文档库 最新最全的文档下载
当前位置:文档库 › SM7382P 150mA18W120V降压型LED恒流电源芯片方案

SM7382P 150mA18W120V降压型LED恒流电源芯片方案

SM7382P 150mA18W120V降压型LED恒流电源芯片方案
SM7382P 150mA18W120V降压型LED恒流电源芯片方案

SM7382P

变压器规格书

客 户产品型号/名称EE10变压器产品编号SM7382P 120V/150mA 磁芯材质PC40磁 芯 型 号EE10骨 架EE10(4+4)卧式一、线圈绕制表

绕组挡墙(mm)脚 位线规*股数圈数

绕向胶带规格层数

绕制方法备注

编号底顶mm*P TS mm TS

Np1—>5Φ0.17*1300顺密绕二、线圈结构 三、产品外型(单位mm)

四、电性能

项目脚位规定值测试条件

电感量1—>5 4.0mH±5%100KHZ 0.25V

漏感NC NC NC

直流铜阻NC NC NC

耐压测试NC NC NC NC NC NC

五、技术说明

1、去掉

2、

3、6、7脚

核准:审核: 拟制: 易 日期:2016-03-21

关于LED驱动电源恒压与恒流区别的解析

关于LED驱动电源恒压与恒流区别的解析 1.恒流电源是电源电压发生变化,而流过负载的电流不变。 恒压电源是流过负载的电流变化时,电源电压不发生变化 不要简单的用欧姆定律来理解,电源不是直接接负载,中间都有个电路。 2.所谓恒流/恒压就是在一定范围内输出电流/电压保持恒定。“恒定”的前提是在一定范围内。对于“恒流”就是输出电压要在一定范围内,对于“恒压”就是输出电流要在一定范围内。超出这个范围“恒定”就无法保持。因此恒压源会设定输出电流档(最大可输出)的参数。其实电子世界里根本没有“恒定”这个东西,所有电源都有负载调整率(load regulation)这个指标。以恒压(电压)源为例:随着你负载的加大,输出电压一定是下降的。 3.恒压源和恒流源在定义上的区别: 1)恒压源在允许的负载情况下,输出的电压是恒定的,不会随负载的变化而变化。通常应用于小功率LED模块,小功率LED灯条用的比较多。恒压源就是我们常说的稳压电源,能保证负载(输出电流)变化的情况下,保持电压不变。2)恒流源在允许的负载情况下,输出的电流是恒定的,不会随着负载的变化而变化,通常应用在大功率LED和高档小功率产品上。 *如果从寿命上考良的话,恒流源LED驱动比较好一点。 恒流源是在负载变化的情况下,能相应的调整自己的输出电压,使输出电流保持不变。 我们见到的开关电源基本上都是恒压源,而所谓的“恒流型开关电源”则是在恒压源的基础之上,在输出上加一个小阻值的采样电阻,通过反馈到前级去控制来进行恒流控制。 4.如何从电源参数上识别是恒压源还是恒流源呢? 可以从电源的label上看:如果他标识的输出电压是一个恒定的值(如Vo=48V),就是恒压源;如果标识的是一个电压范围(如Vo为45~90V),可以确定这是个恒流源了。 5.恒压源与恒流源的优缺点:恒压源能够为负载提供恒定的电压,理想的恒压源内阻为零,不能短路:恒流源可以为负载提供恒定的电流,理想的恒流源内阻为无穷大,不能开路。 6.LED作为恒流工作的电子元器件(工作电压比较固定,其稍加偏移,就会使电流有很大的变化),只有采用恒流方式,才能真正保证亮度的一致和长寿命。恒压式驱动电源在工作时,需要在灯具上加恒流模块或限流电阻,而恒流式驱动电源只是把恒压源的的恒流模块内置了。

CL1112 12W恒压-恒流LED电源驱动器

12W High Precision CC/CV Primary-Side PWM Driver FEATURES ◆ 5% Constant Voltage Regulation, 5%Constant Current Regulation at Universal AC input ◆ Primary-side Sensing and Regulation Without TL431 and Opto-coupler ◆ Low Start-up Current: 5μA (Typical) ◆ Low Operating Current: 2mA (Typical) ◆ Programmable CV and CC Regulation ◆ Adjustable Constant Current and Output Power Setting ◆ Built-in Secondary Constant Current Control with Primary Side Feedback ◆ Peak-Current-Mode Control ◆ Compensates for transformer inductance tolerances ◆ Compensates for cable voltage drop ◆ Fixed PWM Frequency at 60kHz with Frequency Hopping to Solve EMI Problems ◆ Power on Soft-start ◆ Built-in Leading Edge Blanking (LEB) ◆ Cycle-by-Cycle Current Limiting ◆ VDD Under-Voltage lockout (UVLO) ◆ VDD Over-Voltage Protection(OVP) APPLICATIONS below 12W AC/DC offline SMPS for ◆ Cell Phone Charger ◆ Digital Cameras Charger ◆ Small Power Adapter ◆ Auxiliary Power for PC, TV etc. ◆ Linear Regulator/RCC Replacement CL1112 is offered in SOP-8 and DIP-8 package. TYPICAL APPLICATIONS Pin Configuration The pin map is shown as below for SOP8/DIP8 CL1112

最简单的恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便, 经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。是专门针对 LED照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上是个 致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当 环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加, 称为亮度饱和。更为严重的是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件 老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA, 发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1.将LED装在散热板上,或 风机风冷降温。采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方 法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实是行之有效的措施。但当LED灯进 入寻常百姓家就碰到如下问题了:散热板和风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成 的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来 解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度 系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲, 当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED随温度 下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度 在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法 只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的这 种正温度热敏电阻WMZD,专为LED应用而研制的,其常用规格见表1,下面介绍一下该热敏电阻的应用 特性。 20mA LED恒流源WMZD-5A20的应用 我们可以用1只WMZD-5A20与5只LED(20mA)串联组成一个标准单元,它的LED恒流源电流20mA, 工作电压U=3V+5×=。3V是WMZD-A20电阻压降,是LED的正向导通电压(或~,它的恒流特性见图1中的 电流曲线II。 3.产品外形图片 应用电路与制作 注:用热敏电阻解决LED因温度变化而不能恒流的方案,使用本方案交流、直流电源均可,本方案不能解决供电电压变化引起的LED电流变化,仅对电源电压比较恒定的情况下有效,电压波

LED恒流驱动电源的分析及设计

LED恒流驱动电源的分析及设计 作者:JYQ 【摘要】在节能技术高涨的今天,LED照明灯将成为照明技术的发展主流已成为共识。该文介绍了大功率LED的特性,分析了驱动电路的基本原理,分析LEDA驱动电源的现状和存在问题,并对LED驱动电源的发展前景提出了展望。研究设计了一种精确高效的恒定直流驱动方案。 【关键词】LED驱动电源;恒流 Constant Current drive power LED analysis and design Author: JYQ Abstract : In the energy saving technology high today, the LED lights will be lighting technology development has become the mainstream consensus. This paper introduces the characteristics of the high power LED, analyzes the basic principle of driving circuit, analysis of the present situation of LEDA drive power and the existence question, and LED to the prospect of the development of power drive is also presented. Study design a precise and efficient constant dc drive scheme. Key words: LED driving power; Constant Current 0 引言 在能源和环境问题日趋严重的今天,以具有高效、节能、环保、寿命长等特点的LED活得累人们的重视,若能以LED照明取代目前低效率、高耗能的传统照明,无疑对缓解当前越来越紧迫的能源短缺和环境恶化问题起到举足轻重的作用。LED常采用恒流驱动的形式,串联谐振变换器具有恒流特性,可将其用于实现LED的开环恒流驱动。由于LED自身的伏安特性及温度特性,使得LED对电流的敏感度要高于对电压的敏感度,这就要求用专门的电源来驱动LED。 LED即发光二极管,是全球新兴产业,LED照明灯具有巨大节能作用,每年以50%的速度增长,将会取代传统光源,从而引发人类照明史上的第四次革命,极大地改善人类的生存环境,缓解全球日益严峻的能源危机。 1 LED的介绍

基于51单片机恒压恒流源的设计

恒压、恒流源的设计 学校: 专业:电气工程及其自动化 带队教师: 参赛队员: 第一章前言 (3) 第二章方案论证 (4) 第三章整体设计思路 (5) 1)、整体主电路框图 2)、整体框图 3)、电源主体 4)、控制电路

第四章单元电路 (7) 1)、充电电流取样检测电路 2)、充电电压取样检测电路 3)、检查及保护电路 4)、时钟芯片DS1302辅助电路 5)、1602液晶显示模块 第五章软件设计 (13) 第七章结论 (14) 附页 前言 铅酸蓄电池是目前世界上广泛使用的一种化学电源,该产品具有良好的可逆性,电压特性平稳,使用寿命长,适用范围广,原材料丰富(且可再生使用)及造价低廉等优点而得到了广泛的使用。是社会生产经营活动中不可缺少的产品。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。研究发现:电池充电过程

对电池寿命影响最大,放电过程的影响较少。也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。而且,传统充电器的充电策略比较单一,只能进行简单的恒压或者恒流充电,以致充电时间很长,充电效率降低。另外,充电即将结束时,电池发热量很大,从而造成电池极化,影响电池寿命。针对上述问题,设计了一种智能充电器,尽量延长铅酸蓄电池的使用寿命。 第二章方案论证 一、方案论证与比较 控制器的选择 方案1:采用AT89S52单片机,该单片机做为经典单片机,方便使用,价格便宜,较长使用;但其功能单一,使用中需要外加多个其他电路,增加外围电路的设计及成本; 方案2:选择STC12C5A60S2单片机,此款作为本控制器自身带有AD转换、捕捉、PWM等功能,可减少外围设计且价格适中,开发周期短,编程及调试环境简单,容易实现;

数控恒压恒流电源设计

直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。对于一个电子爱好者来说,直流稳压电源也是必不可少的。要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。很显然这篇文章不是教你如何去选购一台直流稳压电源…… 基本的恒压恒流电源结构框图如图1所示。由电压基准源、调整管、误差放大、电压取样以及电流取样组成。电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。 图1 基本恒压恒流电源框图 图2 基本稳压电源简图

图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref(1+R3max/R2)。这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。 图3 一只正在FLUKE 8808A 五位半数字万用表中“服役”的LM399H 图3是我从FLUKE 8808A五位半数字万用表中拍的恒温电压基准LM399H。扯远了,言归正传(欲了解更多关于电压基准源的知识,请参看以前《无线电》杂志2008年第7期中张利民老师有关电压基准的文章)。这种以改变取样电阻阻值来改变输出电压的稳压电源应用是比较普遍的,图4照片中是我们实验室中大量使用的稳压电源,就是使用调节取样电阻阻值来调节输出电压的,电压电流的显示是使用一片专用的电压测量芯片ICL7107实现的,这种电源价格低廉易于普及,但也有显而易见的缺点,因为进行电压调节的可变电阻经过长时间使用会出现接触不良的情况,这导致的后果是相当严重的,假设你正在将电压从5V慢慢地向6V调整,因为某个点电位器接触不良,相当于电位器开路,从图2可以看出,R3开路的话,输出电压就是能输出的最高电压,那么你心爱的电路板就可能会回到文明以前了。

恒流LED驱动电源设计

恒流式LED电源的优化设计与应用 LED 由于环保、寿命长、光电效率高等众多优点,近年来在各行业的应用得以快速发展,LED 的驱动电源成了关注热点。理论上,LED 的使用寿命在10 万h 以上,但在实际应用过程中,由于驱动电源的设计及驱动方式选择不当,使LED 极易损坏。针对LED 照明的恒流式电源,首先阐述了LED 电源的基本工作原理,然后根据整体电路的基本架构,给出了整个的设计思路,主要介绍了电磁干扰(EMI)滤波器、有源功率因素校正(APFC) 电路以及散热设计。最后,介绍了LED 电源在生活中的应用以及今后设计需要解... 引言 当前我国正在创建资源节约型、环境友好型社会,人们对于城市环境的呼声日益高涨。据统计,全球照明耗能约占总用电量的20%,绿色照明是节省能源的重要途径,也是人类社会可持续发展的一项重要举措。近年来,随着LED 技术的发展,LED产品已正式应用在多项大型亮化工程中,例如北京奥运村、北京长安西街、西宁湟水河廊桥、上海大厦、上海高宝金融大厦、青岛鑫江华润酒店、陕西万邦时代广场、中国科技会堂、南京水游城、贵州铜仁瓦窑河大桥及武汉阳逻长江大桥等一大批重要工程。 LED 是电流控制元件,通过流过的电流,直接将电能转变为光能,故也称光电转换器。因其不存在摩擦损耗和机械损耗,所以在节能方面比一般的光源效率高,但是LED 光源并不能像一般的普通光源一样可以直接使用电网电压,它必须配置一个电压转换装置,提供满足其额定的电压、电流,才能正常使用,即LED 驱动电源。但是各种不同的LED电源其性能和转换效率各不相同,所以选择合适、高效的LED 驱动电源,才能真正体现LED 光源的高效特性。 1 LED 电源基本工作原理 采用隔离变压器、PFC(功率因素校正,PowerFactor Correction)控制实现开关电源,输出恒定的电流和电压,驱动LED 灯。电路的总体框图见图1。 对于主电路部分,LED 抗浪涌的能力比较差,特别是抗反向电压能力,加强这方面的保护很重要,LED 电源若用于路灯装在户外更要加强浪涌防护。由于电网负载的启动和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED 的损坏。因此LED 驱动电源应具有抑制浪涌侵入,保护LED 不被损坏的能力。EMI 滤波电路主要防止电网上的谐波干扰串入模块,影响控制电路的正常工作。三相交流电经过全桥整流后变成脉动的直流在滤波电容和电感的作用下,输出直流电压。主开关DC/AC 电路将直流电转换为高频脉冲电压在变压器的次级输出。变压器输出的高频脉冲经过高频整流、LC (无源) 滤波和EMI 滤波,输出LED 路灯需要的直流电。PWM (脉宽调制) 控制电路采用电压电流双环控制,以实现对输出电压的调整和输出电流的限制。反馈网络采用恒流恒压器件和比较器。反馈信号通过光耦送

关于可调恒压恒流电源的原理、特性及使用

关于可调恒压恒流电源的原理、特性及使用: 恒压恒流的原理: 根据U=IR,R=U/I: 如果R>(U/I),则电源正常工作。 如果R<(U/I),I是恒定不变的,则电源恒流部分保护,输出电压下降,直到满足条件R=(U/I)。 特性: 所谓的恒压,即电压可以恒定到一个值上,可调恒压,即这个恒定的电压值是可调的。 所谓的恒流,即电流可以恒定到一个值上,可调恒流,即这个恒定的电流值是可调的。 使用: 可调恒压恒流电源在使用前需要先设置恒流保护值,再设置输出电压,然后开始工作。 首先将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流到你需要的值,撤消短路,调整电压到需要值,接上实验设备开始工作。 例如:一个电路的工作电压是12V所需电流约0.3A,操作如下。

将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流0.5A(要比工作电流略大),撤消短路,调整电压到12V,接上电路开始实验。 如果试验过程中电路板放到金属上部分电路短路了,使电流剧增,当电流上升到0.5A时,电源恒流保护部分工作随即使输出电压下降以保护试验设备。 常识了解: 交流电压经过全波整流电容滤波后直流电压约是交流电压的1.414倍。 例如10V的交流电压经过全波整流电容滤波后直流电压约等于14V。 继电器切换点的选择: 交流输入电压减去5V等于切换电压。 例如变压器抽头0-15V-25V-35 那么第一级的切换电压是15V-5V=10V,即在10V 时切换到25V的抽头上。 第二级的切换电压是25V-5V=20V,即在20V时切换到35V的抽头上。 关于继电器切换与否可以测R17两端的电压来判断,R17电压(直流)除以1.414约等于当前的抽头电压(交流)。

LED驱动电源恒流电路方案详解

恒流案大全 恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。电流计算公式为: I = Vin/R1

这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。如图(3)所示: 电流计算公式为:I = (Vd-Vbe)/R1

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计

本电路实际上是一个恒流源。核器件是集成三端可调稳压器LM317T。 LM317T在电源电压足够的情况下可以保持其+Vout端比其ADJ端电压高 1。25V。请看图中的接法,ADJ端直接与待充电池相连。但ADJ端的内阻很 大(正常情况下ADJ端的电流不会超过50μA),可近似看作开路,但它可以对电 压进行取样。LM317T将+Vout端的电压提高到比ADJ端高1.25V,那么跨 接在+Vout端与ADJ端的电阻上将有1.25V/25.5Ω=0。05A=50mA 的电流流过(25.5Ω为开关打开时,R1与R2并联后的总阻值)。这个电流便流 过电池,对电池进行了恒流充电。 公式与计算、 普通充电电池充电时间计算 一、充电常识 在这里,首先要说明的是,充电是使用充电电池的重要步骤。适当合理的充电对延长电池寿命很有好处,而野蛮胡乱充电将会对电池寿命有很大影响。上一篇曾说过,目前的锂电池基本都是根据各个产品单独封装,互不通用的,因此各个产品也提供各自的充电设备,互不通用,在使用时只要遵循各自的说明书使用即可。所以本篇对电池充电的介绍主要是指镍镉电池和镍氢电池。 对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快充和慢充才能正确掌握充电。 首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢? 例如一节5号镍氢电池的电容量为1200mAH,而另一节则为1600mAH。我们把一节电池的电容量称为1C,可见1C只是一个逻辑概念,同样的1C,并不相等。 在充电时,充电电流小于0.1C时,我们称为涓流充电。顾名思义,是指电流很小。一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。 充电电流在0.1C-0.2C之间时,我们称为慢速充电。充电电流大于0.2C,小于0.8C则是快速充电。而当充电电流大于0.8C时,我们称之为超高速充电。 正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。

恒流恒压电路方案(参考模板)

LED路灯是低电压、大电流的驱动器件,其发光的强度由流过LED的电流决定,电流过强会引起LED的衰减,电流过弱会影响LED的发光强度,因此LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。用市电驱动大功率LED 需要解决降压、隔离、PFC(功率因素校正)和恒流问题,还需有比较高的转换效率,有较小的体积,能长时间工作,易散热,低成本,抗电磁干扰,和过温、过流、短路、开路保护等。本文设计的PFC开关电源性能良好、可靠、经济实惠且效率高,在LED路灯使用过程中取得满意的效果。 1 基本工作原理 采用隔离变压器、PFC控制实现的开关电源,输出恒压恒流的电压,驱动LED路灯。电路的总体框图如图1所示。 LED抗浪涌的能力是比较差的,特别是抗反向电压能力。加强这方面的保护也很重要。LED路灯装在户外更要加强浪涌防护。由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。因此LED驱动电源应具有抑制浪涌侵入,保护LED不被损坏的能力。EMI滤波电路主要防止电网上的谐波干扰串入模块,影响控制电路的正常工作。 三相交流电经过全桥整流后变成脉动的直流在滤波电容和电感的作用下,输出直流电压。主开关DC/AC电路将直流电转换为高频脉冲电压在变压器的次级输出。变压器输出的高频脉冲经过高频整流、LC滤波和EMI滤波,输出LED路灯需要的直流电源。 PWM控制电路采用电压电流双环控制,以实现对输出电压的调整和输出电流的限制。反馈网络采用恒流恒压器件TSM101和比较器,反馈信号通过光耦送给PFC器L6561。

由于使用了PFC器件使模块的功率因数达到0.95。

LED灯恒流驱动电源设计指导书(新)

LED高效恒流驱动电源的设计指导书 第1章绪论 1.1 LED工作原理 1.1.1 LED发光原理 发光二极管(LED)是一种将把电能变成光能的器件,发光二极管的主要部份是由p型半导体和n型半导体组成的晶片,在P型半导体中,空穴占有绝对地位,而在N型半导体中电子占绝大多数。在这两者之间是p-n结。的大体工作过程是一个电变光的过程,当LED的p-n结由外部电路加上正向偏压时,P区的正电荷将向N区扩散,同时N区的电子也向P区扩散,电子与空穴结合然后释放能量,一部分能量由光的形式散发出来,这就是发光的原因。不同大小的能量水平的差异,频率和波长的光的不同,相应的光的颜色是不同的,这便是LED发光原理。 1.1.2 LED光源的特点 1超低能耗 比起传统的白炽灯为首的白炽灯,至少节省20%以上的电量,节约了资源。 2超长寿命 传统的节能灯的寿命是2000~8000小时,而LED照明灯寿命可达5万~10万小时。 3响应时间短 LED灯的响应时间比传统的照明灯快几个数量级。 4工作电压低 LED的驱动电源既可以是高压电源又可以是低压电源,相比传统的照明灯,它更加适应电压的变化,电压发生变化的时候不容易损坏。 5绿色环保 符合欧盟标准,不会造成环境污染,并且LED可以被回收利用。 6坚固可靠 LED完全封装在循环氧树脂里面的LED,它比传统照明灯更加坚固不易损坏。 7不招蚊虫 因LED用二极管发光技术,使用的冷光源,所以不招蚊虫。 8自选颜色 可以通过不同的设计以及电流的大小来改变LED的颜色。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色。 目前白色LED发光效率已经突破120LM/W,是白炽灯15LM/W的8倍,是荧光灯50LM/W的2倍多。LED的光谱中没有紫外线和红外线成分,所以有害辐射小。在散热良好的情况下,LED的光通量半衰期大于5万小时以上,可以正常使用20年,器件寿命一般都在10万小时以上,是荧光灯寿命的10倍,是白炽灯的100倍。这种灯具具有非常好的节能长寿命特性,随着白色LED价格的不断降低,LED照明灯不但在节日彩灯装饰中广泛应用,而且逐步延伸到路面照明、民用照明等低照度要求的领域,全面进入实用化,并且在环保方面废弃物可以回收,没有荧光灯的汞污染问题,是国家重点发展的继白炽灯、荧光灯之后的第三代照明产业。

制作一台数控恒压恒流电源

制作一台数控恒压恒流电源(上)(一) 2010-11-12 16:03:17 来源:《无线电》杂志魏坤【作者:肖庆高大中小】浏览:2874次评论:0条 直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。对于一个电子爱好者来说,直流稳压电源也是必不可少的。要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。很显然这篇文章不是教你如何去选购一台直流稳压电源…… 基本的恒压恒流电源结构框图如图1所示。由电压基准源、调整管、误差放大、电压取样以及电流取样组成。电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。

基本恒压恒流电源框图图 2图1 基本稳压电源简图 图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref (1+R3max/R2)。这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。 一只正在FLUKE 8808A图3 五位半数字万用表中“服役”的LM399H 图3是我从FLUKE 8808A五位半数字万用表中拍的恒温电压基准LM399H。扯远了,言归正传(欲了解更多关于电压基准源的知识,请参看以前《无线电》杂志2008年第7期中张利民老师有关电压基准的文章)。这种以改变取样电阻阻值来改变输出电压的稳压电源应用是比较普遍的,图4照片中是我们实验室中大量使用的稳压电源,就是使用调节取样电阻阻值来调节输出电压的,电压电流的显示是使用一片专用的电压测量芯片ICL7107实现的,这种电源价格低廉

恒压恒流输出式单片开关电源的设计原理

恒压/恒流输出式单片开关电源可简称为恒压/恒流源。其特点是具有两个控制环路,一个是电压控制环,另一个为电流控制环。当输出电流较小时,电压控制环起作用,具有稳压特性,它相当于恒压源;当输出电流接近或达到额定值时,通过电流控制环使IO维持恒定,它又变成恒流源。这种电源特别适用于电池充电器和特种电机驱动器。下面介绍一种低成本恒压/恒流输出式开关电源,其电流控制环是由晶体管构成的,电路简单, 成本低,易于制作。 1.恒压/恒流输出式开关电源的工作原理 7.5V、1A恒压/恒流输出式开关电源的电路如图1所示。它采用一片TOP200Y型开关电源(IC1),配PC817A型线性光耦合器(IC2)。85V~256V交流输入电压u经过EMI滤波器L2、C6)、整流桥(BR)和输入滤波电容(C1),得到大约为82V~375V的直流高压UI,再通过初级绕组接TOP200Y的漏极。由VDZ1和VD1构 成的漏极箝位保护电路,将高频变压器漏感形成的尖峰电压限定在安全范围之内。VDZ1采用BZY97 C200型瞬态电压抑制器,其箝位电压UB=200V。VD1选用UF4005型超快恢复二极管。次级电压经过VD2、C2整流滤波后,再通过L1、C3滤波,获得+7.5V输出。VD2采用3A/70V的肖特基二极管。反馈绕组的输出电压经过VD3、C4整流滤波后,得到反馈电压UFB=26V,给光敏三极管提供偏压。C5为旁路电容,兼作频率补偿电容并决定自动重启频率。R2为反馈绕组的假负载,空载时能限制反馈电压UFB不致升高。 该电源有两个控制环路。电压控制环是由1N5234B型6 2V稳压管(VDZ2)和光耦合器PC817A(IC2)构 成的。其作用是当输出电流较小时令开关电源工作在恒压输出模式,此时VDZ2上有电流通过,输出电压由VDZ2的稳压值(UZ2)和光耦中led的正向压降(UF)所确定。电流控制环则由晶体管VT1和VT2、电流检测电阻R3、光耦IC2、电阻R4~R7、电容C8构成。其中,R3专用于检测输出电流值。VT1采用2N4401型NPN 硅管,国产代用型号为3DK4C;VT2则选2N4403型PNP硅管,可用国产3DK9C代换。R6、R5分别用于设定VT1、VT2的集电极电流值IC1、IC2。R5还决定电流控制环的直流增益。C8为频率补偿电容,防止环路产生自激振荡。在刚通电或自动重新启动时,瞬态峰值电压可使VT1导通,利用R7对其发射结电流进行限制;R4的作用是将VT1的导通电流经VT2旁路掉,使之不通过R1。电流控制环的启动过程如下:随着IO的增大,当IO 接近于1A时,UR3↑→VT1导通→UR6↑→VT2导通,由VT2的集电极给光耦提供电流,迫使UO↓。由UO降低,VDZ2不能被反向击穿,其上也不再有电流通过,因此电压控制环开路,开关电源就自动转入恒流模式。C7为安全电容,能滤除由初、次级耦合电容产生的共模干扰。 该电源既可工作在7.5V稳压输出状态,又能在1A的受控电流下工作。当环境温度范围是0℃~50℃时, 恒流输出的准确度约为±8%。 该电源的输出电压-输出电流(U0-I0)特性如图2所示。由图可见,它具有以下显著特点:

LED恒流驱动电源架构

LED恒流驱动电源架构 编号密级 : 毕业设计论文 课题名称 : LED恒流驱动电源的设计 年级专业 : 姓名 : : 指导教员 二009年6月 1 指导教员评语 指导教员:,签字, 年月日 2 毕业答辩小组评语: 成绩评定: 答辩小组组长:,签字, 组员: 3 年月日 摘要 LED具有高效、长寿命、低功耗、安全等优点,已被广泛应用于城市景观装饰、交通车站和商业广告等公众设施.近年来,随着单晶单管LED的输出功率、发光效率以及高功率封装技术的不断发展,使LED作为一般照明具有广泛的应用前景.然

而,LED的输出光流明数和波长同PN结的温度以及电流密切相关.常规的驱动电路,恒流效果差,温度漂移特性差,输入电压范围窄等缺点,将引起LED的提前老化,不能达到LED长寿命的特点等.本设计中的研究方向是改变上述电路的缺点,达到高效率,低成本,真正达到恒流效果. 以达到实际工业生产中的要求。 文中重点阐述了电路的反馈系统以及电路中应用元件的简介及选择,并对开关 电源的分类和功能进行了简单说明, 最后还对本次设计的优缺点及展望作了描述。 关键词:LED 开关电源反馈系统恒流 目录 第一章引言 1(1本课题研究的目的 1(2设计LED开关电源时应该注意参数 1(3LED驱动电源的分类及特性 第二章设计中元件简介 2.1 NCP1200简介 2.2 PC817简介 2.3 LM358简介 2.4 周边元器件选择 第三章设计方案 3.1 电路原理 3.2 电路要求 4 3.3案一不隔离型直接反馈电路 3.4 方案二不隔离型晶体管反馈电路 3.5 方案三不隔离型运放反馈电路

3.6 方案四不隔离型光耦直接反馈电路 第四章实验中问题及处理方法 第五章实验总结 第一章引言 1(1本课题研究的目的 LED驱动电源成为LED工程亮化一个软肋 LED驱动电源贯穿整个LED产业链的发展,可以比喻为保持LED产业顺利发展的血液,缺少了LED电源环节,上中下游的发展将短路、缓慢,无法实现高速的飞跃,因此,在中国LED产业链的逐步成熟的今日,掌握了先进可靠的LED驱动,将快速的抢占市场,从而迅速的实现LED的产业化。 LED灯珠芯片没有问题,但是电源提前损坏了,虽然LED灯本身还是好的,但是展示在客户面前就是你的灯不行,灯坏了,不能用。所以,电源还是一个比较困惑的问题。” LED驱动电路应该解决的问题: 1.封装环节中的LED灯珠静电保护和开路保护难题; 研发的具有静电保护功能的器件,使得LED能够防止静电,同时避免因其中一颗损坏(开路)而引起整个灯串不亮的情况。 2.高压交流输入提供恒流源; 为LED提供最佳的恒流源驱动,保持其处于最佳的工作状态;为实现LED的普及和应用提供了可靠的基础。 3.工程应用中的电源方案; 由于天气的差异、各地电压的差异,LED的工作环境的不同,实际工程中的设计和应用的种种特殊指标和要求。 1(,设计LED开关电源时应该注意参数

恒压恒流源

电子科技大学 第二届“NS”杯电子设计大赛报告

简易数控恒压恒流电源 摘要:本文介绍了数控直流开关电压电流源的原理和设计,整个系统以C8051单片机为控制器,以TL494来作为PWM输出芯片和IR2110作为MOS管的驱动芯片来作为系统的核心部件,我组设计并实现恒定输出10V电压,恒定输出1A,800mA ,500mA电流的要求。整个电路系统简洁高效。能够很好的完成题目所要求指标,并具有过流保护功能。 关键字:开关电源,单片机,数控,恒压恒流 Abstract:A DC numerical control current and voltage source was introduced in this paper. In this article we introduce a theory of a DC current and voltage source and how to design. The system is made up of C8051 which play a role of microcontroller, and TL494 and IR2110 which play central parts of the system. And the whole system can output 10V voltage and 1A,500mA,800mA current。This switch power supply can accomplish the requirements well. And It has the function of current-limiting and auto-resume。 Key words: Switch Power supply, C8051, Numerical –Control, Stable –Voltage and Current

LED照明用恒流电源的实现方案

一、方案比较与选择 1电路拓扑结构方案 方案一:采用反激式拓扑结构的功率因数校正电路,优点是将功率因数校正与电源变换器合二为一,可以大大减少电路的损耗,提高电路的整体效率,缺点是应用在反激式电路的有源功率因数校正控制芯片种类较少,且电路比较复杂,很难设计与单片机合适的接口电路,不容易使用单片机进行控制。 方案二:将功率因数校正电路与主控电路分开,采用Boost 型的功率因数校正电路后接电源变换器的方案,优点是电路结构简单,并不涉及单片机对功率因数校正电路的控制,只需使功率因数校正部分输出一个稳定的电压即可,缺点是会一定程度上降低设计的整体效率。 鉴于本题要求步进调压的功能,需要单片机对PWM控制芯片有一个良好而稳定的控制,故选择方案二。 2电源变换器方案 方案一:采用半桥变换电路,优点是高频变压器利用率高,传输功率大,电路效率很高,缺点是电路较复杂,且有直通危险。 方案二:采用单端反激变换电路,优点是电路结构简单,缺点是高频变压器利用率低,需要留有气隙,电路效率不高。 鉴于本题要求最大负载只有10 个1W 的LED,传输功率较小,故采用方案二,即反激式电路拓扑结构。 3闭环反馈控制方案 方案一:采用软件闭环反馈控制,即使用单片机进行各参数的采样,然后直接由单片机对PWM控制芯片进行控制,调节占空比。优点是电路结构简单,缺点是反馈回路会受到采样精度、采样速度、单片机运算速度等因素的影响,使反馈系统变得不稳定。 方案二:采用硬件闭环反馈控制,即使用硬件电路构建反馈电路,由PWM控制芯片自身根据反馈信号调节占空比,而单片机对PWM控制芯片只是进行辅助调整。优点是反馈速度快,调节精度高,缺点是易受外部干扰。 4有源功率因数校正方案 方案一:采用UC3854作为有源功率因数校正电路的主控芯片。优点是功率因数校正系数可达99.5%,缺点是外围电路非常复杂且调试困难,方案二:采用 MC33260作为有源功率有源功率因数校正电路的主控芯片。优点是外围电路简单,缺点是功率因数校正率与UC3854相比略低。 220VAC经工频变压器降压为36VAC,经开机冲击电流抑制电路输入到功率因数校正电路中,再经高频隔离变压器给串联在一起的LED灯供电,在LED灯处分别进行电压、电流采样,返回给PWM控制芯片和单片机,由单片机给定基准电压来控制PWM控制芯片,进而达到控制LED灯恒流可调的目的。 系统总体结构框图如图1所示。

LED路灯恒流电源组成的电子元器件分为主动元件

LED路灯恒流电源组成的电子元器件分为主动元件、被动元件和机构零件 1. 主动元件 恒流驱动IC 这是产生恒流电源的核心元件,利用PWM(波宽控制)原理 将电源方波数码化,而后根据讯号源传来的讯息管理电源方 波的占空比,从而保持输出电流的恒定。 场效应三极管或模组 路灯功率由50W到500W,恒流驱动IC往往不能直接驱动高功 率电源,要利用高频开关的场效应管来处理高频开关。 光耦合器在需要隔离输出与输入电源的系统中在变压器输入与输出组 绕间传递控制讯息的元件。 2. 被动元件 整流桥堆路灯的电力来源源主要还是交流电,而电子元件基本都是工 做在直流电的。所以输入的电源首先就要整流。 二极管稳压二极管、肖特基二极管在电源管理系统中都是常用的。 许多小功率的元件要工作在低电压,或者系统中需要参考电 压,就会用稳压二极管;在开关电源里,最终低压直流输出 往往选用低Vf值的肖特基二极管整流,以提高工作效率。 电解电容器这个储能元件在开关电源里是必要的。但其因结构问题, 使用寿命有一定的限制。这个元件是LED标榜超长寿命的 致命伤。目前已有研究用其他材料的电容取代,但还不普 及。 电感元件线圈、变压器这些电感元件是开关电源元器件主角之一, 作用是承担负载或变压、隔离、滤波等。 其他元件各式电阻、电容、保护元件都会使用上。 3. 机构零件 线路基板通常用单面或双面刚性基板,主要要求防火及耐压;铜箔 层要厚实,以承载大电流。 端子、连接器 路灯电源有单组输出的也有多组输出的,在电源输入输出的 地方往往使用各种端子和连接器转接导线 怎么分辨led驱动电源是恒流还是恒压:带负载来测就知道咯,比如说分别带5Ω的电阻和10Ω电阻时其电流都是10MA左右,这就是恒流,否则就是恒压的了。现在有些电源是恒压恒流的,即输出电流没到额定电流时,为恒压 到额定电流后,电流就被钳位在这个额定值,这就是恒流了。 LED电源采用恒压还是恒流? 2011-05-06 08:53 现在有关这个问题有很多各种不同似是而非的说法,有人说:在LED的伏安特性上,电压定了,电流也就定了。所以采用恒压和恒流效果是一样的。有人说LED并联时就应该采用恒压

相关文档
相关文档 最新文档