文档库 最新最全的文档下载
当前位置:文档库 › 梁的静强度可靠性设计.

梁的静强度可靠性设计.

梁的静强度可靠性设计.
梁的静强度可靠性设计.

梁的静强度可靠性设计

——应力与强度均呈正态分布

尹庆玲

【摘要】可靠性设计作为一种新的设计方法,是常规设计方法的深化和发展。文中

以应力、强度均呈正态分布为例阐述了梁的静强度可靠性设计。

【关键词】可靠度梁的可靠性设计应力——强度分布

【作者简介】尹庆玲,女,柳州运输职业技术学院机电工程系讲师。广西柳州,545007

一、引言

可靠性是指产品在规定条件下和规定时间内,完成规定功能的能力。在机械可靠性设计中,将载荷、材料性能与强度及零、部件的尺寸,都视为属于某种概率分布的统计量,应用概率与数理统计理论及强度理论,求出在给定设计条件下零、部件不产生破坏的概率公式,应用这些公式,就可以在给定可靠度下求出零、部件的尺寸。或给定其尺寸确定其安全系数。

可靠性设计作为一种新的设计方法,只是常规设计方法的深化和发展,但与常规设计相比,它具有如下特点:(1)以应力和强度为随机变量作为出发点(2)应用概率和统计方法进行分析、求解。(3)有多种可靠性指标:传统机械设计方法仅有一种可靠性评价指标,即安全系数;而可靠性设计可采用失效率、可靠度、平均无故障工作时间、有效度等可靠性指标,来确保结构的可靠性。本文以梁的静强度可靠性设计为例,介绍可靠性设计的原理与计算。

二、应力——强度干涉模型

机械零件的可靠性设计是以应力——强度分布干涉理论为基础,应力——强度分布干涉理论又是以应力——强度分布干涉模型为基础的,该模型可清楚地提示机械零件产生故障而有一定故障率的原因和机械强度可靠性设计的本质。

一般而言,施加于零件的物理量,如应力、压力、温度、冲击等导致失效的任何因素,统称为应力,用σ表示;而零件能够承受这种应力的程度,即阻止失效发生的任何因素,

统称为强度,用δ表示。

令应力和强度的概率密度函数分别为f (σ)和g (δ),将这两条曲线画在同一坐标系中,通常要求零件的强度高于其工作应力,但由于零件的强度值与应力值的离散性,使应力——强度两概率密度函数曲线在一定的条件下可能相交,这个相交的区域就是零件可能出现失效的区域,称为干涉区。如图1所示。

从模型可知,就统计数学的观点而言,由于干涉的存在,任一设计都存在着故障或失效的概率,设计者能够做到的仅仅是将故障或失效概率限制在某一可以接受的范围而已。

三、可靠度的计算

现把图1的干涉区部分放大加以研究,如图2所示。曲线1为应力分布的右尾,曲线2为强度分布的左尾。现假设失效控制应力为σ1,则当强度大于σ1时就不会发生破坏,而可靠度就是强度大于失效控制应力的概率,即

R = P (δ>σ1)= P [(δ-σ1)>0]

现用面积A 1表示控制应力σ1在区间11,22d d σσσσ??-+????

内的概率,则

而强度大于失效控制应力的概率为图中阴影线所示的面积A 2,其值为

1

21()()A g d P σδδδσ∞

==>?

根据概率乘法定理,应力在区间11,22d d σσσσ??-+????

内的可靠度为

)(σf

)(δg σ δ δσ, )()

(δσg f

图1 应力--强度干涉模型 )()(σσg f 1σ

σd 1A A 2

A 1 A 2A A )(1σf A )(1δg A δσ, A 图2 干涉区放大图

显然,上式对σ1的任意取值都是成立的。所以,对整个应力分布,零件的可靠度为

当应力和强度的概率分布形式已知时,应用上式即可求出零件的可靠度。

应力——强度均为正态分布,此时,2

2()2()S f σ

σσσ--

=

式中,σ、δ分别为应力和强度的子样均值;S σ、S δ分别为应力和强度的子样标准差。经过推导,得可靠度

22

()R

Z Z R R e

dZ Z -

-∞

=

式中,R Z 为联结系数或可靠度系数或可靠度指数,其值为

R Z δσ

=

(1)

根据R Z 值查,即可得到可靠度的值。

式(1)称为“联结方程”或“耦合方程”。

四、梁的静强度可靠性设计

如图3所示的矩形截面简支梁,其断面宽为B ,高为H=1.6B ,承受集中载荷

(,)(30000,1500)F F S N =,梁的跨度(,)(3000,1.0)l S mm =,集中载荷至支座A

的距离(,)(1200,1.0)

a a S m m =

,梁的材料用碳素钢,其强度为(,)

(667,25.3)

b b S M P a σσ=。今要求可靠度为0.9999时,试设计梁的断面尺寸。假设以上参数均服从正态分布。

(1)求支座B 的反作用力22(,)T T S

图3 受集中载荷作用的简支梁

因为 22(,)(,)(,)(,)T l F a T S S F S a S =

所以

(2)求最大弯曲应力(,)S σσ 集中力作用处为危险截面,该处弯矩为

222276(,)(,),(,)(,)[(,)(,)](12000,600)[(3000,1.0)(1200,1.0)](2.1610,1.0810)()

M T c T l a M S T S c S T S l S a S MPa ==-=-=??

抗弯截面模量 2231132(1.6)6675

W BH B B B =

== 故弯曲应力 3

(,)(,)

75(,)(,)32(,)

M M W B M S M S S W S B S σσ=

= 假设尺寸B 的制造公差为0.03B ,则其标准差为10.030.013

B S B B =?=

所以 66

333

(,)7550.62510 2.95110(,)(,)32(,0.01)M M S S B B B B σσ??==

(3)求梁的断面尺寸

根据题意,要求可靠度为R=0.9999,由标准正态分布函数表查得可靠性系数Z R =3.72。将已知数据代入联结方程得:

6

3

50.625106673.72B ?-

=

展开后解得,46.04,B mm =取B=46mm ,则为保证梁的可靠度为0.9999,梁的截面尺寸为

460.0346 1.38()B B mm =±=±

1.673.6

2.2()H B mm ==±

为进一步分析设计计算结果,可把它与常规设计作一比较。

五、与常规设计作比较

在机械零件的常规设计中,以强度与应力之比称为零件的安全系数,它是常数。它来源于人们的直观认识和具体经验总结,现取2.0进行计算,则有

732.1610443

[]275

s M W n B σσσ?==≤==

解得 B = 61.09(mm ),取B = 61.1(mm ),H = 1.6B = 97.8(mm ) 显然,常规设计结果比可靠性设计结果大了许多,如果在常规设计中采用梁的截面宽为46(mm ),即可靠性设计结果,则安全系数变为

3

744332460.8575 2.1610s

n M W

σ??≤==??

这从常规设计来看是不取采用的,而可靠性设计采用这一结果,其可靠度竟达到0.9999。

六、结束语

两种设计结果比较来看,对那些安全性要求较高的零件,采用常规安全系数方法进行设计,有很多不合理之处,因为它不能反映事物的客观规律,其实,只有当材料的强度值和零件的工作应力值离散性非常小时,常规定义的安全系数才有意义。

但从联结方程可以看出,要保证高的可靠度必须使,,,S S δσδσ值保持稳定不变。即可靠性设计的先进性是要以材料制造工艺的稳定性及对载荷测定的准确性为前提条件。

参 考 文 献

[1] 刘惟信. 机械可靠性设计[M]. 北京:清华大学出版社,1996.8 [2] 赵松年. 现代设计方法[M]. 北京:机械工业出版社,1999.8

工程力学第九章梁的应力及强度计算

课时授课计划 掌握弯曲应力基本概念; 掌握弯曲正应力及弯曲剪应力的计算;掌握弯曲正应力的强度计算; 掌握弯曲剪应力强度校核。

I D (d

根据[M],用平衡条件确定许用外载荷。 在进行上列各类计算时,为了保证既安全可靠又节约材料的原则,设计规范还规定梁内的最大正应力允许稍大于[σ],但以不超过[σ]的5%为限。即 3、进行强度计算时应遵循的步骤 (1)分析梁的受力,依据平衡条件确定约束力,分析梁的内力(画出弯矩图)。(2)依据弯矩图及截面沿梁轴线变化的情况,确定可能的危险截面:对等截面梁,弯矩最大截面即为危险截面。 (3)确定危险点 (4)依据强度条件,进行强度计算。 第三节梁的剪应力强度条件 一、概念 梁在横弯曲作用下,其横截面上不仅有正应力,还有剪应力。 对剪应力的分布作如下假设: (1)横截面上各点处剪应力均与剪力Q同向且平行; (2)横截面上距中性轴等距离各点处剪应力大小相。 根据以上假设,可推导出剪应力计算公式: 式中:τ—横截面上距中性轴z距离为y处各点的剪应力; Q—该截面上的剪力; b—需求剪应力作用点处的截面宽度; Iz—横截面对其中性轴的惯性矩; Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。 剪应力的单位与正应力一样。剪应力的方向规定与剪力的符号规定一样。 二、矩形截面横梁截面上的剪应力 如图所示高度h大于宽度b的矩形截面梁。横截面上的剪力Q沿y轴方向作用。 将上式带入剪应力公式得: 上式表明矩形截面横梁截面上的剪应力,沿截面高度呈抛物线规律变化。 在截面上、下边缘处y=±h/2,则=0;在中性轴上,y=0,剪应力值最大,

机械可靠性设计发展及现状

编订:__________________ 审核:__________________ 单位:__________________ 机械可靠性设计发展及现 状 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1230-100 机械可靠性设计发展及现状 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 随着科学技术的发展和对产品质量要求的不断提高,产品的可靠性也越来越成为产品竞争的焦点。产品的可靠性是设计出来的,生产出来的,管理出来的。可靠性设计是使产品的可靠性要求在设计中得以落实的技术。可靠性设计决定了产品的固有可靠性。 所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。长期以来,随着电子技术的发展和电子产品可靠性理论的成熟,电子产品可靠性的相对稳定,电子产品的可靠性试验技术已经发展的相对成熟;机械可靠性试验技术则由于存在理论难题而发展相对较慢。为了机械可靠性的切实发展,美国可靠性分析中心一直坚持鼓励其组织机构广泛收集机械产品可靠性数据。同时美国可靠性分析中心在提到的

梁的强度和刚度计算.

梁的强度和刚度计算 1.梁的强度计算 梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。 (1)梁的抗弯强度 作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下: 梁的抗弯强度按下列公式计算: 单向弯曲时 f W M nx x x ≤=γσ (5-3) 双向弯曲时 f W M W M ny y y nx x x ≤+=γγσ (5-4) 式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny ——梁对x 轴和y 轴的净截面模量; y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到; f ——钢材的抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。 需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。 (2)梁的抗剪强度 一般情况下,梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。截面上的最大剪应力发生在腹板中和轴处。在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。因此,设计的抗剪强度应按下式计算

v w f It ≤=τ (5-5) 式中:V ——计算截面沿腹板平面作用的剪力设计值; S ——中和轴以上毛截面对中和轴的面积矩; I ——毛截面惯性矩; t w ——腹板厚度; f v ——钢材的抗剪强度设计值。 图5-3 腹板剪应力 当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。 (3)梁的局部承压强度 图5-4局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板的弹性地基梁。腹板计算高度边缘的压应力分布如图5-4c 的曲线所示。假定集中荷载从作用处以1∶2.5(在h y 高度范围)和1∶1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。梁的局部承压强度可按下式计算

机械可靠性设计发展及现状.docx

机械可靠性设计发展及现状 随着科学技术的发展和对产品质量要求的不断提高,产品的可靠性也越来越成为产品竞争的焦点。产品的可靠性是设计出来的,生产出来的,管理出来的。可靠性设计是使产品的可靠性要求在设计中得以落实的技术。可靠性设计决定了产品的固有可靠性。 所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。长期以来,随着电子技术的发展和电子产品可靠性理论的成熟,电子产品可靠性的相对稳定,电子产品的可靠性试验技术已经发展的相对成熟;机械可靠性试验技术则由于存在理论难题而发展相对较慢。为了机械可靠性的切实发展,美国可靠性分析中心一直坚持鼓励其组织机构广泛收集机械产品可靠性数据。同时美国可靠性分析中心在提到的关于将来安全相关技术发展备选课题,在可靠性领域中把机械可靠性作为三大课题( 另外两个是加速试验和软件可靠性) 之一。机械可靠性试验技术是机械可靠性技术中一个关键的问题,因此被广泛关注。 机械可靠性试验的发展 自1946 年Freuenthal在国际上发表“结构的安全度”一文以来,可靠性问题开始引起学术界和工程界的普遍关注与重视。上世纪60 年代,对机械可靠性问题引起了各国广泛重视并开始对其进行了系统研究,其中美国、前苏联、日本、英国等国家对机械产品可靠性进行了深入研究,并在机械产品可靠性理论研究和实际应用方面取得了相当进展: 1.1.20世纪40年代,德国在V-1火箭研制中,提出了火箭系统的可靠性等于所有元器件可靠度乘积的理论,即把小样本问题转化为大样本问题进行研究。 1.2.1957年6月4日,美国的“电子设备可靠性顾问委员会”发布了《军用电子设备可靠性报告》,提出了可靠性是可建立的、可分配的及可验证的,从而为可靠性学科的发展提出了初步框架。 1.3.3.20世纪50年代至60年代,美国、苏联相继把可靠性应用于航天计划,于是机械系统的可靠性研究得到发展,如随机载荷下机械结构和零件的可靠性,机械产品的可靠性设计、试验验证等。 1.4.日本于20世纪50年代后期将可靠性技术推广到民用工业,设立了可靠性研究机构和可靠性工程控制小组,大大提高了日本产品的可靠度。 NASA 在六十年代中期便开始了机械部件的应力验证和利用应力强度干涉模型进行可靠性概率设计的研究。1974年美国和日本成立了结构可靠性分析方法研究组,澳大利亚、瑞典

实现机械工程的可靠性优化设计参考文本

实现机械工程的可靠性优化设计参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

实现机械工程的可靠性优化设计参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 自改革开放之后,中国的工程机械行业得到了前所未 有的发展,经过30多年的不懈努力,机械工程制造业取得 了巨大的发展成果,在国民经济中占有很大的比重。在机 械工程行业里面,对其可靠性进行优化设计是十分必要 的。在本文中,深入探讨了工程机械可靠性优化设计中的 问题,以便参考。 现代社会,科学技术的发展已不可同日而语,人们不 仅对多功能产品的强烈需求,还希望多功能产品的各项能 力非常突出。以提高产品的功能可靠性为目的,促使了产 品产品的可靠性优化设计应运而生,从其概念的产生到如 今,得到了迅速发展和广泛使用。在开展工程机械产品的

设计时,需要把可靠性理论和技术融合起来,并依据具体的要求,可以优先考虑产品的可靠性;在延误开发时间,增加成本和性能的前提下,使工程机械产品的设计尽量满足可靠性的要求。由于可靠性设计是一个跨多学科,多技术的新兴技术,所以可靠性的设计涉及诸多问题。 1.机械工程设计的可靠性常用方法 1.1.鲁棒设计方法 这种设计方法主要是降低产品的敏感性。使产品的性能不会因为制造期间在变异或是使用环境的变化而变得不稳定,并且让产品在额定的使用期限内,不会因为产品的结构发生变化,参数变动,系统老化等问题而影响到工作的设计方法。该方法是基于统计分析为基础由日本的机械设计师田口玄一提出的,它根据产品的可用性对用户造成多大的经济损失来判断设计的可靠,这是它的基本原理,其中的损失通常是可靠的用户流失的可用性正比于产品的

机械零件强度可靠性设计的简单分析

机械零件强度可靠性设计的简单数学分析 ---《数学文化》的读书报告 徐华超 机设8班,2009302349 摘要 我们都知道传统的设计方法是把设计变量当做确定性变量来看待。但是对于一大批同类产品总任何特定的一件来讲,许多设计变量(例如工作载荷,极限应力,零件尺寸等)都是随机变量。如果在产品的设计过程中通过概率与统计的方法来分析和处理这些随机变量,则可以更为准确的把握产品的可靠性。基于上述思想及相应的方法进行对机械零件强度可靠性设计中变量分析,可以确定产品在规定的工作条件下及规定的使用期限内完成规定功能的概率,这一概率就是反应产品可靠性的定量指标之一。 关键词 应力 概率密度函数 正态分布 引言 可靠性作为产品的一个重要的质量指标特征,它表示产品在规定的工作条件下及规定 的使用期限内完成规定功能的能力。在现实中可靠性好可以有效的在规定的时间内完成功能,对产品的安全性,口碑和性价比起到至关重要的作用!在设计产品中所遇到的各种变量采用概率和统计的方法来分析和处理,可以较为准确的把握产品的可靠性。机械零件的概率设计和相应的可靠度计算是机械可靠性设计的一项重要内容,下面就机械强度的可靠度计算方法做一阐述。 (一)基本概念及公式 如果广义的讲,可以把一切引起失效的外部作用的参数叫做应力,而把零件本身抵抗失效的能力叫做强度,则通过判断应力是否超过强度就可以判断零件的安全性。若将应力和强度视为随机变量,通过计算强度高于应力的概率,就得到零件的可靠度。根据这一思想建立的可靠度计算模型成为应力-强度干涉模型,这也是进行各种机械零件的概率设计的基础。 狭义的概念的应力-强度干涉模型是以零件的强度指标(例如零件的极限应力 lim δ)和作 用力σ都是随机变量的客观事实为基础的。由于它们都是随机变量,因而必然会有相应的分布规律。令g (r)表示强度指标r 的概率密度函数,p (s )表示作用应力s 的概率密度函数。显然,零件失效的条件可以用以下两式的任一个来描述 r s <

关于梁的正应力强度计算.

§7-2 梁的正应力强度计算 一、最大正应力 在强度计算时,必须算出梁的最大正应力。产生最大正应力的截面,称为危险截面。对于等直梁,弯矩最大的截面就是危险截面。危险截面上的最大应力处称为危险点,它发生在距中性轴最远的上、下边缘处。 对于中性轴是截面对称轴的梁,最大正应力的值为: max max max z M y I σ= 令z z max I W y = ,则 max max z M W σ= 式中z W 称为抗弯截面系数,是一个与截面形状和尺寸有关的几何量。常用单位是m 3 或mm 3。z W 值越大,max σ就越小,它也反映了截面形状及尺寸对梁的强度的影响。 对高为h 、宽为b 的矩形截面,其抗弯截面系数为: 32 z z max /12/26 I bh bh W y h === 对直径为d 的圆形截面,其抗弯截面系数为: 43 z z max /64/232 I d d W y d ππ=== 对于中性轴不是截面对称轴的梁,例如图7-9所示的T 形截面梁,在正弯矩M 作用下 梁下边缘处产生最大拉应力,上边缘处产生最大压应力,其值分别为: +1max z My I σ= 2max z My I σ-= 令z 11I W y = 、z 22 I W y =,则有: + max 1 M W σ= max 2 M W σ-=

max σ- 图7-9 二、正应力强度条件 为了保证梁能安全地工作,必须使梁截面上的最大正应力max σ不超过材料的许用应力,这就是梁的正应力强度条件。现分两种情况表达如下: 1、材料的抗拉和抗压能力相同,其正应力强度条件为: max max z []M W σσ= ≤ 2、材料的抗拉和抗压能力不同,应分别对拉应力和压应力建立强度条件: +max max 1[]M W σσ+= ≤ max max 2 []M W σσ--=≤ 根据强度条件可解决有关强度方面的三类问题: 1)强度校核:在已知梁的材料和横截面的形状、尺寸(即已知[]σ、z W )以及所受荷载(即已知max M )的情况下,可以检查梁是否满足正应力强度条件。 2)设计截面:当已知荷载和所用材料时(即已知max M 、[]σ),可根据强度条件,计算所需的抗弯截面系数 max z []M W σ≥ 然后根据梁的截面形状进一步确定截面的具体尺寸。 3)确定许用荷载:如已知梁的材料和截面形状尺寸(即已知[]σ、z W ),则先根据强度条件算出梁所能承受的最大弯矩,即: max z [] M W σ≤ 然后由max M 与荷载间的关系计算许用荷载。 例7-2 如图7-10所示T 形截面外伸梁。已知材料的许用拉应力[]32MPa σ+ =,许用 压应力[]70MPa σ- =。试校核梁的正应力强度。

实现机械工程的可靠性优化设计

实现机械工程的可靠性 优化设计 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

实现机械工程的可靠性优化设计自改革开放之后,中国的工程机械行业得到了前所未有的发展,经过30多年的不懈努力,机械工程制造业取得了巨大的发展成果,在国民经济中占有很大的比重。在机械工程行业里面,对其可靠性进行优化设计是十分必要的。在本文中,深入探讨了工程机械可靠性优化设计中的问题,以便参考。 现代社会,科学技术的发展已不可同日而语,人们不仅对多功能产品的强烈需求,还希望多功能产品的各项能力非常突出。以提高产品的功能可靠性为目的,促使了产品产品的可靠性优化设计应运而生,从其概念的产生到如今,得到了迅速发展和广泛使用。在开展工程机械产品的设计时,需要把可靠性理论和技术融合起来,并依据具体的要求,可以优先考虑产品的可靠性;在延误开发时间,增加成本和性能的前提下,使工程机械产品的设计尽量满足可靠性的要求。由于可靠性设计是一个跨多学科,多技术的新兴技术,所以可靠性的设计涉及诸多问题。 1.机械工程设计的可靠性常用方法 1.1.鲁棒设计方法

这种设计方法主要是降低产品的敏感性。使产品的性能不会因为制造期间在变异或是使用环境的变化而变得不稳定,并且让产品在额定的使用期限内,不会因为产品的结构发生变化,参数变动,系统老化等问题而影响到工作的设计方法。该方法是基于统计分析为基础由日本的机械设计师田口玄一提出的,它根据产品的可用性对用户造成多大的经济损失来判断设计的可靠,这是它的基本原理,其中的损失通常是可靠的用户流失的可用性正比于产品的功能和目标,简单而言就是损失越多说明偏差越大,从侧面反映出产品的质量不过关,减小偏差则是提高产品质量的有效办法,大多是通过严格控制材料和生产工艺,以达到最大限度地减少错误的目的。然而,这种方法的缺点同样十分明显,经费相对昂贵以及技术太过复杂,难以完成。经过人们不断的摸索和实验,提高自身的抗干扰能力已成为此方法的主要途径,此方法的途径也非常的多,它是将很多的办法融合起来。良好的机械强度会比较高增强产品的可靠性。 1.2.降额设计 这个方法是当产品工作时其零件所受的应力都在其额定范围之内,为了达到降低应力的目的可以使零部件的所承受的应力降低或是提高零部件的质量。根据大量的工程实践表明,机械故障率非常低的产品其机械零件都是在低于其设定的工作压力之下进行工作的,而可靠性也随之升高。为了找到最好的降额办法,就需要不断的进行反复的实验。这是就

西工大可靠性复习资料总结

西工大可靠性复习资料总结 T系统的工作时间,tiT时间内单元的工作时间,Ni第i个单元的重要零件数,N系统的重要零件总数,Ei第i个单元的重要度。Ei=由第i个单元的失效而造成系统失效的次数/第i单元的失效次数。 分给i的可靠度39可靠性分析:利用归纳、演绎的方法对系统可能发生的故障进行研究,研究失效的原因、后果和影响及严重程度,从而为系统设计提供改进建议。分析方法:1FMECA法2失效树分析(FTA)40FEMCA:在系统设计过程中,通过对系统各组成单元潜在的各种失效模式及其对系统功能影响,与产品和后果的严重成都进行分析,提出采取的预防改进措施,以提高产品的可靠性的一种设计分析方法。包含FMA(失效模式分析)、FEA (失效影响分析)、FCA(失效致命度分析)如何进行:按照FMECA表哥逐项分析和填表。41FMECA基本任务:1查明一切失效模式及其对系统功能造成的影响和后果,判断其严重性等级。2查明单点失效项目并逐渐评价其发生概率大小。3完成FMECA报告,内容包括:系统可靠性关键零件清单,改进或补偿措施。对哪些致命度大零部件进行更换,增加冗余或修改设计,力争将潜在的致命度打的失效消灭在设计阶段。42失效后果等级:分析失效模式出现对系统工作功能或状态引起的各种后果。把各种失效模式的后果进行定性分类,分为四类I灾难性的,可能造成人身死亡

或全系统损坏。II关键性的导致系统不可能完成规定的功能,III 边缘的可能造成次要损坏或系统性能下降IV次要的,不造成系统损失,但可能要求计划外的维修。概率等级:用失效模式出现的概率可定型反映零部件失效率,失效模式出现的概率是以某一失效模式出现数除以全系统失效次数来计算的。分为个等级A经常的概率约20%,B相当可能的10%~20%,C偶然的1%~10%,D小的概率0、1%~1%,E级极不可能的概率小于0、1%。43致命度:根据失效后果等级和概率等级,致命度分为四级1级IA;2级IB,IIA;3级IC,IIB, IIIA;4级ID, IIC, IID ,IIIB, IIIC, IIID, IVA, IVB, IVC, IVD, IE, IIE, IIIE, IVE。其中 IA含义是失效后果等级为I类且概率等级为A,以此类推。44失效树的基本思想是什么:通过对可能造成系统失效的各种因素(硬件、软件、环境、人为、工艺制造等)进行分析,画出逻辑图即失效树,从而确定系统失效原因的各种可能组合方式及其发生概率,以计算系统失效概率,采取相应的纠正措施的一种提高系统可靠性的设计方法。步骤:1选择和确定顶事件;2自上而下建立失效树;3失效树定性分析;4失效树定量分析。特点:1它失效树分析法是一种图形演绎法,在清晰的失效树图下,表达系统的内再联系,从而可直观、形象的找出系统的全部故障,找出系统薄弱环节。2可用于对系统可靠性、安全性进行定性分析和定量计算,而且还可考虑造成系统失效的各种因素,因此,灵活多用。3由于失效树是由特定的逻辑门和一定的事件构成的逻辑图,因此对于

机械可靠性设计课程教学大纲

《机械可靠性设计》课程教学大纲 课程编码:08541032 课程名称:机械可靠性设计 英文名称:Reliability of Mechanical Design 开课学期:第6,7学期 学时/学分:30 / 1.5 课程类型:选修课 开课专业:机械科学与工程学院 选用教材:自编讲稿 主要参考书:机械可靠性设计徐灏著机械工业出版社 机械可靠性设计刘惟信著清华大学出版社 执笔人:王军 一、课程性质、目的与任务 本课程系选修课,介绍了可靠性设计的原理及概貌。系统地讲述了机械强度可靠性设计的原理,静强度的可靠性设计和疲劳强度的可靠性设计。其主要任务是培养学生: 1、了解可靠性设计的概念、重要性及原理。 2、掌握机械静强度可靠性设计的基本思想和方法。 3、掌握机械疲劳强度可靠性设计的基本思想和方法。 4、有能力解决一般机械强度可靠性设计的问题。 5、为学生的进一步深造打基础。

“可靠性”是产品质量和技术措施的一个最重要的指标,早已受到世界发达国家的高度重视,因此,在我国对工科学生开设此门科程,具有非常重要的现实意义。 二、教学基本要求 了解可靠性设计的概念、重要性及原理,掌握机械静强度可靠性设计的基本思想和方法,掌握机械疲劳强度可靠性设计的基本思想和方法,有能力解决一般机械强度可靠性设计的问题。 三、各章节内容及学时分配 1、可靠性概念(4学时):可靠性与质量的关系;可靠性的定义; 衡量可靠性的尺度。(掌握) 2、统计分析的基础知识(4学时):随机变量;概率的概念;母 体、个体和子样;均值与中值;方差与标准差;平均秩与中位秩; 正态分布;对数正态分布;指数分布;威布尔分布。(了解) 3、机械强度可靠性设计的基础理论(6学时):可靠性设计方法 的基础理论(理解);零件强度分布率及分布参数的确定;零件应力分布率及分布参数的确定;强度可靠性计算条件式与许用可靠度;强度可靠性设计方法及步骤(掌握)。 4、静强度可靠性设计(4学时):拉杆;梁;扭转圆杆;转轴的 强度可靠性设计。(掌握) 5、疲劳强度可靠性设计(8学时):S-N及P-S-N曲线;疲劳极限

机械可靠性设计

机械可靠性设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

机械可靠性设计概述 专业:机械设计制造及其自动化 班级:机制(2)班 组员: 黄佳辉 芦朝晖

摘要 可靠性就是产品在规定的时间和规定的条件下完成规定功能的能力,无论任何产品或是零件能否在复杂多变的环境下发挥其应有的功能是至关重要的,目前几乎所以的机器在设计制造的过程中都必须考虑其可靠性,可靠性设计已经变得越来越重要,怎样合理的采用科学的可靠性设计方法使机器能够在要求的工作环境下不会失效损坏是设计中必须考虑的重要问题,只有这样才能提高和稳定产品的可靠性。 关键词:可靠性发展趋势设计方法意义原理 正文 机械可靠性设计的目的就是确保其设计的机械零件能够在规定的工作时间,规定的条件下完成规定的功能。机械产品是在综合学科交叉作用下的高新技术的衍生物, 其主要功效就是实现产品运行过程中的安全性、可靠性[1] 。一个产品如果无法保证其 运作的稳定性,将会极大的威胁到人生安全,而且稳定性也是对产品质量的一种保证。 一机械可靠性设计研究发展状况 国内主要的可靠性研究机构有中国赛宝实验室(CEPREI,工业和信息化部电子第五 研究所)、摩尔实验室(MORLAB)等。中国赛宝实验室是中国唯一专业进行电子产品质量与可靠性研究的权威机构。可靠性研究分析中心(RAC)是中国赛宝实验室的核心技术部门,是按国际标准ISO17025管理和运行的实验室,主要开展电子产品失效分析、破坏性物理分析、电子制造技术服务、电子产品污染控制技术项目等。 经过多年的建设和发展,分析中心在电子材料、元器件、封装、组装和电子辅料的质量与可靠性方面,具有完善的检测、分析和试验能力;开展有毒有害物质(RoHS)、环境评估与监测、ODS替代技术检测等方面的技术服务,是目前国内最先进、综合技术能力最强的电子制造技术支持实验室和环保检测实验室。 摩尔实验室中的可靠性实验室主要实验为:气候环境实验、机械环境实验、高温可靠性实验。环境试验室拥有一批国际、国内着名的专业环境试验设备制造商生产的气候环境试验设备;设备技术先进、性能稳定、功能齐全,可编程控制,自动绘制试验曲线;可按IEC、ISO等国际标准和国家标准(GB)、行业标准、企业标准,以及客户的要求进行高温、低温、恒温恒湿、交变湿热、温度变化、温度/湿度组合循环、低气压等气候环境试验。环境试验室还拥有面积40余平方米的具有国内领先水平的大型淋雨试验室,配备了可编程控制、不锈钢材料的垂直淋雨、摆管淋雨、花洒淋雨、防

机械工程的可靠性优化设计分析

龙源期刊网 https://www.wendangku.net/doc/75970661.html, 机械工程的可靠性优化设计分析 作者:刘峰王庆鑫赵秉祝 来源:《装饰装修天地》2020年第01期 摘; ; 要:随着我国经济技术的快速发展,人们对机械工程提出了更高的要求,机械工程产品应用广泛,对产品可靠性有较高要求,需要从多角度出发,对产品可靠性进行优化设计。首先对机械工程产品可靠性设计现状进行分析,探讨机械工程产品可靠性设计存在的不足。在此基础上,研究机械工程产品可靠性优化设计要点,提出几点具体的优化方法,以期促进其产品质量水平的提升。 关键词:机械工程;产品可靠性;优化设计 1; 引言 我国机械工程制造业发展较快,产品质量水平不断提升,已经进入良性发展期。但是在机械工程产品设计中,由于未能处理好产品功能扩展与可靠性要求的关系,导致产品可靠性存在不足,容易对产品使用安全造成一定影响。针对这种问题,应在提升产品可靠性设计重视度的基础上,采取有效的优化措施,为产品可靠性提供保障。 2; 机械工程可靠性优化的现状 我国机械工程制造业发展的起步较晚,在上世纪80年代时,才在产品可靠性设计方面取得一定突破。随着国内机械工程产品可靠性研究组织机构的相继成立,加快了我国产品可靠性设计的标准化进程,对于推动机械工程制造业发展做出了重要贡献。但客观而言,我国机械工程产品可靠性研究仍落后与西方发达国家,现有研究成果也偏重于理论,在实际生产领域的应用较少。从机械工程实践情况来看,由于缺少产品可靠性的优化设计经验,难以根据机械工程产品的实际用途、功能性能特点,对产品可靠性作出有效优化。或因产品可靠性优化设计周期较长,影响了实际工程进程。再加上成本等方面的客观限制条件,导致部分产品可靠性不足,容易影响机械工程产品的运行安全性和稳定性。针对这种状况,必须提高对机械工程产品可靠性设计的重视,同时应明确机械工程产品可靠性设计优化应贯穿于工程实践的全过程中,与产品制造、安装、使用及维修紧密结合起来,不断积累经验,提高机械工程产品可靠性设计水平。 3; 机械工程的可靠性优化设计原理 3.1; 机械可靠性定量设计方法

电子产品可靠性设计总结V1.1.0

电子产品可靠性设计总结V1.1.0 一、 印制板 ㈠,数据指标 1,印制板最佳形状是矩形(长宽比为3:2或4:3),板面大于200*150mm时应考虑印制板所承受的机械强度。 2,位于边沿附近的元器件及走线,离印制板边沿至少2mm,以防止打耐压不过。 3,焊盘尺寸以金属引脚直径加上 0.2mm 作为焊盘的内孔直径。例如,电阻的金属引脚直径为 0.5mm,则焊盘孔直径为 0.7mm,而焊盘外径应该为焊盘孔径加1.2mm,最小应该为焊盘孔径加1.0mm。 4,常用的焊盘尺寸 焊盘孔直径/mm 0.4 0.5 0.6 0.8 1.0 1.2 1.6 2.0 焊盘外径/mm 1.5 1.5 2.0 2.0 2.5 3.0 3.5 4 5,元器件之间的间距要合适,以防止焊接时互相遮挡,导致无法焊接。 6,走线和元器件与边界孔、固定孔之间的距离要足够的大,以防止无法添加平垫和螺丝,也可防止可耐压时不能通过。 7,PCB板的尺寸要与相关的壳子相匹配,固定孔之间的位置也要与要关的壳体固定位置相适合。 8,尽量用贴片元件,尺可能缩短元件的引脚长度。(地线干扰) ㈡,设计方法 1,保证PCB板很好的接地。(信号辐射) 2,屏蔽板尽量靠近受保护物体,而且屏蔽板的接地必须良好。(电场屏蔽) 3,易受干扰的元器件不能离得太近。(元件布局) ㈢,注意事项 1,以每个功能电路为核心,围绕这个核心电路进行布局,元件安排应该均匀、整齐、紧凑,原则是减少和缩短各个元件之间的引线和连接。 2,使用敷铜也可以达到抗干扰的目的,而且敷铜可以自动绕过焊盘并可连接地线。填充为网格状,以散热。 3,包地。对重要的信号线进行包地处理,可以显著提高该信号的抗干扰能力,当然还可以对干扰源进行包地处理,使其不能干扰其它信号。 4,严格确保元器件的焊盘大小足以插入元器件。各个元件间的距离不能太近导致元器件无法放下或无法焊接。 5,尽量少用过孔。 6,画完印制板图后,看看每个元器件的标号的方向正否统一。 7,元器件的标号不能画在其它元器件的焊盘内,也不能被其它原器件挡住。 8、接口应有文字说明其接口功能定义。 9、安装孔周围应不能走线,防止螺丝与信号线短接。 二、 PCB走线 ㈠,数据指标

可靠性研究

可靠性设计方法的研究 摘要:可靠性设计又称机械概率设计,是机械零件现代设计方法之一。可靠性设计是在传统设计的基础上,将设计对象的设计参数载荷、材料性能、强度、零部件尺寸等与设计有关的参数、变量等要素处理为服从某种统计规律的随机变量,按可靠性设计准则建立概率数学模型 ,应用概率与数理统计理论及强度理论,求出在给定设计条件下零部件产生破坏的概率公式,并应用这些公式求出在给定可靠度下零部件的尺寸、寿命等 ,使其不仅符合工况运行要求 ,而且得出最好的设计参数 ,既弥补了常规设计的不足,又使设计方案更加贴近生产实际。[1]目前 ,该设计方法广泛应用于飞机、汽车等重要产品以及其他机械产品重要部件的设计过程中。机械可靠性设计的基本任务是在故障物理学研究的基础上,结合可靠性试验以及故障数据的统计分析,提供实际计算的数学力学模型和方法及实践。这样就可以在机械产品的研制阶段,估计或预测产品在规定工作条件下的工作能力状态或寿命,保证产品具有所需的可靠性。对于可靠性设计方法,在对于初学者在认知上作出一些说明,以及对于现实理论具有的指导意义。[2]在发展情况和发展趋势上将作进一步探讨。 关键词:机械产品可靠性设计可靠性发展趋势可靠性优化设计 Abstract: reliability design is also called the probability of mechanical design, mechanical parts is one of the modern design method. Reliability design is on the basis of traditional design, the design object, material properties, the design parameters of load intensity, the size of the parts related to the design parameters, such as variable elements such as processing to obey some statistical regularity of random variables ,according to the reliability design principles to establish the mathematical model of probability, the probability and mathematical statistics theory and strength theory, and under the condition of a given design parts damage probability formula, and the formula is applied in the size of the parts under given reliability, life and so on, make it not only conform to the requirements of the operation, and it is concluded that the best design parameters, both make up for the deficiency of the conventional design, and make the design more close to the actual production.At present, the design method is widely used in aircraft, automotive and other important products, and other mechanical products are important components of the design process.Basic task of mechanical reliability design is on the basis of the failure physics, combined with the reliability test and statistical analysis of failure data, providing mathematical mechanical model and method to compute the actual and practical.So that it can be in mechanical product development phase, estimate or forecast products under prescribed conditions of the ability to work or life, guarantee the reliability of the product is required.For the reliability design method, make some suggests on for beginners in cognition, and has guiding significance for practical theory.In the development situation and the trend will be further discussed. Keywords: mechanical product reliability design trend of development of reliability optimization design 1 起源 可靠性技术的研究开始于20 世纪20 年代,在结构工程设计中的应用始于20 世纪40 年代,即第二次世界大战期间。可靠性技术最早应用在二战末期德国V- Ⅱ火箭的诱导装置上。德国火箭研究机构参加人首先提出了利用概率乘积法则,把一个系统的可靠度看成该系统的子系统可靠度的乘积。自从1946 年在国际上发表“结构的安全度”一文以来,基于传统设计法中的安全系数和结构破坏概率之间的内在关系建立了结构可靠性分析的理想数学模型,即应力—强度干涉模型,这标志着概率可靠性模型的初步建立,可靠性问题开始引起学术界和工程界的普遍关注与重视。1957 年美国国防部电子设备顾问委员会发表的《电子设备可靠性报告》,被公认为是电子产品可靠性理论和方法的奠基性文件,由此可靠性研究逐渐发展成为一门独立的学科。1969 年美国在苏联尔然尼钦工作的基础上,提出并建立了结构安全度的二阶矩模式,即一次二阶矩方法,打破了传统可靠性分析方式。另外,苏联为了保证人造卫星发射与飞行的可靠性,投入了可靠性的研究工作。美国航空航天事业迅速发展的时期,NASA 和美国国防部接受并发展了可靠性设计及实验方案,开始了机械部件的

梁的静强度可靠性设计.

梁的静强度可靠性设计 ——应力与强度均呈正态分布 尹庆玲 【摘要】可靠性设计作为一种新的设计方法,是常规设计方法的深化和发展。文中 以应力、强度均呈正态分布为例阐述了梁的静强度可靠性设计。 【关键词】可靠度梁的可靠性设计应力——强度分布 【作者简介】尹庆玲,女,柳州运输职业技术学院机电工程系讲师。广西柳州,545007 一、引言 可靠性是指产品在规定条件下和规定时间内,完成规定功能的能力。在机械可靠性设计中,将载荷、材料性能与强度及零、部件的尺寸,都视为属于某种概率分布的统计量,应用概率与数理统计理论及强度理论,求出在给定设计条件下零、部件不产生破坏的概率公式,应用这些公式,就可以在给定可靠度下求出零、部件的尺寸。或给定其尺寸确定其安全系数。 可靠性设计作为一种新的设计方法,只是常规设计方法的深化和发展,但与常规设计相比,它具有如下特点:(1)以应力和强度为随机变量作为出发点(2)应用概率和统计方法进行分析、求解。(3)有多种可靠性指标:传统机械设计方法仅有一种可靠性评价指标,即安全系数;而可靠性设计可采用失效率、可靠度、平均无故障工作时间、有效度等可靠性指标,来确保结构的可靠性。本文以梁的静强度可靠性设计为例,介绍可靠性设计的原理与计算。 二、应力——强度干涉模型 机械零件的可靠性设计是以应力——强度分布干涉理论为基础,应力——强度分布干涉理论又是以应力——强度分布干涉模型为基础的,该模型可清楚地提示机械零件产生故障而有一定故障率的原因和机械强度可靠性设计的本质。 一般而言,施加于零件的物理量,如应力、压力、温度、冲击等导致失效的任何因素,统称为应力,用σ表示;而零件能够承受这种应力的程度,即阻止失效发生的任何因素,

桥式起重机主梁强度、刚度计算

桥式起重机箱形主梁强度计算 一、通用桥式起重机箱形主梁强度计算(双梁小车型) 1、受力分析 作为室用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。 其主梁上将作用有G P 、Q P 、H P 载荷。 主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。 当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。 2、主梁断面几何特性计算 上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。

图2-4 注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。 ① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。 ② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /) ④ 3 21232021122.)21(2)2(F F F h F h h F h H F F y F y i i c +++++- =∑?∑= (cm ) ⑤ 2 233 22323212113 112 212)(212y F Bh y F h h H b y F Bh J x ?++?+--+?+= (4cm ) ⑥ 202032231)2 2(21221212b b F h b B h B h J y ++++= (4cm )

压力容器的机械强度可靠性设计分析

压力容器的机械强度可靠性设计分析 发表时间:2017-04-26T10:10:01.000Z 来源:《电力设备》2017年第3期作者:王悦1 王庆元2 [导读] 从实际生产情况来看,压力容器的可靠性通常能够体现出设计水平的优化和提高,为了实现这个目的那么就需要对零件及部件进行有效的计算,这样才能保证压力容器的质量。 (1.哈电集团(秦皇岛)重型装备有限公司河北秦皇岛 066206;2.河北汉光重工有限责任公司河北邯郸 056028)摘要:随着社会的发展和对压力容器使用需求的不断增多,在对压力容器的机械强度可靠性设计进行分析时发现,压力容器的壁厚会受到使用时间和受压材料的影响,而且年限的不同也会使得腐蚀裕量的取值出现一定的改变。因此,从实际生产情况来看,压力容器的可靠性通常能够体现出设计水平的优化和提高,为了实现这个目的那么就需要对零件及部件进行有效的计算,这样才能保证压力容器的质 量。 关键词:压力容器;机械强度;可靠性;设计分析 引言 我国压力容器的机械强度可靠性设计都较为随意,没有对于压力容器可靠性的明确要求,而以上的可靠性方法主要通过公式、假设等进行分析概括。压力容器的机械强度可靠性设计的主要目的是为了时压力容器的机械强度能够达到安全水平,经济水平、外界环境以及应力等都是对压力容器的机械强度可靠性设计的最终考量,因此,压力容器的机械强度可靠性设计具有极其重要的作用。 1压力容器可靠性设计的意义 压力容器可靠性是指其在特定的情况下,能够让使用功能满足用户的需求,并且在使用的过程不发生故障性质。与压力容器机械强度可靠性存在密切关联的因素有使用环境、环境温度、消费者使用需求以及应力等,压力容器机械强度的可靠性和压力容器的使用时间存在密切联系,随着压力容器使用时间的延长,压力容器机械强度的可靠性逐渐降低,也正是由于有可靠性的存在人们才对压力容器产生了使用寿命的认识。无论是电子产品还是人们日常生活用品,研究可靠性都是非常有必要的。随着国家经济水平和人们生活质量的提升,人们对压力容器的要求也越来越高,在科技发展的支持下,压力容器可靠性得到了大幅度的提升,由于可靠性在一定程度上体现了一个国家的实力水平,因此产品的可靠性研究具有非常重要的意义。 2理论基础 根据国家标准,压力容器设计应充分的考虑实际厚度和计算厚度的附加值。实际厚度的附加值是指筒体的腐蚀裕量和材料得到实际厚度误差,材料的实际厚度误差是根据材料标准中所规定的误差范围进行计算口,而筒体的腐蚀裕量则指的是压力容器中所装的物体对材料腐蚀速率的影响和对压力容器的预期使用时间的计算等。通过长期实践研究表明,我国大部分的压力容器机械强度可靠性设计,在对使用寿命进行计算的弹性失效的中径公式都是将其设为极限情况,计算并没有考虑到腐蚀裕量,所以所得出的结果与实际存在差别。 3可靠性设计的步骤 在一般情况下,压力容器的机械强度的可靠性设计主要划分成为六大主要步骤,第一步,计算压力容器的强度系数以及其可靠度;第二步,按照计算公式得出压力容器的故障概率 F=I=R;第三步,利用前一个步骤得出的故障概率计算压力容器的可靠度;第四,计算生产材料的所能承受负载的强度;第五,利用之前计算的可靠度并通过公式得出压力容器的应力均值;最后,利用各项计算结果和测量数据确定压力容器的预算厚度。 4压力容器的机械强度可靠性设计的基本方法 4.1压力容器筒体厚度的计算 在 20 世纪中叶,科研工作者对路合金强度进行有效计算时,发现了实际条件下材料的腐蚀深度分布形式。随着科学技术的发展与进步,压力容器的研究领域也得到了一定的扩展,随之有关材料腐蚀的研究成果也越来越多。所以,可以进一步计算出压力容器筒体的腐蚀裕量,同时还可以系统性地计算出容器筒体的原始厚度。按照蒙特卡罗的研究方法可以得知,如果一个压力容器筒体厚度是22 mm,那么在它使用 10 年之后。压力容器的可靠性是 0. 9 的五次方。所以说在多次试验之后可知,压力容器筒体的厚度将会与其使用年限有一定的关系。在压力容器的使用过程中,其可靠性务必要高于 0. 9 的五次方才可以。 4.2 受压材料的科学利用 选用不同的受压材料将会直接影响压力容器的机械强度,因此对于受压材料的选择至关重要。在选择受压材料时,要按照设计压力、外界环境和介质腐蚀性的实际参数来确定。除此之外介质的选择也很重要,介质易燃、易爆就会影响受压材料,所以说在压力容器中所使用的材料务必要满足工作需求及国家制定的行业标准。基于此,科学的设计结构也将会影响压力容器的可靠性。 4.3重视极限情况的存在 压力容器在使用的过程中,其筒体的厚度会产生比较大的变化,与此同时,筒体在应力的作用下,也在随之发生变化,因此,在压力容器的机械强度可靠性设计过程中,需要充分考虑筒体所盛放的介质对于筒体腐蚀速率的作用,相关科研人员需要利用公式计算压力容器在使用过程中筒体的实际厚度,与此同时,压力容器的筒体在受到应力的情况下,可靠性受到破坏的情况有两种,一种是压力容器的筒体发生了屈服失效的情况,第二种情况是压力容器的筒体产生了断裂。因此,科研人员需要分析压力容器在极限情况下发生的失效,在最大程度提升压力容器的抗压值,提高其可靠性。 结束语 总之,在压力容器的机械强度可靠性设计中,尺寸是设计需要重点参考的数据,科研人员必须根据不同压力容器的实际情况对可靠性进行设计可以将压力容器的机械强度可靠性分为设计一生产一使用一保养等步骤。机械强度的可靠性设计是一项较为复杂的过程,压力容器机械强度可靠性设计的主要目的是确保压力容器的机械强度能够符合安全要求,外界环境、应力和经济水平都是对压力容器机械强度可靠性设计的考量,所以加强压力容器机械强度的可靠性设计应当引起人们足够的重视。 参考文献 [1]胡小芳,郑小海.对压力容器的机械强度可靠性设计的探讨[J].化工管理,2015,19:162-164. [2]黄胜.对压力容器的机械强度可靠性设计的探讨[J].山东工业技术,2015,24:44.

相关文档
相关文档 最新文档