文档库 最新最全的文档下载
当前位置:文档库 › ANSYS软件对电机磁场的分析

ANSYS软件对电机磁场的分析

ANSYS软件对电机磁场的分析
ANSYS软件对电机磁场的分析

横向磁场永磁电机的发展和研究现状

横向磁场永磁电机的发展和研究现状 【摘要】横向磁场永磁电机因其高转矩密度和高效率的优点,吸引各国电机设计人员们对其结构设计、制造工艺、磁场分析及运行性能等方面展开了具体研究。在查阅现有的国内外相关文献资料的基础上,系统介绍了横向磁场永磁电机的主要拓扑结构的特点,分析了当前国内外横向磁场电机的主要研究方向,最后对其应用前景进行了展望。 【关键词】横向磁场;拓扑结构;自定位转矩;功率因数 1.引言 横向磁场永磁电机(Transverse Flux Permanent Magnet Machine,简称TFPM)是由德国著名电机专家H.Weh教授率先于1986年提出的一种新型电机结构,与传统电机相比,横向磁场电机具有以下特点[1][2]: (1)电机的每相都完全独立,因此相与相之间没有电磁耦合,可提高电机的容错能力。 (2)电机磁路呈三维分布,磁路与电路(线圈部分)处于不同平面,定子尺寸和线圈尺寸相互独立,从而使TFPM能够同时获得较大的定子齿横截面和线圈横截面,大大提高了电机的转矩密度,其输出大约是标准工业用异步电机的5~10倍。 (3)在保持转速、电机主要尺寸、气隙磁密等参数不变时,TFPM的功率与电机的极对数成正比,适用于低速、大转矩场合。 近几年来,随着电动车、电力直接推进装置和风力发电技术研究的深入,对高转矩密度、低速直接驱动电机的要求更为迫切,于是横向磁场永磁电机因其上述优点成为了新型电机的研究热点之一。许多欧美经济发达国家投入了大量的人力、物力和财力进行横向磁场电机的理论和应用研究,丰富了横向磁场永磁电机的拓扑结构,促进了横向磁场电机的发展。本文较系统地介绍分析了当前横向磁场永磁电机的主要拓扑结构,阐述了当前国内外横向磁场电机的主要研究方向和方法,并对横向磁场电机存在的问题也做了简单介绍。 2.横向磁场电机的拓扑结构形式 按照永磁体的有无及安装方式来分,横向磁场电机拓扑结构可以分为四类:平板式、聚磁式、无源转子式和磁阻式[3]。 图1为德国亚琛的G.Henneberger教授设计的外转子平板式横向磁场永磁电机。这种结构中,永磁体被均匀地平铺于转子表面,相邻的永磁体被充磁成不同的极性,充磁方向一般为径向,U形定子铁心以两倍极距均匀分布在圆周上,其

ANSYS热应力分析经典例题

ANSYS热应力分析例题 实例1圆简内部热应力分折: 有一无限长圆筒,其核截面结构如图13—1所示,简内壁温度为200℃,外壁温度为20℃,圆筒材料参数如表13.1所示,求圆筒内的温度场、应力场分布。 该问题属于轴对称问题。由于圆筒无限长,忽略圆筒端部的热损失。沿圆筒纵截面取宽度为10M的如图13—2所示的矩形截面作为几何模型。在求解过程中采用间接求解法和直接求解法两种方法进行求解。间接法是先选择热分析单元,对圆筒进行热分析,然后将热分析单元转化为相应的结构单元,对圆筒进行结构分析;直接法是采用热应力藕合单元,对圆筒进行热力藕合分析。 /filname,exercise1-jianjie /title,thermal stresses in a long /prep7 $Et,1,plane55 Keyopt,1,3,1 $Mp,kxx,1,70 Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2 Lesize, all,,,20 $Lsel,s,,,2,4,2 Lesize,all,,,5 $Amesh,1 $Finish /solu $Antype,static Lsel,s,,,4 $Nsll,s,1 $d,all,temp,200 lsel,s,,,2 $nsll,s,1 $d,all,temp,20 allsel $outpr,basic,all solve $finish /post1 $Set,last /plopts,info,on Plnsol,temp $Finish /prep7 $Etchg,tts Keyopt,1,3,1 $Keyopt,1,6,1 Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28 Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,all Lsel,s,,,2 $Nsll,s,1 $Cp,9,ux,all Allsel $Finish /solu $Antype,static D,all,uy,0 $Ldread,temp,,,,,,rth Allsel $Solve $Finish /post1 /title,radial stress contours Plnsol,s,x /title,axial stress contours Plnsol,s,y /title,circular stress contours Plnsol,s,z /title,equvialent stress contours Plnsol,s,eqv $finish

永磁同步电动机电磁场计算中定转子空间相对位置确定的研究

第34卷第2期2004年3月 东南大学学报( 自然科学版) JO UR NAL OF S OUTHEA ST UNIVER SITY (Natural Science Edition) Vol 134No 12 Mar.2004 永磁同步电动机电磁场计算中定转子 空间相对位置确定的研究 刘瑞芳1,3 严登俊2 胡敏强1 (1东南大学电气工程系,南京210096)(2河海大学电气工程学院,南京210098)(3北京交通大学电气学院,北京100044) 摘要:采用通用有限元软件对永磁同步电动机电磁场分析时,存在着电动机定、转子轴线相对位置未知的问题,而确定这个相对位置是任意负载下磁场计算的前提.本文通过研究电动机电磁量之间的关系找到特定内功率因数角下气隙合成电势和内功率角的特征.提出一种相当于逆问题分析的处理方法,在不同定子电流初相位下进行计算,搜寻对应于特定内功率因数角磁场分布,从而求得定转子空间的初始相对位置. 关键词:永磁同步电动机;有限元;定转子空间相对位置 中图分类号:T M351 文献标识码:A 文章编号:1001-0505(2004)022******* Investigation in determining the relative position between stator and rotor of a PMSM in electromagnetic field calculation Liu Ruifang 1,3 Yan D engjun 2 Hu Minqiang 1 (1Department of Electrical Engineering,Southeas t Univers ity,Nanjing 210096,C hina)(2C ollege of Electrical Engineering,Hohai Univers ity,Nanjing 210098,C hina)(3School of Electrical Engineering,Beijing Ji aotong University,B eiji ng 100044,Chi na) Abstract:When designing universal finite ele ment sof tw are for analyzing the per manent magnet synchronous motors (PM S Ms),the relative position of the stator and rotor a xis remains unkno wn.How ever determining the relative position is a precondition for electroma gnetic field calculation.Through analyzing the basic relationship of variables in synchronous machines the characteristics of air gap resultant E M F and inner power angle under special inner po wer factor angle can be obtained.A technique similar to inverse problem solving is proposed in this paper.A series of electromagnetic field calculation under different armature current initial phase angles are carried out firstly,then through searching the field of special inner pow er factor angles the relative position of rotor and stator can be determined subsequently.Key words:PM S M;finite element method (FE M);relative position of stator and rotor 收稿日期:2003201222. 作者简介:刘瑞芳(1971)),女,博士生;胡敏强(联系人),男,博 士,教授,博士生导师,m qhu@https://www.wendangku.net/doc/72399608.html,. 在永磁同步电动机通用软件设计中,存在着电动机定、转子相对位置未知的问题,而确定这个相对位置是进行永磁同步电动机负载磁场计算的前提.现有文献多采用根据具体电动机的结构和槽号 分配来判断定、转子轴线相对位置[1~3].但对通用程序,软件系统应当具有自动判断定、转子初始相对位置的功能,否则会使用户对程序的干预大大增加,不易实现程序的自动化和通用化. 1 定转子空间相对位置的确定问题 根据M axwell 方程,永磁同步电动机的二维电磁场边值问题可以表述为

ANSYS分析报告

ANSYS建模分析 报 告 书 课题名称ANSYS建模分析姓名 学号 院系 专业 指导老师

问题描述 在ANSYS中建立如图一所示的支承图,假定平面支架沿厚度方向受力均匀,支承架厚度为3mm。支承架由钢制成,钢的弹性模量为200Gpa,泊松比为0.3。支承架左侧边被固定,沿支承架顶面施加均匀载荷,载荷与支架共平面,载荷大小为2000N/m。要求:绘制变形图,节点位移,分析支架的主应力与等效应力。 图1 GUI操作步骤 1、定义工作文件名和工作标题 (1)定义工作文件名:执行Utility Menu> Jobname命令,在弹出【Change Jobname】对话框中输入“xuhao144139240174”。选择【New log and error files】复选框,单击OK按钮。 (2)定义工作标题:执行Utility Menu> Title命令,在弹出【Change Title】对话框中输入“This is analysis made by “xh144139240174”,单击OK按钮。 (3)重新显示:执行Utility Menu>Plot>Replot命令。 (4)关闭三角坐标符号:执行Utility Menu>PlotCtrls>Window Options命令,弹出【Window Options】对话框。在【Location of triad】下拉列表框中选择“Not Shown”选项,单击OK按钮。 2、定义单元类型和材料属性

(1)选择单元类型:执行Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出【Element Type】对话框。单击Add...按钮,弹出【Library of Element Types】对话框。选择“Structural Solid”和“Quad 8node 82”选项,单击OK按钮,然后单击Close按钮。 (2)设置材料属性:执行Main Menu>Preprocessor>Material Props>Material Models命令,弹出【Define Material Models Behavior】窗口。双击【Material Model Available】列表框中的“Structural\Linear\Elastic\Isotropic”选项,弹出【Linear Isotropic Material Properties for Material Number1】对话框。在【EX】和【PRXY】文本框中分别输入“2e11”及“0.3”。单击OK按钮,然后执行Material>Exit命令,完成材料属性的设置。 3、创建几何模型 (1)生成两个矩形面:执行Main Menu>Preprocessor>Modeling>Create>Areas>Rectangle>By Dimensions命令,弹出【Create Rectangle by Dimensions】对话框。输入第一个矩形的坐标数值:“X1=0,X2=-0.25,Y1=0.025,Y2=-0.025”,单击Apply按钮。输入第二个矩形的坐标数值:“X1=-0.2,X2=-0.25,Y1=0.025,Y2=-0.225”,单击OK按钮关闭该对话框。 (2)生成两个半圆:执行Main Menu>Preprocessor>Modeling>Create>Areas>Circle>Solid Circle

ANSYS分析报告

《大型结构分析软件的应用及开发》 学习报告 学院:建筑工程学院 专业班级:工程力学141 姓名:付贤凯 指导老师:姚激 学号:201411012111

1.模型介绍 如下图所示的一桁架结构,受一集中力大小为800N的作用,杆件的弹性模量为200GPa,泊松比为0.3。杆件的截面为正方形达长为1m,横截面面积为1m2。现求它的变形图与轴力图。 图1 桁架模型与受力简图(单位:mm) 2.建模与划分网格 利用大型有限元软件ANSYS,采用Link,2Dspar 1的单元进行模拟,通过网格的划分得到如图2所示的有限元模型。 图2 有限元模型

结合有限元模型中的约束条件为左侧在X与Y方向铰支固定,荷载条件为最右侧处施加向下的集中力P=800N。施加约束与荷载后的几何模型如图4所示。 图3 施加荷载与约束的几何模型 3.位移与轴力图 因在Y方向受力,所以主要做Y方向的位移图,又因为杆件在轴线方向有变形,故在X 方向仍有一定的位移。则图5为变形前后的板件形状。图6为模型沿Y方向的位移图,图7为模型沿X方向的位移图,图8为模型的总位移图。 图4 桁架变形前后形状图

图5 Y方向位移图 图6 X方向位移图

图7总位移图 分析所有的位移图可以看出从以看出左端变形最小,为零,右端变形最大。从总位移图可以看出最大的位移在左下点处,大小为0.164×10?5m。从X方向位移图可以看出,左下点处在X方向位移最大为0.36×10?6。从Y方向位移图可以看出最大位移在左下点处为0.164×10?5。都符合实际情况,图9为模型的轴力图。 图8 轴力图

ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用 复合材料,是由两种或两种以上性质不同的材料组成。主要组分是增强材料和基体材料。复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。复合材 料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。有限元分析软件,均把增强材料和基体复合在一起,讨论结构的宏观力学行为,因此可以忽略复合材料的多相性导致的微观力学行为,以每一铺层为分析单元。二.ANSYS复合材料仿真技术及其在航空领域应用复合材料具有各向异性、耦合效应、层间剪切等特殊性质,因此复合材料结构的精确仿真,已成为现代航空结构的迫切需求。许多CAE程序都可以进行复合材料的分析,但是大多程序并没有提供完备的功能,使复合材料的精确仿真难以完成。如有些程序不提供非线性分析能力,有些不提供层间剪切应力的求解能力,有些不提供考虑材料失效破坏继续计算能力等等。ANSYS作为一款著名的商业化大型通用有限元软件,广泛应用于航空航天领域,为飞机结构中的复合材料层合结构分析提供了完整精确的解决方案。1.复合材料的有限元模型建立针对飞机结构中的复合材料层合板、梁、实体以及加筋板等结构类型,ANSYS提供一种特殊的复合材料单元———层单元,以模拟各种复合材料,铺层数可达250层以上,并提供一系列技术模拟各种复杂层合结构。复合材料层单元支持非线性、振动特性、热应力、疲劳断裂等各种结构和热的分析功能和算法。2.复合材料的层合结构定义:■铺层结构:ANSYS对于每一铺层可先定义材料性质、铺层角、铺层厚度,然后通过由下到上的顺序逐层叠加组合为复合材料层合结构;也可以通过直接输入材料本构矩阵来定义复合材料性质。■板壳和梁单元截面形状:ANSYS利用截面形状工具可定义矩形、I型、槽型等各种形式;还可以定义各种函数曲线以模拟变厚度截面。3.特殊层合结构的模拟:?变厚度板壳铺层切断:将切断的某铺层厚度定义为零,即可模拟铺层切断前后的板壳实际形状。(图1上)?不同铺层板壳的节点协调:ANSYS板壳层单元的节点均可偏置到任意位置,使不同铺层数板壳的节点在中面或顶面、底面对齐。(图1下)?蜂窝/泡沫夹层结构:ANSYS通过板壳层单元来模拟夹层结构的特性,夹层面板和芯子可以是不同材料。(图2)?板-梁-实体组合结构:ANSYS将实体、板壳与梁等不同类型单元通过MPC技术相联系,各类单元的节点不需要重合并协调,便于飞机等复杂结构模型的处理。4.复合材料有限元模型的检查:复合材料结构模型建立后,可以将板壳和梁单元显示为实际形状,还可以通过图形显示和列表直观地观察铺层厚度、铺层角度和铺层组合形式,方便模型的检查及校对。(图3)5.复合材料层合结构分析ANSYS层单元支持各种静强度刚度、非线性、稳定性、疲劳断裂和振动特性等结构分析。完成分析后,可以图形显示或输出每个铺层及层间的应力和应变等结果(虽然一个单元包含许多铺层),根据这些结果可以判断结构是否失效破坏和满足设计要求。6.复合材料失效准则ANSYS已经预定义了三种复合材料破坏准则来评价复合材料结构安全性,包括最大应变/应力失效准则,蔡-吴(Tsai-Wu)准则。每种强度准则均可定义与温度相关,考虑不同温度下的材料性能。另外,用户也可自定义最多达六种的

永磁电机转子磁钢退磁问题分析

永磁电机转子磁钢退磁 问题分析 The manuscript was revised on the evening of 2021

关于永磁同步电机转子磁钢退磁问题分析 于平 2015年7月30日 鉴于前期测试伺服电机及客户现场也有出现过伺服电机转子磁钢退磁的情况,经查阅相关资料并结合实验数据,对永磁体退磁原因进行如下分析。 永磁同步电机具有高效率、高力矩惯量比、高能量密度、高调速范围等优点,现已广泛用于军事、工业、农业等各个领域,特别是伺服行业,几乎都是使用永磁同步电机作为执行机构。但是由于永磁体的热稳定性不良、设计经验不足以及使用不当等原因,会造成在使用过程中磁钢出现不可逆退磁。磁钢退磁,会使电机的性能下降,甚至无法使用。所以本文旨在从永磁材料、电机设计、电机使用等方面分析永磁体退磁原因,以供后续参考。 一、永磁体的特性 1、永磁体的工作点及回复线 、永磁体的退磁曲线为直线时(图一),k点为退磁曲线的拐点,当电机带载工作点在k点之上是,卸载后磁钢剩磁会沿着直线B r k回到B r点,当电机带载工作点在k点之下,如P点,此时卸载后磁钢剩磁会沿着直线RP回到R点,此时已造成不可逆退磁。 、永磁体的退磁曲线为曲线时(图二),当电机带载后,工作点为A1,卸载后,回复线不会与曲线A1R重合,而是以A1A2S作为回复线,此时如果电机带载工作点不超过A1,则以A1A2R作为回复线,一旦带载工作点超过A1,假如到了A3点,则会以A3A4P作为回复线,长此下去,不可逆退磁将会越来越严重。

图一退磁曲线为线性时的永磁体工作图图二退磁曲线为曲线时的永磁体工作图 2、温度特性 温度的变化会引起磁钢性能的变化,特别是钕铁硼永磁体,它对温度很敏感(图三),当温度超过一定值,材料磁性能将沿着曲线1逐渐降低,当温度恢复后,它的剩磁将会沿着曲线2进行恢复,造成不可逆退磁。而从图四可以看出,常温下,钕铁硼永磁体的退磁曲线为一条直线,没有拐点,当温度上升时,永磁体的退磁曲线出现拐点且拐点值随着温度的上升而变得越来越大,最低工作点也将越来越高。 图三钕铁硼材料的热退磁图四温度对退磁曲线的影响 3、震动特性 永磁体在收到剧烈的震动或者是敲打后,有可能引起其内部畴发生变化,磁畴的磁矩方向发生变化后, 磁钢磁性能会变差, 就会造成磁钢退磁。

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

ANSYS动力学分析报告

第5章动力学分析 结构动力学研究的是结构在随时间变化载荷下的响应问题,它与静力分析的主要区别是动力分析需要考虑惯性力以及运动阻力的影响。动力分析主要包括以下5个部分:模态分析:用于计算结构的固有频率和模态。 谐波分析(谐响应分析):用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析:用于计算结构在随时间任意变化的载荷作用下的响应,并且可涉及上述提到的静力分析中所有的非线性性质。 谱分析:是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 显式动力分析:ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 本章重点介绍前三种。 【本章重点】 ?区分各种动力学问题; ?各种动力学问题ANSYS分析步骤与特点。 5.1 动力学分析的过程与步骤 模态分析与谐波分析两者密切相关,求解简谐力作用下的响应时要用到结构的模态和振

型。瞬态动力分析可以通过施加载荷步模拟各种何载,进而求解结构响应。三者具体分析过程与步骤有明显区别。 5.1.1 模态分析 1.模态分析应用 用模态分析可以确定一个结构的固有频率利振型,固有频率和振型是承受动态载荷结构设计中的重要参数。如果要进行模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。可以对有预应力的结构进行模态分析,例如旋转的涡轮叶片。另一个有用的分析功能是循环对称结构模态分析,该功能允许通过仅对循环对称结构的一部分进行建模,而分析产生整个结构的振型。 ANSYS产品家族的模态分析是线性分析,任何非线性特性,如塑性和接触(间隙)单元,即使定义也将被忽略。可选的模态提取方法有6种,即Block Lanczos(默认)、Subspace、Power Dynamics、Reduced、Unsymmetric、Damped及QR Damped,后两种方法允许结构中包含阻尼。 2.模态分析的步骤 模态分析过程由4个主要步骤组成,即建模、加载和求解、扩展模态,以及查看结果和后处理。 (1)建模。指定项目名和分析标题,然后用前处理器PREP7定义单元类型、单元实常数、材料性质及几何模型。必须指定杨氏模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量),材料性质可以是线性或非线性、各向同性或正交各向异性,以及恒定或与温

新型横向磁通永磁电机磁场研究

第27卷第24期中国电机工程学报V ol.27 No.24 Aug. 2007 2007年8月Proceedings of the CSEE ?2007 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2007) 24-0058-05 中图分类号:TM341 文献标识码:A 学科分类号:470?40 新型横向磁通永磁电机磁场研究 褚文强,辜承林 (华中科技大学电气与电子工程学院,湖北省武汉市 430074) Study on Magnet Field of Novel Transverse-flux Permanent Magnet Machine CHU Wen-qiang, GU Cheng-lin (College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China) ABSTRACT: Firstly,a novel transverse-flux permanent magnet machine(TFPMM) is introduced.Then its no-load magnetic field is analyzed, including flux curve, the influence of different air gap/permanent magnet weight on magnetic field. Beside its cogging torque is also calculated.Finally, The experimental data is given and compared with the magnetic field computation results to prove the method above is available. KEY WORDS: transverse-flux; permanent-magnet machine; magnetic field computation 摘要:简要介绍了一种新型横向磁通电机,然后针对该电机进行了空载磁场分析,给出了磁通变化曲线,分析了气隙长度、永磁体宽度对磁场的影响,同时还计算了电机定位力矩。给出了样机实验数据,并与磁场计算结果进行了对比分析,比较结果说明以上方法是有效的。 关键词:横向磁通;永磁电机;磁场计算 0 引言 横向磁通永磁电机(Transverse-flux permanent magnet machine,TFPMM)是20世纪80年代末由德国的H.Weh教授提出的一种新型电机结构形式[1-2]。磁路结构的改变使其从理论上克服了传统电机齿槽位于同一截面,几何尺寸相互制约,电机转矩难以根本提高的缺陷,特别适合低速、大转矩、直接驱动等应用场合。德国于1988年率先研制了首台45kW横向磁通永磁电机样机,1999年又将TFPMM作为电动车发展优选部件之一;英国Rolls- Royce国际研发中心于1997年设计并制作了3.0MW采用C形定子铁心的TFPMM样机,目前正在研制16相20MW横向磁通永磁电机[3-5];美国通用汽车Allsion传动部着手于研究复合软磁材料(SMC)成形定子的横向磁通电机和爪形齿横向磁通电机,并研制了30kW电动车用横向磁通电机[6-8];国内对横向磁通电机的研究开展较晚,但目前已有不少样机研制成功[9-11]。此外TFPMM还被应用于磁悬浮[12-14]、风力发电、直线驱动[15]等领域。但是上述各种拓扑结构都存在工艺复杂,加工困难,基本上不适合中小功率低速直驱式场合应用。文献[16]提出了一种新型TFPMM拓扑形式,简化了电机结构,降低了对制造工艺的要求,使得TFPMM有可能应用于中小功率场合。本文在文献[16]基础上,利用有限元方法分析了该电机的空载磁场,给出了磁通变化曲线,分析了气隙长度、磁体宽度对磁场的影响,同时还计算了定位力矩,最后对样机的实验数据进行了比较分析。 1 新型横向磁通永磁电机 TFPMM磁路呈三维分布,其拓扑结构变化较为丰富,按其永磁转子结构和磁路特点,可以分为平板式、聚磁式、磁阻式、无源转子式4类[17]。文献[16]正是在德国G.Henneberger教授设计的单边定子平板式TFPMM结构[18]基础上提出一种新型横向磁通电机拓扑结构(内定子、外转子),其定转子结构如图1、2所示,主要结构特点如下: (1)永磁体轴向磁化,相邻磁体极性相反,各相磁体(2p个)沿转子内表面均布,m相磁体轴向分隔,周向对齐。 (2)U形磁轭以两倍极距均布(每相p个),各相独立,三相定子轴向互错120o电角度被固定在非磁性定子支架上。 (3)电枢绕组由同心绕制在U形磁轭中的周向线圈组成。

永磁同步电机内永磁体退磁分析

龙源期刊网 https://www.wendangku.net/doc/72399608.html, 永磁同步电机内永磁体退磁分析 作者:马博李博 来源:《科学与信息化》2018年第08期 摘要随着国内科技水平的逐渐提高,对于稀土永磁电机的应用也越来越广泛,相比于传统的电励磁电机相比结构更为简单,从整体上减少了应用过程中的加工和装配产生的费用,效率高控制性能也较强。研究与开发高性能的稀土永磁电机能够有效促进国内生产发展,而研究的重点和难点就在永磁磁场的波动与永磁体失磁的问题。 关键词永磁电机;退磁;原理 近年来国内经济科技的迅猛发展使得很多新兴机械应用于生产工作中,稀土永磁电机就是其中一例。稀土永磁电机的效率高、功率密度大,且具有良好的控制性能,相比于老式的电机结构更加简单明了,运行也十分稳定。随着应用和研究的不断深入,人们发现永磁体存在磁场波动和退磁的问题,直接影响了永磁电机的应用和运行。另外,随着永磁体退磁,磁体内部与电机内的电流和升温以及功角存在相互影响的现象,一旦发展没有得到遏制,就会直接影响电机内部使其发热和破坏转矩的性能,这种情况下,电机一旦应用不当或者是管理存在漏洞没能及时发现问题,电机就会直接报废。因而分析永磁体退磁对于永磁体电机的应用于发展具有重要的意义。 1 永磁体的性质概述 简单来说,永磁体实际上就是一种通过外部的磁场饱和或者进行充磁之后能够保持其磁性和磁力的一种磁性功能材料,这种材料具有一定的稳定性,后期对于外部的能量需求较少并且能够持续且较为稳定的提供磁场,因而也被称之为硬磁材料。这种材料的具体分支十分庞大,根据其制造方式与磁体内部组成成分之间的差异,可以分为铸造永磁体、烧结永磁体、可加工永磁体和黏结永磁体。其中烧结永磁体根据成分可分为铁氧体和金属磁体,可加工永磁体可分为锰铝碳永磁和铜镍铁永磁等五种类型。可以说是选择非常丰富的磁性材料了,应用方面相当广泛。对于永磁电机而言,组成磁极的永磁材料是至关重要的,这种材料的磁性能直接关系着永磁电机的各项素质。例如电机内部的磁路尺寸,电机的整体体积以及相关的功能指标都与电机内部的磁性材料密切相关,甚至影响的着电机的运行效果和运行特性。在非铁磁材料中,随着磁通密度与磁场强度之间的变化和饱和度的差异形成了一条具有其变化性质的曲线,一般称之为磁化曲线,根据曲线的发展变化会存在一个使得非磁性物质存在磁滞性,永磁材料的退磁曲线能够描述其应用特性[1]。 2 永磁电机内永磁体的退磁方式和原因 2.1 退磁方式及原因

ANSYS分析报告分析

有限元与CAE分析报告 专业: 班级: 学号: 姓名: 指导教师: 2016年 1 月 2 日

简支梁的静力分析 一、问题提出 长3m的工字型梁两端铰接中间1.5m位置处受到6KN的载荷作用,材料弹性模量E=200e9,泊松比0.28,密度7850kg/㎡ 二、建立模型 1.定义单元类型 依次单击Main Menu→Preprocessor→Elementtype→Add/Edit/Delete,出现对话框如图,单击“Add”,出现一个“Library of Element Type”对话框,在“Library of Element Type”左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择3 node 189,单击“OK”。

2设置材料属性 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Linear→Elastic→Isotropic”,出现对话框,输入弹性模量EX=2E+011,PRXY=0.28,单击“OK”。 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Density”弹出对话框,输入DENS为7850 3.创建几何模型 1)设定梁的截面尺寸

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较要点

期末大作业 题目:简单直流致动器 ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙 学科(专业):机械工程 学号:21225169 所在院系:机械工程学系 提交日期2013 年 1 月

1、 背景简述: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。 本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。 现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。 2、 问题描述: 简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。模型为轴对称。 3、 ANSYS 仿真操作步骤: 第一步:Main menu>preferences

第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete 第三步:设置单元行为 模拟模型的轴对称形状,选择Options(选项) 第四步:定义材料 Preprocessor>Material Props> ?定义空气为1号材料(MURX = 1) ?定义衔铁为2号材料(MURX = 1000) ?定义线圈为3号材料(自由空间导磁率,MURX=1)

ANSYS模拟报告 支座类零件及结构静力模拟分析

《材料成形过程数值模拟》报告:ANSYS模拟报告 支座零件建模及结构静力模拟 分析报告 1、问题描述 上图为需要建立的模型的3D示意图,底座为150×400的矩形,有通孔的一边两个角有半径为7的倒角,底座上的通孔半径为40,主体为两块交叉的肋板和被支撑圆柱,主肋板为长300厚30的板块,副肋板宽120厚30,空心圆柱体内径为80外径为140。圆柱体上有内径20外径40的小型瞳孔。使用材料为Q235钢材,弹性模量为206000Mpa,泊松比0.3,密度为7840kg/M3,屈服强度为235Mpa。固定底面和通孔不动,对大圆柱内表面施加30Mpa起扩张作用的载荷。 2、问题分析 选用自顶向下建模的方式。 先做一个矩形块为底板,然后再建立一个板块,用矩形块减去板块。然后对底板的两个角进行倒角操作,然后在底板上建立两个圆柱体,用底板减去圆柱通孔。建立一个支撑肋板,再建立一块肋板。变换坐标系,建立大空心圆柱体,利用平面划分将圆柱与肋板分开,然后进行减操作。然后再建立一个半径为20的小圆柱体,用大空心圆柱体减去半径小的圆柱体达到打孔的目的。将小块肋板延长,然后进行修整肋板操作。最后将全部模型进行合并操作。建模完成后划分有限单元格并设置单元尺寸,输入钢材的参数,确定约束条件,对模型大空心圆柱内表面施加30Mpa起扩张作用的载荷,通过软件对受力情况进行分析模拟并保存示意图。

3、模拟计算过程 1.定义工作文件名和工作标题 1)定义工作文件名:File | Change Jobname ,输入文件名称,OK 。 2)定义工作工作标题:File | Change Title ,输入工作标题,OK 。 3)重新显示:Plot | Replot 2.显示工作平面 1)显示工作平面:WorkPlane | Display Working Plane 2)关闭三角坐标符号:PlotCtrls | Window controls | Window Options | Location of triad | Not shown 3)显示工作平面移动和旋转工具栏:WorkPlane | Offset WP by Increments,把角度degrees 调整到90°,然后通过旋转X,Y ,Z 轴来建立,X 轴在前,Y 轴在右,Z 轴在上的右手坐标系。 3.生成支座底板 1)生成矩形块:Preprocessor | Modeling | Create | V olumes | Block | By Dimensions,然后分别输入0,150;0,400;0,40。 2)生成矩形块:Preprocessor | Modeling | Create | V olumes | Block | By Dimensions,然后分别输入0,150;85,315;0,10。 20160522 JUN 7 2019 20:48:21

相关文档
相关文档 最新文档