文档库 最新最全的文档下载
当前位置:文档库 › 三角函数

三角函数

三角函数
三角函数

注:正切函数、余切函数曾被写作、现已不用这种写法

变化规律

正弦值在随角度增大(减小)而增大(减小),在

随角度增大(减小)而减小(增大);

余弦值在随角度增大(减小)而增大(减小),在

随角度增大(减小)而减小(增大);

正切值在随角度增大(减小)而增大(减小);

余切值在随角度增大(减小)而减小(增大);

正割值在随着角度的增大(或减小)而增大(或减小);

余割值在随着角度的增大(或减小)而减小(或增大)。

注:以上其他情况可类推,参考第五项:几何性质。

除了上述六个常见的函数,还有一些不常见的三角函数:

任意角三角函数定义

在平面直角坐标系xOy中设∠β的始边为x轴的正半轴,设点P(x,y)为∠β的终边上不与原点O重合的任意一点,设r=OP,令∠β=∠α,则:

单位圆定义

六个三角函数也可以依据半径为1中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在和弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理,单位圆的方程是:对于圆上的任意点。

图像中给出了用弧度度量的一些常见的角:逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同轴正半部分得到一个角,并与单位圆相交。这个交点的和坐标分别等于和。图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有和。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于1的一种查看无限个三角形的方式。

对于大于或小于等于的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为的周期函数:对于任何角度和任何整数。

周期函数的最小正周期叫做这个函数的“基本周期”。正弦、余弦、正割或余割的基本周期是全圆,也就是2π弧度或360°;正切或余切的基本周期是半圆,也就是π 弧度或180°。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。

在正切函数的图像中,在角π 附近变化缓慢,而在接近角( + 1/2)π 的时候变化迅速。正切函数的图像在θ = ( + 1/2)π 有垂直渐近线。这是因为在θ 从左侧接进( + 1/2)π 的时候函数接近正无穷,而从右侧接近( + 1/2)π 的时候函数接近负无穷。

另一方面,所有基本三角函数都可依据中心为的单位圆来定义,类似于历史上使用的几何定义。特别是,对于这个圆的弦,这里的θ 是对向角的一半,sin 是(半弦),这是印度的阿耶波多介入的定义。cos 是水平距离,versin =1-cos 是。tan 是通过的切线的线段的长度,所以这个函数才叫正切。cot 是另一个切线段。sec = 和csc = 是割线(与圆相交于两点)的线段,所以可以看作沿着A 的切线分别向水平和垂直轴的投影。是exsec = sec -1(正割在圆外的部分)。通过这些构造,容易看出正割和正切函数在θ 接近π/2的时候发散,而余割和余切在θ 接近零的时候发散。

依据单位圆定义,我们可以做三个有向线段(向量)来表示正弦、余弦、正切的值。如图所示,圆O是一个单位圆,P是的终边与单位圆上的交点,M点是在轴的投影,(1,0)是圆O与x轴正半轴的交点,过A点做过圆O的切线。

那么向量MP对应的就是的正弦值,向量OM对应的就是余弦值。OP的延长线(或反向延长线)与的切线的交点为T,则向量A T对应的就是正切值。向量的起止点不能颠倒,因为其方向是有意义的。

借助线三角函数线,我们可以观察到第二象限角α的正弦值为正,余弦值为负,正切值为负。

级数定义

只使用几何和极限的性质,可以证明正弦的导数是余弦,余弦的导数是负的正弦。(在微积分中,所有角度都以弧度来度量)。我们可以接着使用泰勒级数的理论来证明下列恒等式对于所有实数都成立:

这些恒等式经常被用做正弦和余弦函数的定义。它们经常被用做三角函数的严格处理和应用的起点(比如,在傅里叶级数中),因为无穷级数的理论可从实数系的基础上发展而来,不需要任何几何方面的考虑。这样,这些函数的可微性和连续性便可以单独从级数定义来确立。

其他级数可见于:

注:Un是n次上/下数,Bn是n次伯努利数,∣x∣<π/2。

3三角学

编辑

“三角学”,英文Trigonometry。现代三角学一词最初见于希腊文。最先使用Trigonometry这个词的是皮蒂斯楚斯( Bartholomeo Pitiscus,1516-1613),他在1595年出版一本著作《三角学:解三角学的简明处理》,创造了这个新词。它是由τριγωυου(三角学)及μετρει υ(测量)两字构成的,原意为三角形的测量,或者说解三角形。古希腊文里没有这

个字,原因是当时三角学还没有形成一门独立的科学,而是依附于天文学。因此解三角形构成了古代三角学的实用基础。

早期的解三角形是因天文观测的需要而引起的。还在很早的时候,由于垦殖和畜牧的需要,人们就开始作长途迁移;后来,贸易的发展和求知的欲望,又推动他们去长途旅行。在当时,这种迁移和旅行是一种冒险的行动。人们穿越无边无际、荒无人烟的草地和原始森林,或者经水路沿着海岸线作长途航行,无论是那种方式,都首先要明确方向。那时,人们白天拿太阳作路标,夜里则以星星为指路灯。太阳和星星给长期跋山涉水的商队指出了正确的道路,也给那些沿着遥远的异域海岸航行的人指出了正确的道路。

就这样,最初的以太阳和星星为目标的天文观测,以及为这种观测服务的原始的三角

测量就应运而生了。因此可以说,三角学是紧密地同天文学相联系而迈出自己发展史的第一步的。

三角学问题的提出:三角学理论的基础,是对三角形各元素之间相依关系的认识。一

般认为,这一认识最早是由希腊天文学家获得的。当时,希腊天文学家为了正确地测量天体的位置。研究天体的运行轨道,力求把天文学发展成为一门以精确的观测和正确的计算为基础之具有定量分析的科学。他们给自己提出的第一个任务是解直角三角形,因为进行天文

观测时,人与星球以及大地的位置关系,通常是以直角三角形边角之间的关系反映出来的。在很早以前,希腊天文学家从天文观测的经验中获得了这样一个认识:星球距地面的高度是可以通过人观测星球时所采用的角度来反映的;角度(∠ABC)越大,星球距地面(AC)就越高。然而,星球的高度与人观测的角度之间在数量上究竟怎么样呢?能不能把各种不同的角度所反映的星球的高度都一一算出来呢?这就是天文学向数学提出的第一个课题-制造弦表。

所谓弦表,就是在保持AB不变的情况下可以供查阅的表(如图二),AC的长度与∠ABC的大小之间的对应关系。

独立三角学的产生:虽然后期的阿拉伯数学家已经开始对三角学进行专门的整理和研究,他们的工作也可以算作是使三角学从天文学中独立出来的表现,但是严格地说,他们并没有创立起一门独立的三角学。真正把三角学作为数学的一个独立学科加以系统叙述的,是德国数学家雷基奥蒙坦纳斯。

雷基奥蒙坦纳斯是十五世纪最有声望的德国数学家约翰·谬勒的笔名。他生于哥尼斯堡,年轻时就积极从事欧洲文艺复兴时期作品的收集和翻译工作,并热心出版古希腊和阿拉伯著作。因此对阿拉伯数学家们在三角方面的工作比较了解。

1464年,他以雷基奥蒙坦纳斯的名字发表了《论各种三角形》。在书中,他把以往

散见在各种书上的三角学知识,系统地综合了起来,成了三角学在数学上的一个分支,

现代三角学的确认:直到十八世纪,所有的三角量:正弦、余弦、正切、余切、正割和余割,都始终被认为是已知圆内与同一条弧有关的某些线段,即三角学是以几何的面貌表现出来的,这也可以说是三角学的古典面貌。三角学的现代特征,是把三角量看作为函数,即看作为是一种与角相对应的函数值。这方面的工作是由欧拉作出的。1748年,欧拉发表著名的《无穷小分析引论》一书,指出:”三角函数是一种函数线与圆半径的比值”。具体地说,任意一个角的三角函数,都可以认为是以这个角的顶点为圆心,以某定长为半径作圆,由角的一边与圆周的交点P向另一边作垂线PM后,所得的线段、、(即函数线)相互之间所取的比值(如图八),sinα=MP/OP,,等。若令半径为单位长,那么所有的六个三角函数又可大为简化。

欧拉的这个定义使三角学从静态地只是研究三角形解法的狭隘天地中解脱了出来,使它有可能去反映运动和变化的过程,从而使三角学成为一门具有现代特征的分析性学科。正如欧拉所说,引进三角函数以后,原来意义下的正弦等三角量,都可以脱离几何图形去进行自由的运算。一切三角关系式也将很容易地从三角函数的定义出发直接得出。这样,就使得从希帕克起许多数学家为之奋斗而得出的三角关系式,有了坚实的理论依据,而且大大地丰富了。严格地说,这时才是三角学的真正确立。

4特殊角

编辑

主要类型

在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。

函数表格

这些函数的值参见下表格:

5几何性质编辑

函数图象

最小正周期

如果一个函数的所有周期中存在一个最小的正数,那么这个最小的正数就叫做的最小正周期(minimal positive period).例如,正弦函数的最小正周期是 . 对于正弦函数 , 自变量只要并且至少增加到时,函数值才能重复取得正弦函数和余弦函数的最小正周期是

6诱导公式

编辑

公式内容

三角函数十组诱导公式

推导方法

定名法则

90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”。

定号法则

将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。

在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。

比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~

还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。

7三角恒等式

编辑

两角和与差

内容

证明

取直角坐标系,作单位圆;取一点A,连接OA,与X轴的夹角为α;取一点B,连接OB,与X轴的夹角为β,则OA与OB的夹角即为α-β

∵A(cosα,sinα),B (cosβ,sinβ),O(0,0)

∴OA=(cosα,sinα),OB=(cosβ,sinβ)(向量)

∴OA·OB=|OA| |OB| cos (α-β) =cos α cos β + sin α sin β

∵|OA| = |OB| = 1

∴cos(α-β)=cosαcosβ+sinαsinβ

取β=-β,可得cos(α+β)=cosαcosβ-sinαsinβ

和差化积

积化和差

二倍角公式

三倍角公式

sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)

cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)

tan(3α) = (3tanα-tan^3α)/(1-3tan2α) = tanαtan(π/3+α)tan(π/3-α)

cot(3α)=(cot^3α-3cotα)/(3cot2α-1)

n倍角公式

根据欧拉公式(cosθ+isinθ)^n=cosnθ+isinnθ

将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式

sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…

cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α

半角公式

sin(α/2)=±√[(1-cosα)/2]

cos(α/2)=±√[(1+cosα)/2]

tan(α/2)=±√[(1-cosα)/(1+cosα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotα

cot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotα

sec(α/2)=±√[(2secα/(secα+1)]

csc(α/2)=±√[(2secα/(secα-1)]

辅助角公式

公式:

(其中φ满足,)

万能公式

sina=[2tan(a/2)]/[1+tan2(a/2)]

cosa=[1-tan2(a/2)]/[1+tan2(a/2)]

tana=[2tan(a/2)]/[1-tan2(a/2)]

降幂公式

sin2α=[1-cos(2α)]/2

cos2α=[1+cos(2α)]/2

tan2α=[1-cos(2α)]/[1+cos(2α)]

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,https://www.wendangku.net/doc/76571786.html,...及a都是常数,这种级数称为幂级数。

泰勒展开式

泰勒展开式又叫幂级数展开法

f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……

实用幂级数:

e^x = 1+x+x2/2!+x^3/3!+……+x^n/n!+…… (-∞

ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)

sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞

arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) +

1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k+1)/(2k!!*(2k+1))+……(|x|<1) !!表示双阶乘arccos x = π/2 -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1) arctan x = x - x^3/3 + x^5/5 -……(x≤1)

sinh x = x+x^3/3!+x^5/5!+……+(x^(2k-1))/(2k-1)!+…… (-∞

cosh x = 1+x^2/2!+x^4/4!+……+(x^(2k))/(2k)!+……(-∞

arcsinh x =x - x^3/(2*3) + (1*3)x^5/(2*4*5) -1*3*5(x^7)/(2*4*6*7)……(|x|<1)

arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)

在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。

傅里叶级数

傅里叶级数又称三角级数

f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)

a0=1/π∫(π..-π) (f(x))dx

an=1/π∫(π..-π) (f(x)cosnx)dx

bn=1/π∫(π..-π) (f(x)sinnx)dx

8基本概念

编辑

定义域和值域

sin(x),cos(x)的定义域为R,值域为[-1,1]。

tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。

cot(x)的定义域为x不等于kπ(k∈Z),值域为R。

y=a·sin(x)+b·cos(x)+c 的值域为[ c-√(a2+b2) , c+√(a2+b2)]

周期T=2π/ω

函数图象画法

以y=sinx的图像为例,得到y=Asin(ωx+φ)的图像:

方法一:

y=sinx→【左移(φ>0)/右移(φ<0) ∣∣∣φ∣个单位】→y=sin(x+φ)→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sin(ωx+φ)

方法二:

y=sinx→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sinωx→【左移(φ>0)/右移(φ<0)∣φ∣/ω 个单位】→y=sin(ωx+φ) →【纵坐标变为原来的A倍(伸长[A>1] / 缩短[0

导数

y=sinx---y'=cosx

y=cosx---y'=-sinx

y=tanx---y'=1/cos2x =sec2x

y=cotx---y'= -1/sin2x= - csc2x

y=secx---y'=secxtanx

y=cscx---y'=-cscxcotx

y=arcsinx---y'=1/√(1-x2)

y=arccosx---y'= -1/√(1-x2)

y=arctanx---y'=1/(1+x2)

y=arccotx---y'= -1/(1+x2)

倍半角规律

如果角a的余弦值为1/2,那么a/2的余弦值为√3/2.

三角函数的反函数

三角函数的反函数,是多值函数。它们是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).

反三角函数主要是三个:

y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;

y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

sinarcsin(x)=x,定义域[-1,1],值域[-π/2,π/2]

证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代入上式即可得

其他几个用类似方法可得。

9推广应用

编辑

高等代数中三角函数的指数表示(由泰勒级数易得):

sinz=[e^(iz)-e^(-iz)]/(2i)

cosz=[e^(iz)+e^(-iz)]/2

tanx=[e^(iz)-e^(-iz)]/[ie^(iz)+ie^(-iz)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z2/2!+z^3/3!+z^4/4!+…+z^n/n!+… ≦此时三角函数定义域已推广至整个复数集。

·三角函数作为微分方程的解:

对于微分方程组y=-y'';y=y'''',有通解Q,可证明

Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

补充:由相应的指数表示我们可以定义一种类似的函数--双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。

10复数性质

编辑

(1)对于z为实数y来说,复数域内正余弦函数的性质与通常所说的正余弦函数性质是一样的。

(2)复数域内正余弦函数在z平面是解析的。

(3)在复数域内不能再断言|sinz|≦1,|cosz|≦1。

(4)sinz、cosz分别为奇函数,偶函数,且以2π为周期。

复数三角函数

sin(a+bi)=sinacosbi+sinbicosa

=sinachb+ishbcosa

cos(a-bi)=cosacosbi+sinbisina

=cosachb+ishbsina

tan(a+bi)=sin(a+bi)/cos(a+bi)

cot(a+bi)=cos(a+bi)/sin(a+bi)

sec(a+bi)=1/cos(a+bi)

csc(a+bi)=1/sin(a+bi)

11相关定理

编辑

三角函数,正如其名称那样,在三角学中是十分重要的,主要是因为正弦定理与余弦定理。

同时在解决物理中的力学问题时也很重要,主要在于力与力之间的转换,并列出平衡方程。

正弦定理

对于边长为, 和而相应角为, 和的三角形,有:

sinA / a = sinB / b = sinC/c

也可表示为:

a/sinA=b/sinB=c/sinC=2R

变形:a=2RsinA,b=2RsinB,c=2RsinC

其中R是三角形的外接圆半径。

它可以通过把三角形分为两个直角三角形并使用上述正弦的定义来证明。在这个定理中出现的公共数(sin )/ 是通过, 和三点的圆的直径的倒数。正弦定理用于在一个三角形中(1)已知两个角和一个边求未知边和角(2)已知两边及其一边的对角求其他角和边的问题。这是三角测量中常见情况。

三角函数正弦定理可用于求得三角形的面积:

S=1/2absinC=1/2bcsinA=1/2acsinB

余弦定理

对于边长为a、b、c而相应角为A、B、C的三角形,有:

a2 = b2 + c2- 2bc·cosA

b2 = a2 + c2 - 2ac·cosB

c2 = a2 + b2 - 2ab·cosC

也可表示为:

cosC=(a2 +b2-c2)/ 2ab

cosB=(a2 +c2 -b2)/ 2ac

cosA=(c2 +b2 -a2)/ 2bc

这个定理也可以通过把三角形分为两个直角三角形来证明。余弦定理用于在一个三角形的两个边和一个角已知时确定未知的数据。

如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。要小心余弦定理的这种歧义情况。

物理力学方面的平行四边形定则中也会用到相关知识。

延伸定理:第一余弦定理(任意三角形射影定理)

设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有

a=b·cosC+c·cos B,b=c·cosA+a·cos C,c=a·cosB+b·cos A

正切定理

对于边长为, 和而相应角为, 和的三角形,有:

(a+b)/(a-b) = tan[(A+B)/2]/tan[(A-B)/2]

广义射影定理

三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC

三角恒等式

对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC

证明:

已知(A+B)=(π-C)

所以tan(A+B)=tan(π-C)

则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

三角函数恒等变换(整理)

高考数学(文)难题专项训练:三角函数及三角恒等变换 1.已知O 是锐角三角形△ABC 的外接圆的圆心,且θ=∠A 若 AO m AC B C AB C B 2sin cos sin cos =+则=m ( ) A .θsin B. θcos C. θtan D. 不能确定 2.设函数)(x f 的定义域为D ,若存在非零实数l 使得对于任意)(D M M x ?∈,有 D l x ∈+,且)()(x f l x f ≥+,则称)(x f 为M 上的高调函数. 现给出下列命题: ①函数x x f -=2 )(为R 上的1高调函数; ②函数x x f 2sin )(=为R 上的高调函数; ③如果定义域为),1[+∞-的函数2 )(x x f =为),1[+∞-上m 高调函数,那么实数m 的取值范围是),2[+∞; ④函数)12lg()(+-=x x f 为),1[+∞上的2高调函数. 其中真命题的个数为( ) A .0 B .1 C .2 D .3 3. 已知)(x f 是定义在)3,3(-上的奇函数,当30<

4. 在ABC ?中,角C B A ,,所对的边分别为c b a ,,且c b a b 2sin 2sin log log ,22<>, bc a c b 3222+=+,若0

由三角函数图象求解析式

已知函数()f x =Acos(x ω?+)的图象如图所示,2 ()2 3 f π =- ,则(0)f =( ) (A )23- (B) 23 (C)- 12 (D) 1 2 w.w.w.k.s.5.u.c.o.m 2π 3,于是【解析】选B.由图象可得最小正周期为f(0)=f(2π3),注意到2π3与π2关于7π12对 称,所以 f(2π3)=-f(π2)=2 3. 如果函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称,那么||?的最小值 为( ) (A )6π (B )4π (C )3π (D) 2 π w.w.w.k.s.5.u.c.o.m 【解析】选A. 函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称w.w.w.k.s.5.u.c.o.m 4232k ππφπ∴? +=+13()6k k Z πφπ∴=-∈由此易得min ||6π φ=. 已知函数y=sin (ωx+?)(ω>0, -π≤?<π)的图像如图所示,则 ?=________________ 【解析】由图可知, ()544,,2,1255T x πωπ??? = ∴=+ ??? 把代入y=sin 有: 89,510ππ???? +∴= ??? 1=sin 已知函数()2sin()f x x ωφ=+的图像如图所示,则712 f π ?? = ??? 。

【解析】由图象知最小正周期T =32(445ππ-)= 32π=ωπ2,故ω=3,又x =4 π时,f (x )=0,即2φπ +? 4 3sin()=0,可得4 π φ= ,所以,712f π ?? = ? ?? 2)41273sin(ππ+?=0。 )已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的图象与x 轴的 交点中,相邻两个交点之间的距离为2 π ,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式; (Ⅱ)当[ ,]122 x ππ ∈,求()f x 的值域. 【解析】(1)由最低点为2(,2)3 M π -得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2 π ,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上得242sin(2)2,)133ππ ???+=-+=-即sin( 故42,32k k Z ππ?π+=-∈ 1126 k π?π∴=- 又(0, ),,()2sin(2)266f x x π ππ ??∈∴= =+故 (2)7[,],2[,]122636x x πππππ ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266 x ππ+= 即2 x π =时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4 π )的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( )

高中数学必备知识点 正弦与余弦定理和公式

三角函数正弦与余弦的学习,在数学中只要记住相关的公式即可。日常考试 正弦和余弦的相关题目一般不会很难,是很多数学基础不是很牢的同学拿分的好题目。但对于有些同学来说还是很难拿分,那是为什么呢? 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有 a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题 (3)相关结论: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a 正弦、余弦典型例题 1.在△ABC中,∠C=90°,a=1,c=4,则sinA 的值为 2.已知α为锐角,且,则α的度数是() A.30° B.45° C.60° D.90° 3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是() A.75° B.90° C.105° D.120° 4.若∠A为锐角,且,则A=() A.15° B.30° C.45° D.60° 5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点, EF⊥BC,垂足为F,求sin∠EBF的值。

三角函数正弦定理和余弦定理

(文) 已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- . (1)若m //n ,求证:ΔABC 为等腰三角形; (2)若m ⊥p ,边长c = 2,角ΔABC 的面积 . 答案: 证明:(1)//,sin sin ,m n a A b B ∴=u v v Q 即22a b a b R R ? =? ,其中R 是三角形ABC 外接圆半径,a b =. ABC ∴?为等腰三角形 (2)由题意可知//0,(2)(2)0m p a b b a =-+-=u v u v 即 a b ab ∴+= 由余弦定理可知, 2 2 2 4()3a b ab a b ab =+-=+- 2()340ab ab --=即4(1)ab ab ∴==-舍去. 11 sin 4sin 223 S ab C π ∴==??= 来源:09年高考上海卷 题型:解答题,难度:中档

(文)在ABC ?中,A C AC BC sin 2sin ,3,5=== (Ⅰ)求AB 的值。(Ⅱ)求)4 2sin(π - A 的值。 答案: (1)解:在ABC ? 中,根据正弦定理, A BC C AB sin sin = ,于是522sin sin ===BC A BC C AB (2)解:在ABC ? 中,根据余弦定理,得AC AB BC AC AB A ?-+=2cos 2 22 于是A A 2cos 1sin -== 5 5, 从而5 3sin cos 2cos ,54cos sin 22sin 22=-== =A A A A A A 10 2 4 sin 2cos 4 cos 2sin )4 2sin(= -=- π π π A A A 来源:09年高考江西卷 题型:解答题,难度:容易 在⊿ABC 中,,A B 为锐角,角,,A B C 所对应的边分别为,,a b c ,且

三角函数知识点公式定理记忆口诀1

三角函数知识点公式定理记忆口诀 2008-9-2 14:12:26 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。 【文字:大小】 口口之和仍口口 赛赛之和赛口留 口口之差负赛赛 赛赛之差口赛收

高中数学三角函数公式定理口诀 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集

三角函数与三角变形

三角函数与三角变形 一. 本周教学内容: 专题复习“三角函数与三角变形” 二. 重点与难点: 1. 三角函数的图象与性质; 2. 同角三角函数的差不多关系式,诱导公式,和、差、倍、半角公式,和积互化公式等三角公式的应用。 三. 要点综述: 1. 三角函数是一类重要的初等函数,因其在复数(如复数的三角形式)解析几何(如直线的倾斜角,参数方程,极坐标),立体几何(如两条异面直线成角,直线与平面的成角,二面角)中有着广泛的应用,因此对三角函数与三角变形要有足够的认识。 2. 三角函数的周期性,以及y=sinx ,y=cosx 的有界性是试题经常考查的重要内容。要把握形如y=Asin(ωx+?)或y=Acos(ωx+?)的函数的周期的求法;灵活应用y=sinx ,y=cosx 的有界性研究某些类型的三角函数的最值(或值域)问题。 3. 三角恒等式的证明因其技巧性较强,一度成为数学的难点,近些年的高考试题对这类题目的考查在减少,要求有所降低,但我们应该充分重视三角变形,因为其中表达了对三角公式的运用能力,专门表达了事物之间互相联系,互相转化的辩证思想。 4. 基于上述几点理由,建议同学们在复习这部分内容时,做到“立足课本,落实三基;重视基础,抓好常规”即复习时以中低档题目为主,注意求值化简题以及求取值范畴的习题,另外,注意充分利用单位圆,三角函数图象研究问题。 【典型例题分析与解答】 例1. 已知,且,则的值为 sin cos cos sin θθπθπ θθ?= <<-1842 分析:联想与的关系式:cos sin sin cos (cos sin )sin cos θθθθθθθθ±±=±2 12 可知,欲求的值,不妨先求的值,另外,应注意到,当 cos sin (cos sin )θθθθ--2π θπ θθθθ4 2 0<< >-<时,,故sin cos cos sin 解:(cos sin )sin cos θθθθ-=-=-?=2 12121834 而 π θπ 42 << ∴-

特殊角的三角函数值的巧记

特殊角的三角函数值的巧记 特殊角的三角函数值在计算,求值,解直角三角形和今后的学习中,常常会用到,所以一定要熟记.要在理解的基础上,采用巧妙的方法加强记忆.这里关键的问题还是要明白和掌握这些三角函数值是怎样求出的,既便遗忘了,自己也能推算出来,切莫死记硬背. 那么怎样才能更好地记熟它们呢?下面介绍几种方法,供同学们借鉴。 1、“三角板”记法 根据含有特殊角的直角三角形的知识,利用你手里的一套三角板,就可以帮助你记住30°、45°、60°角的三角函数值.我们不妨称这种方法为“三角板”记法. 首先,如图所标明的那样,先把手中一套三角板的构造特点弄明白,记清它们的边角是什么关系. 对左边第一块三角板,要抓住在直角三角形中,30°角的对边是斜边的一半的特点,再应用勾股定理.可以知道在这个直角三角形中30°角的对边、邻边、 斜边的比是掌握了这个比例关系,就可以依定义求出30°、60°角的任意 一个锐角三角函数值,如:001sin 30,cos302== 求60°角的三角函数值,还应抓住60°角是30°角的余角这一特点. 在右边那块三角板中,应注意在直角三角形中,若有一锐角为45°,则此三 角形是等腰直角三角形,且两直角边与斜边的比是1∶1 住:00sin 45cos 452 == ,00tan 45cot 451==。这种方法形象、直观、简单、易记,同时巩固了三角函数的定义. 二、列表法:

说明:正弦值随角度变化,即0? →30?→45? →60? →90?变化;值从 0→2 1 →22→23→1变化,其余类似记忆. 三、口诀记忆法 口诀是:“一、二、三,三、二、一,三、九、二十七,弦是二,切是三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45°,60°角的正弦、余弦、正切值中分子根号内的值.弦是二、切是三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号, 不能丢掉.如tan60°= =tan45°1=.这种方法有趣、简单、易记. 四、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ①有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sinA <sinB ;tanA <tanB ;cosA >cosB ;cotA >cotB ;特别地:若0°<α<45°,则sinA <cosA ;tanA <cotA ;若45°<A <90°,则sinA >cosA ;tanA >cotA . 例1.tan30°的值等于( )

三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切 1. 利用两角和与差的正弦、余弦、正切公式进行三角变换;2?利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2?灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键? 知识点回顾 1 ?两角和与差的余弦、正弦、正切公式 cos( a—0)= cos acos0+ sin ocsin0(C a- 0 cos( a+ 0)= cos. acos _ 0— sin__ asin_ 0(C a+ 0 sin( a—0 = sin a cos0- cos ocsin (S a—0 sin( a+ 0 = sin a cos0+ cos ocsin0(S a+ 0 tan a—tan 卩 tan( a—? ;(T a—0 1 + tan atan 卩 tan a+ tan 卩 tan(%+ ? = (T a + 0 1 —tan %tan 0 2 ?二倍角公式 sin 2 a= 2sin : cos:; cos 2 a= cos2a—sin2a= 2cos 2a—1 = 1 —2sin2a; 2ta n a tan 2 a= . 1 —tan a 3 ?在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等?如 T a±0可变形为 tan a± tan 0= tan( a± 0(1? tan_ %tan_ 0, tan a+ tan 0 tan a—tan 0 tan %tan 0= 1 —= —1. tan a+ 0 tan a—0 4 ? 函数f( a= a cos a+ b sin a(a, b 为常数),可以化为f( a = \i a2+ b2sin( a+ 0)或f( %)=':::[a2+

三角函数之正余弦定理

教师寄语:天才=1%的灵感+99%的血汗 1 戴氏教育中高考名校冲刺教育中心 【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。谢谢使用!!!】 主管签字:________ §3.6 正弦定理和余弦定理 一、考点、热点回顾 2014会这样考 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 复习备考要这样做 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 基础知识.自主学习 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以 变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余 弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并 可由此计算R 、r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角 A 为钝角或直角 图形 关系式 a =b sin A b sin A b 解的个数 一解 两解 一解 一解

正余弦定理讲义

培优教育一对一辅导讲义 科目:_数__年级:__高一__姓名:____教师:____时间:____

sin B sin C

解: 例2 C B b a A c ABC ,,2,45,60和求中,===? 解: 例3在C A a c B b ABC ,,1,60,30和求中,===? 课后作业 1在△ABC 中, k C c B b A a ===sin sin sin ,则k 为( ) A 2R B R C 4R D R 2 1 (R 为△ABC 外接圆半径) 2 在ABC ?中,已知角3 3 4,2245= ==b c B , ,则角A 的值是( ) A. 15 B. 75 C. 105 D. 75或 15 3、在△ABC 中,=?=?=c b a B A ::,60,30则若 4、在ABC ?中,若14,6760===a b B , ,则A= 。 5、在ABC ?中,已知 45,2,3=== B b a ,解三角形。 探究一.在?ABC 中,已知,,a b A ,讨论三角形解的情况

分析:先由sin sin b A B a = 可进一步求出B ; 则0180()C A B =-+ ,从而A C a c sin sin = 1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。 2.当A 为锐角时,如果a ≥b ,那么只有一解; 3.如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解。 评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解。 探究二 你能画出图来表示上面各种情形下的三角形的解吗? 三例题讲解 例1.根据下列条件,判断解三角形的情况 (1) a =20,b =28,A =120°.无解 (2)a =28,b =20,A =45°;一解 (3)c =54,b =39,C =115°;一解 (4) b =11,a =20,B =30°;两解 [随堂练习1] (1)在?ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。 (2)在?ABC 中,若1a =,1 2 c = ,040C ∠=,则符合题意的b 的值有_____个。 (3)在?ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围。 (答案:(1)有两解;(2)0;(3)222x <<) 例2.在ABC ?中,已知,cos cos cos a b c A B C ==判断ABC ?的形状.

三角函数诱导公式及经典记忆方法

三角函数诱导公式及记忆方法 一、同角三角函数的基本关系式 (一)基本关系 1、倒数关系 tanα ·cotα=1 s inα ·cscα=1 cosα ·secα=1 2、商的关系 sinα/cosα=tanαsecα/cscα=tanα cosα/sinα=cotαcscα/secα=cotα 3、平方关系 sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α (二)同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 1、倒数关系 对角线上两个函数互为倒数; 2、商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 3、平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 二、诱导公式的本质 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。(一)常用的诱导公式 1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα,k∈z cos(2kπ+α)=cosα,k∈z tan(2kπ+α)=tanα,k∈z cot(2kπ+α)=cotα,k∈z sec(2kπ+α)=secα,k∈z csc(2kπ+α)=cscα,k∈z 2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)= tanα cot(π+α)= cotα sec (π+α) =—secα csc (π+α) =—cscα 3、公式三:任意角α与-α的三角函数值之间的关系:

求三角函数解析式方法总结超全面

求三角函数解析式)sin(?ω+=x A y 常用的方法全面总结 三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。 A (振幅):A= 2-最小值 最大值 φ+wx :相位,其中T w π 2=(T 为最小正周期) ?:初相,求φ常有代入法、五点法、特殊值法等 【 一、利用五点法,逆求函数解析式 三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点 第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2 π 第三点,即图像下降时与x 轴的交点,为φ+wx =π 第四点,即图像曲线的最低点,为φ+wx = 2 3π 第五点,即图像最后一个端点,为φ+wx =π2 ! 例1.右图所示的曲线是)sin(?ω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. >

例2.是函数π 2sin()2 y x ω???? =+< ?? ?的图象上的一段,则( ) A.10π 116ω?==, B.10π116 ω?= =-, C.π 26 ω?==, D.π 26 ω?==-, 《 例3.函数)20,0,)(sin(π?ω?ω<≤>∈+=R x x y 的部分图象如图,则 A .4 ,2 π ?π ω= = B .6 ,3 π ?π ω= = C .4,4π?πω== D .4 5,4π ?πω== | 例4、函数()?ω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。(其中 π?πω<<->>,0,0A ) > …

高中数学:三角函数与正余弦定理专题

高三文科数学:三角函数与正余弦定理专题 一、选择题: 1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-2 2 B.22 C.3 2 D .1 2.(2013·江西高考)若sin α 2=3 3,则cos α=( ) A .-2 3 B .-1 3 C.1 3 D.2 3 3.已知tan ????α-π 6=3 7,tan ????π 6+β=2 5,则tan(α+β)的值为( ) A.29 41 B.1 29 C.1 41 D .1 4.把y =sin 1 2x 的图像上点的横坐标变为原来的2倍得到y =sin ωx 的图像,则ω的值为( ) A .1 B .4 C.1 4 D .2 5.要得到函数y =cos(2x +1)的图像,只要将函数y =cos 2x 的图像( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移1 2个单位 D .向右平移1 2个单位 6.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 二、填空题: 7.已知角α的终边经过点(3,-1),则sin α=________. 8.已知扇形周长为10,面积是4,求扇形的圆心角为________. 9.函数y =cos ????2x +π 6的单调递增区间为________. 10.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B , 则角C =________.

三、解答题: 11. (2015·山东高考)设2()sin cos cos ()4f x x x x π =-+ (1)求()f x 的单调区间 (2)在锐角ABC ?中,角,,A B C 的对边分别为,,a b c .若()02A f =,1a =, 求ABC ?面积的最大值 12.已知2tan =θ, 求(Ⅰ)θ θθθsin cos sin cos -+;(Ⅱ)θθθθ22cos 2cos .sin sin +-的值.

三角函数知识点归纳

三角函数 一、任意角、弧度制及任意角的三角函数 1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角. ?? ??? 正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 ②按终边位置不同分为象限角和轴线角. 角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

三角函数恒等变形公式

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数 两角和与差的三角函数: cos( a + 3)=cos a ? cos 3 -sin a ?sin 3 cos( a - 3)=cos a ? cos 3 +sin a ?sin 3 sin( a ±3 )=sin a ? cos 3 ±cos a ? sin 3 tan( a + 3)=(tan a +tan 3 )/(1-tan a ? tan 3 ) tan( a - 3)=(tan a -tan 3 )/(1+tan a ? tan 3 ) 三角和的三角函数: sin( a + 3 +Y )=sin a ? cos 3 ? cos 丫+cos a ? sin 3 ? cos 丫+cos a ? cos 3 ? sin 丫-sin a ? sin 3 ? sin 丫cos( a + 3 + Y )=cos a ? cos 3 ? cos 丫-cos a ? sin 3 ? sin Y -sin a ? cos 3 ? sin 丫-sin a ? sin 3 ? cos 丫 tan( a + 3 + Y )=(tan a +tan 3 +tan 丫-tan a ?tan 3 ? tan 丫)/(1-tan a ? tan 3 -tan 3 ? tan 丫-tan 丫? tan a ) 辅助角公式: Asin a +Bcos a =(A2+B2)A( 1/2)sin( a +t),其中 si nt=B/(A2+B2)A(1/2) cost=A/(A2+B2)A(1/2) tan t=B/A As in a -Bcos a =(A2+B2)A(1/2)cos( a -t) , tan t=A/B 倍角公式: sin (2 a )=2sin a? cos a :=2/(tan a +cot a ) cos(2 a )=cos2( a )- sin2( a )=2cos2( a )-仁1- 2sin2( a ) tan (2 a )=2tan a/[1- tan2( a )] 三倍角公式: sin (3 a )=3sin a-4sin3( a )=4sin a-sin(60+ a )sin(60- a ) cos(3 a )=4cos3( a )-3cos a =4cos a-cos(60+ a)cos(60- a ) tan(3 a )=tan a ? tan( n /3+a) ? tan( n /3-a) 半角公式: Sin( a /2)= ±V((1 -cos a )/2) cos( a /2)= ±V ((1+cos a )/2) tan( a /2)= ±V ((1 -cos a )/(1+cos a ))=sin a /(1+cos a )=(1-cos a )/sin a 降幕公式 sin2( a )=(1-cos(2 a ))/2=versin(2 a )/2 cos2( a )=(1+cos(2 a ))/2=covers(2 a )/2 tan2( a )=(1-cos(2 a ))/(1+cos(2 a )) 万能公式: sin a =2tan( a /2)/[1+tan2( a /2)] cos a =[1- tan2( a /2)]/[1+tan2( a /2)] tan a =2tan( a /2)/[1- tan2( a /2)] 积化和差公式:

各种三角函数关系式

倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α诱导公式 sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=——————

2019-2020年高三数学一轮复习第四章三角函数解三角形第七节正弦定理和余弦定理夯基提能作业本文

2019-2020年高三数学一轮复习第四章三角函数解三角形第七节正弦定理和余弦定 理夯基提能作业本文 1.在△ABC中,若=,则B的值为( ) A.30° B.45° C.60° D.90° 2.(xx广东,5,5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cos A=且bc.已知·=2,cos B=,b=3.求: (1)a和c的值; (2)cos(B-C)的值.

三角函数与解三角形:正弦定理和余弦定理

正弦定理和余弦定理【考点梳理】 1.正弦定理和余弦定理 (1)S=1 2a·h a(h a表示边a上的高); (2)S=1 2ab sin C= 1 2ac sin B= 1 2bc sin A. (3)S=1 2r(a+b+c)(r为内切圆半径). 【考点突破】 考点一、利用正、余弦定理解三角形 【例1】在△ABC中,∠BAC=3π 4,AB=6,AC=32,点D在BC边上, AD=BD,求AD的长. [解析] 设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bc cos∠BAC

=(32)2+62-2×32×6×cos 3π4 =18+36-(-36)=90,所以a=310. 又由正弦定理得sin B=b sin∠BAC a= 3 310 = 10 10, 由题设知0<B<π 4, 所以cos B=1-sin 2B=1-1 10= 310 10. 在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得 AD=AB·sin B sin(π-2B)= 6sin B 2sin B cos B= 3 cos B=10. 【类题通法】 1.正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的. 2.(1)运用余弦定理时,要注意整体思想的运用. (2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用. 【对点训练】 1.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(b-c)(sin B +sin C)=(a-3c)sin A,则角B的大小为() A.30°B.45° C.60°D.120° [答案]A

三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切 1.利用两角和与差的正弦、余弦、正切公式进行三角变换; 2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键. 知识点回顾 1. 两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β 1+tan αtan β (T α-β) tan(α+β)=tan α+tan β 1-tan αtan β (T α+β) 2. 二倍角公式 sin 2α=ααcos sin 2; cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α 1-tan 2α . 3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如 T α±β可变形为 tan α±tan β=tan(α±β)(1?tan_αtan_β), tan αtan β=1-tan α+tan βtan α+β=tan α-tan β tan α-β-1. 4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)= a 2+ b 2sin(α+φ)或f (α)=a 2+b 2cos(α -φ),其中φ可由a ,b 的值唯一确定.

相关文档
相关文档 最新文档