测 斜拉桥应定期进行动力特性、重要部位的内力、拉索索力、拉索探伤和静载的检测,时间间隔不得超过7年。检测报告应结合历年的各项检测结果综合分析。应通过结构监测,掌握桥梁在使用过程中结构构件的变化和力学性能及空间位移情况。 每天宜巡检1~2次。 1 塔 斜拉桥索塔部分的养护,视其结构类型可按钢筋混凝土桥、预应力混凝土桥及钢桥的相关规定进行。 按期检查索塔的变位、倾斜和混凝土表面的破损情况,必要时可进行混凝土强度检测。发现主塔混凝土产生裂纹,应在其表层涂聚合物防水材料予以预防。塔体裂缝宽度在0.2mm 以上的,应采取高压灌注环氧树脂封闭。裂缝宽度在0.2mm以下的,可采用环氧或聚合物防水材料进行刮涂封闭。 2 拉索 斜拉索的保护层,通车后第1、2年内每季度检查一次,以后每半年检查一次。每天应目测检查一次(可借助简单工具),对异常情况作好记录,进一步检查,并做出技术状况的评定。 每3年对拉索护层及钢丝锈蚀情况进行检测,可采用无损探伤或剥开已损坏的护层检查,并测量锈蚀钢丝的实际有效面积。 拉索索力每年进行一次测量,大桥竣工最后一次调索的索力应与设计索力进行比较,了解拉索索力变化状况及松弛现象。 必须经常观察拉索的振动情况,并作好风速、风向、雨量、拉索振动状况的记录,并应检查拉索减振措施的有效性,对失效的减振装置应重新安装或更换。 拉索梁端的护筒及护套不得有锈蚀、开裂、剥落、连接螺栓松动、崩断、护套与拉索的接合部护层的损伤和露丝。塔端锚头、钢主梁端锚头必须每半年进行一次保养,对在钢梁外侧并有钢盖板盖的锚头应每3年进行一次保养。 锚具的锚杯及锚杯外梯形螺纹和螺母不得锈蚀和变形,锚板不得断裂;墩头应无异常。 锚固结构的支承垫块不得锈蚀、位移、变形;梁端锚箱不得锈蚀、变形;锚箱与主钢梁腹

斜拉桥索力测试方法

斜拉桥索力测试方法 1.引言 索力测试无论是在斜拉桥的建设过程中还是在其日常维护检测中都具有举足轻重的地位。索力是否处在合理的范围内将直接影响结构的整体受力状态和线形的平顺程度,所以对拉索的索力进行定时的测试是斜拉桥、下承式拱桥和悬索桥等带索桥梁日常维护的重要内容。经实践验证,进行索力测试时,不同的测试方法和不同的工程也存在较大的差异,这是由于不同的索力测试方法所需的计算参数不能准确测定,不同工程也因其具有自身特点和各异的环境因素所致。索力测试前必须选定合适的测试方法,考虑到影响测试精度的各种因素,例如影响振动法测试精度的因素有:仪器、计算模式、边界条件、索长、外界环境、斜度以及垂度等。当这些因素在索力测试时如果处理不当则会对测试结果造成不小的误差。所以,对不同的索力测试方法及其影响因素进行分析显得格外重要。 2.索力测试方法 2.1千斤顶压力表测定法 现阶段斜拉桥的施工现场,斜拉索均使用千斤顶张拉,其原理为:千斤顶张拉油缸中的液压和斜拉索的拉力有直接的关系,所以我们可以根据精密压力表或液压传感器测定油缸的液压,然后就可根据液压反推出索力。但此法现阶段还存在以下缺陷: (1)当拉索安装完成后,若还想用此法来测试索力将会变的十分困难和不便,工程量也很大。 (2)千斤顶在张拉过程中对拉索的锚杆螺纹会产生很大的损害。 (3)此法所得到的索力值只能代表张拉端的局部索力,不能代表整跟拉索的索力大小。 (4)在测试之前需要事先标定,如果标定粗糙,误差将会很难控制。 2.2 压力传感器测定法 该方法一般与振动法联合使用,可作为对振动法测定索力结果的一种校核,已安装的传感器还可以在成桥后的运营阶段连续测定索力值,还适用于成桥后运营状态下的索力长期监控。压力传感器测定法的原理是永久安装压力传感器在斜拉索的锚固端或张拉端,传感器的感应锚头的压力与斜拉索的索力成一定的比例关系,所以可通过传感器感应锚头的压力来反算斜拉索的索力,此法测量结果精度高,而且索力在索中的位置明确。

长沙市洪山大桥(无背索斜塔斜拉桥)

长沙市洪山大桥(无背索斜塔斜拉桥) 总体设计和关键技术研究 邵旭东李立峰赵华彭旺虎郭棋武 (湖南大学) 【摘要】长沙市洪山大桥是一座无背索的斜塔斜拉桥,跨度206m,将于2001年底建成通车,本文简要介绍了洪山大的主要设计特点。 【关键词】无背索斜塔斜拉桥设计关键技术 一、大桥地理位置 长沙市洪山大桥是长沙市北二环线上的一座特大桥,跨浏阳河,属环线建设的关键工程之一,洪山大桥南接四方坪立交北连捞刀河特大桥,桥位座落于洪山庙休闲渡假区,往东不到2km即为机场高速公路,往北不到3km是长沙世界之窗因该桥地理位置十分重要,业主单位长沙市环线建设指挥部从提高省会城市品位的要求出发,决心将该桥建成长沙市标志性景观建筑物,后将湖南大学提出的无背索斜塔竖琴式斜拉桥方案提交市府办公会议讨论,获得通过。 洪山桥的主桥跨径达206m,建成后将位居同类型桥世界第一大跨径。本文对该桥的总体设计和关键技术研究作一简要绍。 二、地质情况和其他自然条件 北岸主塔塔基地质情况简述如下: 桥址处基岩埋置较浅,大部分地段基岩裸露,岩性为中元古界冷家溪群板岩,板岩各层特征自上而下分别为:①强风板岩,褐黄色,岩性为粉砂质板岩和泥质板岩,岩质软,风化强烈,节理、裂隙极为发育,岩石破碎,采芯率低,层为1.8~6.9m,层顶标高为27.46~31.83m,容许承载力[σ0]=500KPa。②弱风化板岩,黄灰色、灰黄色、灰色,岩性为粉砂岩质板岩及泥质板岩,岩性脆,节理裂隙发育,钻进速度较慢,层厚为2.5~11.0m,层顶标高为19.51~25.66m 容许承载力[σ0]=1200KPa 。③微风化板岩,青灰色、灰色,岩性为粉砂质板岩及泥质板岩,岩石较新鲜、坚硬,板理发育。钻进速度慢,岩芯多是块状,柱状及碎块状,层顶埋深为13.5~22.0m,顶板标高为12.8~19.93m,地质勘该展未揭穿,容许承载力[σ0]=2700KPa 。 桥址处百年一遇20m高10min平均最大风速为28m/s,主导风向为西北向。长沙地震基本烈度为Ⅵ度,本桥按Ⅶ度设防桥址为Ⅱ类场地上。气象方面,长沙地处亚热带地区,受季风影响,雨量充沛,历年最高气温40.6℃,最低气温-11.4℃

斜拉桥施工阶段二次调索计算方法

斜拉桥施工阶段二次调索计算方法 摘要:斜拉桥在施工过程中,结构的内力和线形都在不断地变化。施工过程中一昧追求一次张拉到位,尽管能实现设计要求的理想成桥状态,但施工过程中安全储备小,一旦出现一定的施工误差或施工质量缺陷,结构将处于极其危险的状态,甚至导致灾难性的事故。在斜拉桥合龙之后进行二次调索能有效的避免这种情况。而二次调索控制目标不同,由此提出二次调索施调索力、顺序的计算问题。本文结合工程实例,以设计成桥索力作为控制目标,采用差值法进行正装迭代计算确定第二次张拉索力,不但满足施工要求,且最终使成桥状态达到设计要求。 关键词:斜拉桥;施工;优化模型;成桥状态 前言: 斜拉桥施工过程是桥梁结构、边界条件与荷载的动态变化过程,设计确定的合理成桥状态需要通过施工控制加以实现。特别是各施工阶段索力的确定,不仅直接关系到最终成桥状态,而且影响施工过程中的结构安全。施工阶段索力张拉方案与主梁的施工方法密切相关,采用挂篮悬臂浇筑主梁、依次单次张拉索力,随着主梁节段的施工完成而自适应至理想成桥状态,是最为理想的一种方案;而主梁采用分节段施工或全支架施工的斜拉桥,往往由于已浇筑梁段较长、刚度过大,单次张拉无法达成最终成桥索力与线形要求,需要进行多次调索方能达到理想成桥状态。本文针对需要进行多次调索的斜拉桥,研究其施工索力的实用计算方法。 施工索力必须满足两方面的要求:一是施工过程中结构的受力安全,即要保证施工过程中主梁及桥塔满足受力要求,并有较小的弯矩;二是索力在各受力阶段的应力变化幅度不要太大,确保索力分布均匀。常用的施工索力计算方法主要有倒退分析法、倒退正装交替迭代法、无应力状态控制法、结合影响矩阵的正装迭代法。倒退分析法未能考虑与施工过程相关的因素,例如混凝土收缩、徐变和几何非线性问题等;倒退正装交替迭代法解决了混凝土收缩、徐变的时效问题,但计算工作量较大;无应力状态控制法利用无应力状态稳定的特点,可由成桥状态直接求解施工中间状态,能求解分阶段张拉的斜拉索张拉力,但要求使用者的理论水平较高。结合影响矩阵的正装迭代法在充分考虑混凝土收缩、徐变和结构非线性的基础上,用迭代方法实现了非线性问题(施工张拉力)的求解,但该计算方法对理论水平要求较高,实际应用起来有一定的困难。对采用二次张拉方案和已确定成桥状态的斜拉桥,可根据阶段控制目标采用不同的施工索力计算方法,初张力计算可采用多约束条件的最小能量法,第2次张拉力计算采用差值法。 1斜拉索张拉力计算方法 1.1初张力的计算 1.1.1初张力优化模型

斜拉桥索力测试及应用

现代物业?新建设 2012年第11卷第5期 1 引言 斜拉索的索力是斜拉桥设计的一个重要参数,在施工和维修中要准确控制索力。迄今为止,测定索力普遍采用下述四种方法: 1.1 压力表测定 当前,拉索均使用液压千斤顶张拉,无一例外。由于千斤顶张拉油缸中的液压和张拉力有直接关系,所以只要测定张拉油缸的液压,就可求得索力。 由液压换算索力的办法由于其简单易行,因而是在施工过程中控制索力最实用的一种方法。 1.2 压力传感器测定 斜拉索张拉时,千斤顶的张拉力通过连接杆传到拉索锚具,如果在连接杆上套一个穿心式的压力传感器,张拉时处在千斤顶张拉活塞和连接杆螺母之间的传感器,在受压后就输出电讯号,于是就可在配套的二次仪表上读出千斤顶的张拉力。压力传感器的售价相当高,特别是大吨位的传感器就更贵,自身质量也大。因此,这种方法虽然测定的精度高,却只能在特定场合下使用。 1.3 频率法 索的张拉和频率之间存在一定关系。 对于柔性索: 式中:w —— 单位长度索重; L —— 索长; f n —— 第n阶自振频率。 对于两端铰接的刚性索: 式中:EI —— 索的弯曲刚度。 实际上,工程结构中的拉索,并不处在绝对静止的状态,而是时刻发生着随机振动。只是这种振动不那么明显,而且各阶频率混在一起,要用精密的拾振器才能发现,通过频谱分析,根据功率图谱上的峰值,才能最后判定拉索的各阶频率。频率既得,即可据此求算索力。现有的仪器及分析手段,测定频率的精度可达到0.005Hz。 通常拉索的端点并未作铰接处理,在靠近端点处还常安装减振圈,而拉索自身又或多或少具有一定的弯曲刚度。因此,拉索的计算长度L将稍短于拉索的实际长度 L ,需要适当给予修正。具体应视拉索和锚具的构造及减 振器安装的位置而定。如直接将索长L 代入公式,所得索力必然偏大。 现代建设 Modern Construction 斜拉桥的索力测试及应用 王力强1 刘经伟2 (1.嘉兴学院,浙江 嘉兴 314001;2.云南省交通规划设计研究院,云南 昆明 650021)摘 要:斜拉索的索力大小直接决定着斜拉桥的工作状态。采用准确的方法进行合理的索力测试是保证斜拉桥顺利施工和安全运营的必要手段。本文针对目前斜拉桥索力测试中常用的方法及其原理进行了阐述和比较,并结合工程实践重点介绍振动频率法在斜拉索的索力测试中的应用,并将测试结果与设计进行对比,评价桥梁的健康状况并提出进一步的维修和保养意见。 关键词:斜拉桥;索力测试;振动频率法;维修保养 中图分类号:U448.27 文献标识码:A 文章编号:1671-8089(2012)05-0008-04 Cable Force Measurement and Application of Cable-stayed Bridge WANG Li-Qiang1 LIU Jing-wei2, (1. JIAXING UNIVERSITY, 314001 ;2.YUNAN DESIGN INSTITUTE Yunnan,Kunming 650021) Abstract: The cable force directly determines the working state of cable-stayed bridge. The accurate method for rational cable force test is to ensure the smooth construction of cable-stayed bridge and the safe operation of the necessary means. This article in view of the present cable force of cable-stayed bridge tests commonly used in the method and its principle are described and compared, and combined with the engineering practice, introduces the vibration frequency method of cable force measurement in the application, and the test results are compared with the design, evaluation of the health state of the bridge, and put forward the further repair and maintenance views. Keywords: Cable-stayed bridge; Cable force measurement; Vibration frequency method; Repair and maintenance – 8 –

相关文档