文档库 最新最全的文档下载
当前位置:文档库 › 2017_2018高中物理第六章相对论章末整合提升学案教科版选修3_4

2017_2018高中物理第六章相对论章末整合提升学案教科版选修3_4

2017_2018高中物理第六章相对论章末整合提升学案教科版选修3_4
2017_2018高中物理第六章相对论章末整合提升学案教科版选修3_4

第六章 相对论

章末整合提升

一、时间和空间的相对性

1.与运动的惯性系相对静止的人认为两个事件时间间隔为τ0,地面观察者测得的时间间隔为τ,则两者之间关系为τ=τ0

1-u 2

c 2.

2.设尺子的固有长度为l 0,观察者与被测物体有相对运动时,尺子的长度为l ,则有l

=l 01-u 2c 2,即沿运动方向上的长度缩短了.这就是相对论中长度的相对性. 例1 (多选)在狭义相对论中,下列说法正确的是( )

A .一切运动物体相对于观察者的速度都不能大于真空中的光速

B .质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的

C .在一惯性系中发生于同一时刻、不同地点的两个事件在其他一切惯性系中也是同时发生的

D .惯性系中的观察者观察一个与他做匀速相对运动的时钟时,会看到这钟比与他相对静止的相同的时钟走得慢些

解析 在以上四种说法中,只有C 违背了同时的相对性,是不正确的,其余三种说法都是正确的,所以选A 、B 、D .

答案 ABD

例2 一个以2×108 m/s 的速度运动着的球,半径为a ,试分析静止着的人观察球会是什么样的形状?

解析 由长度变换公式有l =l 0

1-v 2c 2,v 一定,球沿运动方向上的长度减小,球沿运动方向的最大长度为l =2a ·1-v c 2=2a ·1-2×1083×1082=1.49a ,垂直于球运动方向,球的长度不变为2a .因此静止的人观察球的形状会是长轴为2a 、短轴为1.49a 的椭球体.

答案 长轴为2a 、短轴为1.49a 的椭球体

二、质速关系和质能方程

爱因斯坦的质能方程揭示了物质与运动的不可分割的属性,即一定的能量与相应的质量相联系,切不可理解为质量转化为能量.

例3 一个静止的电子被电压为106 V 的电场加速后,其质量为多少?速率为多大? 解析 E k =eU =1.6×10-19×106 J =1.6×10-13 J ,

E k =mc 2-m 0c 2

所以m =E k c 2+m 0=1.6×10-1382 kg +9.1×10-31 kg≈2.69×10-30 kg. 由m =m 0

1-v c 2得v =c 1-m 0m 2≈2.82×108 m/s. 答案 2.69×10-30 kg 2.82×108

m/s

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

广义相对论基础

广义相对论基础 Introduction to General Relativity 课程编号:S070200J15 课程属性:学科基础课学时/学分:60/3 预修课程:大学理论物理、高等数学 教学目的和要求: 本课程为物理学、天文学研究生的学科基础课,同时也是为今后有可能接触到引力理论的其它学科研究生的学科基础课。主要介绍爱因斯坦的广义相对论。使学生具有在今后接触到引力场问题时,能通过阅读有关书籍文献对更深入的问题进行了解的能力。本课强调弄清物理和几何图像。本课不涉及引力场量子化、引力和其它作用之统一以及以抽象数学工具表现时空几何等问题。本课也扼要对广义相对论的观测和实验检验,黑洞问题和宇宙学问题进行简要地介绍。 内容提要: 第一章张量分析基础 张量代数,联络,协变微商,测地线方程,Killing矢量。 第二章引力场方程 引力与度规,引力红移,黎曼曲率张量,Bianchi恒等式,引力场方程。 第三章场方程的应用(Ⅰ) 西瓦兹解,西瓦兹场中质点的运动,光线偏折,引力透镜效应,雷达回波,0Kruskal坐标和黑洞,Keer度规。 第四章场方程的应用(Ⅱ) 宇宙学原理,共动坐标系,Robertson-Walker度规,宇宙学红移,标准宇宙学模型简介。 主要参考书: 1. R, Adler, M.Bagin,M.Schiffer,Introduction to General Relativity(第二版),McGraw-Hill Book Company,New York,1975. 2. 俞允强,《广义相对论引论》,北京大学出版社,北京,1997。 3. S. Weinberg,Gravitation and Cosmology,John Wiley Sons,Inc.,New York,1972. 撰写人:邓祖淦(中国科学院研究生院) 撰写日期:2001年09日

教科版高中物理选修3-1全册学案

第一章静电场 第1节电荷及其守恒定律 三种起电方式的区别和联系 摩擦起电感应起电接触起电 产生及条件两不同绝缘体摩擦时导体靠近带电体时带电导体和导体接触时现象 两物体带上等量异种电 荷 导体两端出现等量异种 电荷,且电性与原带电体 “近异远同” 导体上带上与带电体相 同电性的电荷原因 不同物质的原子核对核 外电子的束缚力不同而 发生电子转移 导体中的自由电子受到 带正(负)电物体吸引(排 斥)而靠近(远离) 电荷之间的相互排斥实质 电荷在物体之间和物体 内部的转移 接触起电的电荷分配原则 两个完全相同的金属球接触后电荷会重新进行分配,如图1-1-2所示. 电荷分配的原则是:两个完全相同的金属球带同种电荷接触后平分原来所带电荷量的总和;带异种电荷接触后先中和再平分. 图1-1-2 1.“中性”与“中和”之间有联系吗? “中性”和“中和”是两个完全不同的概念,“中性”是指原子或者物体所带的正电荷和负电荷在数量上相等,对外不显电性,表现为不带电的状态.可见,任何不带电的物体,实际上其中都带有等量的异种电荷;“中和”是指两个带等量异种电荷的物体,相互接触时,由于正负电荷间的吸引作用,电荷发生转移,最后都达到中性状态的一个过程. 2.电荷守恒定律的两种表述方式的区别是什么? (1)两种表述:①电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷的总量保持不变.②一个与外界没有电荷交换的系统,电荷的代数和总是保持不变的. (2)区别:第一种表述是对物体带电现象规律的总结,一个原来不带电的物体通过某种方法可以带电,原来带电的物体也可以使它失去电性(电的中和),但其实质是电荷的转移,电荷的数量并没有减少.第二种表述则更具有广泛性,涵盖了包括近代物理实验发现的微观粒子在变化中

高中物理选修32知识点详细汇总

电磁感应现象愣次定律 一、电磁感应 1.电磁感应现象 只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。 产生的电流叫做感应电流. 2.产生感应电流的条件:闭合回路中磁通量发生变化 3. 磁通量变化的常见情况(Φ改变的方式): ①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S 增大或减小 ②线圈在磁场中转动导致Φ变化。线圈面积与磁感应强度二者之间夹角发生变化。如匀强磁场中转动的矩形线圈就是典型。 ③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化 (Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件: 无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源. 电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势, 而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化 二、感应电流方向的判定 1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手 掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即 为感应电流方向(电源). 用右手定则时应注意: ①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定, ②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直. ③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向. ④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势. ⑤“因电而动”用左手定则.“因动而电”用右手定则. ⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。 导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便. 2.楞次定律 (1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。 (定语) 主语 (状语) 谓语 (补语) 宾语 (2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。阻碍磁通量变化指: 磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用); 磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”. (3)楞次定律另一种表达:感应电流的效果总是要阻碍 ...).产生感应电流的原因. (F安方向就起到阻 ..(.或反抗

狭义相对论和广义相对论

要了解狭义相对论和广义相对论的区别,我们首先要搞清楚,这两个理论大概说了什么? 狭义相对论 我们先从狭义相对论说起,其实狭义相对论解决了一个物理学的重大矛盾。在爱因斯坦之前,最成功的两个理论分别是牛顿提出的牛顿力学和麦克斯韦提出麦克斯韦方程。只不过,这两个理论有个矛盾,那就是:光速。 具体来说,牛顿的理论认为,速度可以不断地进行叠加,没有上限,只要你加得上去就行。可是,麦克斯韦方程得出的光速是一个固定值,似乎暗示着光速无论在什么惯性坐标系下都是一样的。要知道,我们在使用牛顿力学时,是需要先选定参考坐标的。因此,科学家就在思考,是不是存在一个奇怪的坐标系,让光速一直保持一个速度,它们管这个叫做以太。于是,一群科学家就拼了命地去找“以太”,然后他们接二连三地失败了。 后来,26岁的爱因斯坦提出了狭义相对论。

有人说他高举了奥卡姆剃刀原理才成功的,这个奥卡姆剃刀原理大意是:如无必须勿增实体。翻译过来就是,咋简单咋来。既然光速是不变的,那为啥还要假设“以太”? 于是,爱因斯坦就以“光速不变原理”和“相对性原理”为基础假设,推导出了狭义相对论。这个过程就有点像平面几何,就只有五条公设,但是能搞出一整套体系。而这里的相对性原理,说白了就是经典物理学的老套路,在研究运动时,需要先选个惯性参考系。 通过这两条假设,爱因斯坦出了很多奇葩的结论,比如:时间膨胀。说的是,如果你想对于我高速运动,那我看你的时间就会变慢,这种变慢可以理解成,如果你在高速的飞船里做操,那我这里看到的就是你在慢动作做操。而你自己其实感觉到的时间是正常流逝。所以,是以我参考系看你时间膨胀了。如果你也 看到,你也会发现我的时间也变慢了,因为我想对于你也是在高速运动的。

全套下载(共15份145页)人教版高中物理选修3-3教学案全集(含全套练习)

(共15套145页)人教版高中物理选修3-3教学案全集(含全册练习)

第1节 气体的等温变化 1.一定质量的气体,在温度不变的条件下,其压强与体积变化时的关系,叫做气体的等温变化. 2.玻意耳定律:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV =C . 3.等温线:在p -V 图像中,用来表示温度不变时,压强和体积关系的图像,它们是一些双曲线. 在p -1V 图像中,等温线是倾斜直线.

一、探究气体等温变化的规律 1.状态参量 研究气体性质时,常用气体的温度、体积、压强来描述气体的状态. 2.实验探究

二、玻意耳定律 1.内容 一定质量的某种气体,在温度不变的情况下,压强与体积成反比. 2.公式 pV=C或p1V1=p2V2. 3.条件 气体的质量一定,温度不变. 4.气体等温变化的p -V图像 气体的压强p随体积V的变化关系如图8-1-1所示,图线的形状为双曲线,它描述的是温度不变时的p -V关系,称为等温线. 一定质量的气体,不同温度下的等温线是不同的. 图8-1-1 1.自主思考——判一判

(1)一定质量的气体压强跟体积成反比. (×) (2)一定质量的气体压强跟体积成正比. (×) (3)一定质量的气体在温度不变时,压强跟体积成反比. (√) (4)在探究气体压强、体积、温度三个状态参量之间关系时采用控制变量法. (√) (5)玻意耳定律适用于质量不变、温度变化的气体. (×) (6)在公式pV =C 中,C 是一个与气体无关的参量. (×) 2.合作探究——议一议 (1)用注射器对封闭气体进行等温变化的实验时,在改变封闭气体的体积时为什么要缓慢进行? 提示:该实验的条件是气体的质量一定,温度不变,体积变化时封闭气体自身的温度会发生变化,为保证温度不变,应给封闭气体以足够的时间进行热交换,以保证气体的温度不变. (2)玻意耳定律成立的条件是气体的温度不太低、压强不太大,那么为什么在压强很大、温度很低的情况下玻意耳定律就不成立了呢? 提示:①在气体的温度不太低、压强不太大时,气体分子之间的距离很大,气体分子之间除碰撞外可以认为无作用力,并且气体分子本身的大小也可以忽略不计,这样由玻意耳定律计算得到的结果与实际的实验结果基本吻合,玻意耳定律成立. ②当压强很大、温度很低时,气体分子之间的距离很小,此时气体分子之间的分子力引起的效果就比较明显,同时气体分子本身占据的体积也不能忽略,并且压强越大,温度越低,由玻意耳定律计算得到的结果与实际的实验结果之间差别越大,因此在温度很低、压强很大的情况下玻意耳定律也就不成立了. (3)如图8-1-2所示,p -1 V 图像是一条过原点的直线,更能直观描述压强与体积的关系, 为什么直线在原点附近要画成虚线?

广义相对论简介

广义相对论简介 引子 由牛顿力学到狭义相对论,基本观念的发展是,其一:由一切惯性系对力学规律平权到一切惯性系对所有物理规律平权;其二:由绝对时空到时空与运动有关。 爱因斯坦进一步的思考:非惯性系与惯性系会不平权吗?物质与运动密不可分,那么时空与物质有什么关系?关于惯性和引力的思考,是开启这一迷宫大门的钥匙,最终导致广义相对论的建立。 §1 广义相对论的基本原理 一、等效原理 1. 惯性质量与引力质量 实验事实:引力场中同一处,任何自由物体有相同的加速度。 根据上述事实及力学定律,可得任一物体的惯性质量 与引力质量 满足 常量,与运动物体性质无关,选择合适的单位,可令 = = , 即惯性质量与引力质量相等。从而,在引力场中自由飞行的物体,其加速度必等于 当地的引力强度 。 2. 惯性力与引力 已知在非惯性系中引入惯性力后,可应用力学规律,而惯性力。在 此基础上,讨论下述假想实验。 1) 自由空间中的加速电梯(如图1) 以 为参考系,无法区分ma 是惯性力还是引力。因此,也可以认为是在引力场中 匀速运动的电梯。 2) 引力场中自由下落的电梯S*(如图2) 以S*为参考系,无法区分是二力平衡 还是无引力。因此,也可认为S*是 自由空间中匀速运动的电梯。 以上二例表明,由 = , 可导出惯性力与引力的力学效应不可区分, 或者说,一加速参考系与引力场等效。当然,由于真实引力场大范围空间内不均匀, 图 图1 图 2

因此,这种等效只在较小范围空间内才成立,我们称之为局域等效。 3. 等效原理 弱等效原理:局域内加速参考系与引力场的一切力学效应等效。 强等效原理:局域内加速参考系与引力场的一切物理效应等效。 广义相对论的等效原理是指强等效原理。 4.对惯性系的再认识——局域惯性系 按牛顿力学的定义,惯性定律成立的参考系叫惯性系。恒星参考系是很好的惯性 系,不存在严格符合此定义的真正的惯性系。惯性系之间无相对加速度。 按爱因斯坦的定义,狭义相对论成立的参考系,或(总)引力为零的参考系叫惯 性系。因此,以引力场中自由降落的物体为参考的局域参考系是严格的惯性系,简 称为局惯系。引力场中任一时空点的邻域内均可建立局惯系,在此参考系内运用狭 义相对论。同一时空点的各局惯系间无相对加速度,不同时空点的各局惯系间有相 对加速度。 二、广义相对性原理 原理叙述为:一切参考系对物理规律平权,即物理规律在一切参考系中的表述形 式相同。 为了在广义相对性原理的基础上建立广义相对论理论,爱因斯坦所做的进一步工 作是使引力几何化,即把引力场化作时空几何结构加以表述。对广义相对论普遍理 论的研究数学上涉及黎曼几何、张量分析等,超出本简介范围,下面只作浅显的说 明。 §2 引力场的时空弯曲 一、弯曲空间的概念 从高维平直空间可观测低维平直空间与弯曲空间的差异。 平面——二维平直空间内:测地线(即两点间距离的极值线)为直线,三角形内 角和=,圆周长=。 球面——二维弯曲空间:测地线为弧线,如图。三角形(PMN)的内角和>, 圆周长<。 故通过测量可判定空间弯曲。(如图3) Array二、引力场的空间弯曲 讨论爱因斯坦转盘(如图4) 相对惯性系S以角速度均匀 转动的参考系。由S系可推知 系中的测量结果(狭义相对论) 图 3

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理选修3-4全册导学案

选修3-4全册教学学案 选修3-4_11.1简谐振动 【学习目标】 1.认识弹簧振子并能判断出振动的平衡位置。 2.理解简谐运动的位移-时间图像是一条正(余)弦曲线,知道简谐运动图 像的意义。 3.能够根据简谐运动图像弄清楚各时刻质点的位移、速度和加速度的方向 和大小规律。 【自主学习】 1.弹簧振子 (1).组成:由______和________组成的系统叫弹簧振子,它是一个理想化 的模型(为什么?)。 (2).平衡位置:振子__________时的位置。 (3).机械振动:振子在______位置附近的________运动,简称________。 2.简谐运动及其图像 (1).简谐运动:质点的位移与时间的关系遵从___________规律,即它的振 动图像(x-t 图像)是一条________曲线。简谐运动是最简单、最基本的振动, 弹簧振子的运动就是__________。 (2).简谐运动的图像 ①坐标系的建立:在简谐运动的图像中,以横坐标表示______,以纵坐标表 示振子离开平衡位置的_________。 ②物理意义:表示振动物体的_______随_______的变化规律。 重点知识或易混知识 问题1.根据对平衡位置的理解,判断正误并举例说明 ① 在弹簧振子中弹簧处于原长时的状态为平衡状态。 ② 在弹簧振子中物块速度为零时的状态为平衡状态。 ③在弹簧振子中合外力为零时的状态为平衡状态。 问题2.振动图像的理解,结合判断正误 ① 如右图所示正弦曲线为质点的运动轨迹。 ② 如右图,3s 内的位移为x 1大小为cm cm 10910322=+。 ③ 如右图,3s 内的位移为x 2 大小为10cm 。 ④ 如右图,1.5s 时的速度方向为曲线上该点的切线方向。 ⑤ 0.5s 和1.5s 时的位移相同,速度也相同。 ⑥ 0.5s 和3.5s 时的位移相反,速度相反。 X X 1

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第四章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ-=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω22 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I = = (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯 泡A 逐渐变暗。

新人教版高中物理选修3-2全册导学案

新人教版高中物理选修全册导学案

目录 第四章第1节划时代的发现导 第四章第2节探究电磁感应的产生条件 第四章第3节楞次定律 第四章第4节《法拉第电磁感应定律》 第四章第5节《电磁感应规律的应用》 第四章第5节《电磁感应规律的应用》 第四章第6节《互感与自感》 第四章第6节《互感与自感》 第四章第7节《涡流电磁阻尼和电磁驱动》 第四章第《涡流电磁阻尼和电磁驱动》 第五章第1节交变电流 第五章第2节描述交变电流物理量 第五章第3节《电感和电容对交变电流的影响》第五章第4节变压器 第五章第5节《电能的输送》 第六章第1节传感器及其工作原理 第六章第2节传感器的应用(一) 第六章第3节传感器的应用(二) 第六章第4节传感器的应用实验

选修3-2第四章电磁感应 第1节《划时代的发现》 课前预习学案 一、预习目标 预习奥斯特梦圆“电生磁”;法拉第心系“磁生电”,初步了解物理学中奥斯特和法拉第的贡献。 二、预习内容 奥斯特梦圆“电生磁”标题和法拉第心系“磁生电”标题。 问题1:奥斯特在什么思想的启发下,发现了电流的磁效应的? 问题2:奥斯特发现了电流的磁效应,能说明他是一个“幸运儿”吗?是偶然还是必然? 问题3:1803年奥斯特总结了一句话内容是什么? 问题4:法拉第在了奥斯特的电流磁效应的基础上,思考对称性原理,从而得出了什么样的结论? 问题5:其他很多科学家例如安培,科拉顿等物理学家也做过磁生电的试验,可他们都没有成功,他们问题出现在那里? 问题6:法拉第经过无数次试验,经历10年的时间,终于领悟到了什么? 问题7:什么是电磁感应?什么是感应电流? 问题8:通过学习你从奥斯特、法拉第等科学家身上学到了什么? 问题9:通过查阅资料,了解法拉第的生平,详细写出法拉第一生中的伟大成就和伟大发现。 三、提出疑惑

高中物理选修32知识点详细讲解版

第一章电磁感应知识点总结 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。 (2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。 (3)“阻碍”的含义 . ①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”) ②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引

高中物理选修3-2知识点汇总

第一章电磁感应 1.磁通量 穿过某一面积的磁感线条数;标量,但有正负;Φ=BS·sinθ;单位Wb,1Wb=1T·m2。 2.电磁感应现象 利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。 3.感生电场 变化的磁场在周围激发的电场。 4.感应电动势 分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。 5.楞次定律 感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。 6.右手定则 让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。 7.法拉第电磁感应定律 电路中感应电动势的大小跟穿过这一电路的磁通量的变化率

成正比;E=n t? ?Φ。 8.动生电动势的计算 法拉第电磁感应定律特殊情况;E=Blv·sinθ。 9.互感 两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势;变压器的原理。10.自感 由于导体本身的电流发生变化而产生的电磁感应现象。11.自感电动势 由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L t I ? ?;日光灯的应用。12.自感系数 上式中的比例系数L叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。13.涡流 线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。 第二章直流电路 1.电流 电荷的定向移动;单位是安,符号A;规定正电荷定向移动的 方向为正方向;宏观定义I= t q;微观解释I=neSv,n为单位体积

高中物理选修3-2全册学案

第四章电磁感应 4.1划时代的发现 教学目标 (一)知识与技能 1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。 2.知道电磁感应、感应电流的定义。 (二)过程与方法 领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。 (三)情感、态度与价值观 1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。 2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。 教学重点、难点 教学重点 知道与电流磁效应和电磁感应现象的发现相关的物理学史。领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学难点 领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学方法 教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 教学手段 计算机、投影仪、录像片 教学过程 一、奥斯特梦圆“电生磁”------电流的磁效应 引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学生思考并回答: (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败是怎样做的? (3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释? (4)电流磁效应的发现有何意义?谈谈自己的感受。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。 二、法拉第心系“磁生电”------电磁感应现象 教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答: (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的 观点? (2)法拉第的研究是一帆风顺的吗?法拉第面对失败是怎样做的? (3)法拉第做了大量实验都是以失败告终,失败的原因是什么?

爱因斯坦广义相对论

爱因斯坦广义相对论 广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。 如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。 进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。 我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。 在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。 广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。 广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。 爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广

教科版高中物理选修3-1全册学案.

第一章 静电场 第1节 电荷及其守恒定律 摩擦起电 感应起电 接触起电 产生及条件 两不同绝缘体摩擦时 导体靠近带电体时 带电导体和导体接触时 现象 两物体带上等量异种电 荷 导体两端出现等量异种电荷,且电性与原带电 体“近异远同” 导体上带上与带电体相 同电性的电荷 原因 不同物质的原子核对核外电子的束缚力不同而 发生电子转移 导体中的自由电子受到带正(负)电物体吸引(排 斥)而靠近(远离) 电荷之间的相互排斥 实质 电荷在物体之间和物体 内部的转移 接触起电的电荷分配原则 两个完全相同的金属球接触后电荷会重新进行分配,如图1-1-2所示. 电荷分配的原则是:两个完全相同的金属球带同种电荷接触后平分原来所带电荷量的总和;带异种电荷接触后先中和再平分. 图1-1-2 1.“中性”与“中和”之间有联系吗? “中性”和“中和”是两个完全不同的概念,“中性”是指原子或者物体所带的正电荷和负电荷在数量上相等,对外不显电性,表现为不带电的状态.可见,任何不带电的物体,实际上其中都带有等量的异种电荷;“中和”是指两个带等量异种电荷的物体,相互接触时,由于正负电荷间的吸引作用,电荷发生转移,最后都达到中性状态的一个过程. 2.电荷守恒定律的两种表述方式的区别是什么? (1)两种表述:①电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷的总量保持不变.②一个与外界没有电荷交换的系统,电荷的代数和总是保持不变的. (2)区别:第一种表述是对物体带电现象规律的总结,一个原来不带电的物体通过某种方法可以带电,原来带电的物体也可以使它失去电性(电的中和),但其实质是电荷的转移,电荷的数量并没有减少.第二种表述则更具有广泛性,涵盖了包括近代物理实验发现的微观粒子在变化中遵守的规律,近代物理实验发现,由一个高能光子可以产生一个正电子和一个负电子,一对正负电子可同时湮灭,转化为光子.在这种情况下,带电粒子总是成对产生或湮灭,电荷的 代数和不变,即正负电子的产生和湮灭与电荷守恒定律并不矛盾. 一、电荷基本性质的理解 【例1】 绝缘细线上端固定,

高中物理选修3-2前三章知识点总结

第四章 电磁感应知识点总结 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ -=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω2 2 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I == (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉 b.金属探测器,飞机场火车站安全检查、扫雷、探矿 第五章 交变电流知识点总结 一、交变电流的产生 1、原理:电磁感应 2、两个特殊位置的比较: 中性面:线圈平面与磁感线垂直的平面。 ①线圈平面与中性面重合时(S ⊥B ):磁通量φ最大,0=??t φ ,e=0,i=0,感应电流方向改变。 ②线圈平面平行与磁感线时(S ∥B ):φ=0, t ??φ 最大,e 最大,i 最大,电流方向不变。 3、穿过线圈的磁通量与产生的感应电动势、感应电流随时间变化的函数关系总是互余的: 取中性面为计时平面: 磁通量:t BS t m ωωφφcos cos == 电动势表达式:t NBS t E e m ωωωsin sin == 路端电压:t r R RE t U u m m ωωsin sin += = 电流:t r R E t I i m m ωωsin sin +== 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯泡A 逐渐变暗。

超级资源:高中物理选修3-1复习全套导学案(附练习与答案)

第1课时 电荷守恒定律 库仑定律 导学目标 1.能利用电荷守恒定律进行相关判断.2.会解决库仑力参与的平衡及动力学问题. 一、电荷守恒定律 [基础导引] 如图1所示,用绝缘细线悬挂一轻质小球b ,并且b 球表面镀有一层 金属膜,在靠近b 球旁有一金属球a ,开始时a 、b 均不带电,若给a 球带电,则会发生什么现象? [知识梳理] 1.物质的电结构:构成物质的原子本身包括:__________的质子和 __________的中子构成__________,核外有带________的电子,整个原子对外

图2 ____________表现为__________. 2.元电荷:最小的电荷量,其值为e =________________.其他带电体的电荷量皆为元电荷的__________. 3.电荷守恒定律 (1)内容:电荷既不会创生,也不会消灭,它只能从一个物体________到另一个物体,或者从物体的一部分________到另一部分;在转移过程中,电荷的总量____________. (2)起电方式:____________、____________、感应起电. (3)带电实质:物体带电的实质是____________. 思考:当两个完全相同的带电金属球相互接触时,它们的电荷如何分配? 二、库仑定律 [基础导引] 如图2所示,两个质量均为m 的完全相同的金属球壳a 和b ,其 壳层的厚度和质量分布均匀,将它们固定于绝缘支座上,两球心 间的距离l 为球半径的3倍.若使它们带上等量异种电荷,电荷 量的绝对值均为Q ,试比较它们之间的库仑力与kQ 2 l 2的大小关系, 如果带同种电荷呢? [知识梳理] 1.点电荷:是一种理想化的物理模型,当带电体本身的______和________对研究的问题影响很小时,可以将带电体视为点电荷. 2.库仑定律 (1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成____________,与它们的距离的二次方成________,作用力的方向在它们的________上. (2)公式:F =________________,其中比例系数k 叫做静电力常量,k =9.0×109 N·m 2/C 2. (3)适用条件:①__________;②____________. 3.库仑定律的理解:库仑定律的适用条件是真空中的静止点电荷.点电荷是一种理想化的物理模型,当带电体间的距离远远大于带电体的自身大小时,可以视其为点电荷而适用库仑定律,否则不能适用. 思考:在理解库仑定律时,有人根据公式F =k q 1q 2 r 2,设想当r →0时得出F →∞的结论, 请分析这个结论是否正确 . 考点一 电荷守恒定律及静电现象 考点解读 1.使物体带电的三种方法及实质 摩擦起电、感应起电和接触带电是使物体带电的三种方法,它们的实质都是电荷的转

相关文档
相关文档 最新文档