文档库 最新最全的文档下载
当前位置:文档库 › PSO_PP模型在岩石高边坡稳定性评价中的应用

PSO_PP模型在岩石高边坡稳定性评价中的应用

PSO_PP模型在岩石高边坡稳定性评价中的应用
PSO_PP模型在岩石高边坡稳定性评价中的应用

第29卷第1期2011年1月

水 电 能 源 科 学

W ater Resour ces and P ow er V o l.29N o.1Jan.2011

文章编号:1000 7709(2011)01 0079 04

PSO PP 模型在岩石高边坡稳定性评价中的应用

司俊燕

1,2

,郭海庆

1,2

,徐 飞3,聂卫平

1,2

(1.河海大学岩土力学与堤坝工程教育部重点实验室,江苏南京210098; 2.河海大学岩土工程科学研究所,

江苏南京210098; 3.海南省公路勘察设计院,海南海口570206)

摘要:针对岩石高边坡稳定性评价是一个复杂的不确定问题,采用粒子群优化算法、投影寻踪法和逻辑斯谛曲线函数建立了岩石高边坡稳定性评价的粒子群优化投影寻踪模型(PSO P P),并将其应用于锦屏一级水电站左岸拱肩槽边坡稳定性评价中。

关键词:边坡稳定性评价;粒子群;投影寻踪;逻辑斯谛曲线;锦屏左岸拱间槽边坡中图分类号:T V223.3+.1;T U 457

文献标志码:A

收稿日期:2010 09 01,修回日期:2010 10 05

基金项目:国家自然科学基金资助项目(50539110);中央高校基本科研业务费基金资助项目(2010B03914)作者简介:司俊燕(1985 ),女,硕士研究生,研究方向为岩土工程监控及评价,E mail:huobing44@https://www.wendangku.net/doc/701273824.html,

地质环境的复杂性和影响边坡稳定性因素的不确定性,使边坡稳定性问题表现为多因素、多层次和多阶段的复杂动态非线性系统,因此边坡稳定性评价是一项复杂的综合评价过程[1]。目前,关于边坡稳定性的综合评价方法有模糊综合评价法[2]

、物元可拓评价法[3]

、神经网络方法[4]

等。这些方法均是根据影响边坡整体稳定性的因素选定综合评价指标,建立结构体系,采用定性因素与定量因素的有机结合来综合评价边坡稳定性。但这些方法也存在权重确定不合理、精度低、速度慢等缺陷。鉴此,本文结合粒子群优化算法、投影寻踪算法和逻辑斯谛曲线建立了岩石高边坡稳定性评价模型,并以锦屏一级水电站左岸拱肩槽边坡为例进行了稳定性评价。

1 粒子群优化投影寻踪模型(PSO PP )

1.1 粒子群优化算法

粒子群算法[5,6](PSO)是遗传算法后的又一种群智能算法,简单易操作,具有良好的全局搜索能力。在PSO 中,每个粒子代表解空间中的一个

解,用一个优化问题决定的适应度值评判其好坏。每个粒子在飞行过程中经历的最优位置为个体最优解(p a kj ),粒子群体经历的最优位置为全局最优解(p a gj ),每个粒子根据个体最优解和全局最优解在当前位置的基础上调整飞行的速度和方向,以

确定下一个位置:

v kj (t +1)=w (t)v kj (t)+c 1r 1(p a kj (t)-x kj (t))+c 2r 2(p a gj (t)-x kj (t))(1)x kj (t +1)=x kj (t)+v kj (t+1)

(2)

式中,k 为粒子个数;j 为粒子维数;t 为迭代次数;r 1、r 2为(0,1)区间服从均匀分布的随机数;w 为惯性权重,一般在[0,1]之间取值,用于调节算法的全局与局部搜索能力间的平衡;c 1、c 2为学习因子,常取c 1=c 2=2。1.2 投影寻踪方法

投影寻踪法[7,8]

(PP)是研究非线性和处理高维数据的一类新型统计方法。其基本思想是将研究变量乘以一个列向量矩阵,进行相应的线性变换,从而将高维数据投影到低维子空间上。对投影到的构形,通过投影指标函数衡量投影暴露某种结构的可能性大小,寻找出使投影指标函数达到最优(既能反映高维数据结构或特征)的投影值,再根据该投影值来分析高维数据的结构特征或根据该投影值与研究系统的输出值间的散点图构造数学模型预测系统的输出。但当研究对象过于复杂时,找到最优投影方向难度较大,为增强该方法的实际应用能力,避免复杂计算和编程,本文应用粒子群优化算法来实现投影指标函数的优化。1.3 粒子群优化投影寻踪模型

为避免传统的PP 方法计算量大,结合粒子

群优化算法和逻辑斯谛曲线函数建立了PSO PP 模型,建模过程如下。

(1)构造投影数据。根据岩石高边坡稳定性分级标准随机产生边坡稳定性指标及经验等级为x *ij 和y i (i =1,2, ,n;j =1,2, ,p ),n 、p 分别为样本数目和指标个数,设岩石高边坡稳定性级别越低,边坡越稳定,最低级别为 (稳定),最高级别为!(极不稳定)。将x *

ij 归一化为:

x ij =(x j,max -x *

ij )/(x j,max -x j,min )(3)式中,x j,max 、x j ,min 分别为第j 个指标的最大值、最小值。

(2)计算投影值。PP 方法就是将p 维数据x ij 综合为以a j 为投影方向的一维投影值:

z i =

?

p

j=1

a j x ij (i =1,2, ,n)(4)

(3)建立投影指标函数。在综合投影指标时,要求投影值z i 的散布特征为:局部投影点尽可能密集,最好凝聚成若干个点团,而整体投影点团间尽可能散开。投影指标函数为:

Q(a)=S z D z (5)

其中

S z =

?

n

i=1(z i -E z )

2

(n -1)

D z =

?n

i =1?n

j =1

(R -r ij )u(R -r ij )

r ij =

z i -z j

式中,S z 为投影值z i 的标准差;D z 为投影值z i 的

局部密度;E z 为投影值序z i 的平均值;r ij 为样本间距离;u(R -r ij )为单位阶跃函数,当R #r ij 时,其值为1,当R

(4)优化投影指标函数。投影指标函数Q(a)随投影方向a 的变化而变化,最优投影方向即最大可能暴露高维数据某类特征的投影方向,可通过求解投影指标函数最大化估计最佳投影方向,即:

max Q(a)=S z D z s.t.

?

p

j =1a 2j =1

(6)

这是一个以{a j j =1,2, ,p }为优化变量的复杂非线性优化问题,本文采用粒子群优化算法

来解决,步骤如下。

步骤1 初始化粒子群。设置粒子数目M 、最大迭代次数T ,取R =p ,根据评价指标分级标准产生样本,并随机确定各粒子的初始位置和速度。

步骤2 计算每个粒子的投影值及适应度。根据适应度确定每个粒子的个体最优值p a k j 和群

体的全局最优值p a gj 。

步骤3 进入主循环。根据式(1)、(2)更新每个粒子的速度和位置,单位化投影方向。

步骤4 计算第t 代的投影值和适应度。更新各粒子的个体最优解p a kj (t)及全局最优解p a gj (t)。步骤5 判断误差条件。若不满足误差要求且未达到最大迭代次数,则转入步骤3,否则结束循环进入下一步骤。

步骤6 输出最佳投影方向a *

。根据式(4)计算各样本的最优投影值z *i 。

步骤7 建立岩石高边坡稳定性评价模型。根据z *

i 与y i 的散点图(图1),可建立岩石高边坡稳定性评价模型。图中,每个点代表一个随机样本,纵坐标表示该随机样本所示边坡的稳定性经验等级,横坐标表示该样本的最优投影值。采用逻辑斯谛曲线函数模拟效果较好[8,9]

,即:

y *i =N /(1+e

c(1)-c(2)z *i )(7)

式中,y *i 为第i 个边坡样本稳定性级别的计算值;N 为稳定性最高级别,为该曲线的上限值,本文为5;c(1)、c(2)为待定参数,可通过下式最小化问题解决:

min F (c(1),c(2))=

?

n

i=1

(y *i -y i )

2

(8)

仍采用粒子群算法解决上述优化问题。

图1 最优投影值z *i 与经验等级y i 的散点图

Fig.1 Sc a t t e r diag ram o f be s t pro je c t ion v a lue s

and e mpir ic a l g ra de s y i

2 应用实例

2.1 评价标准和评价对象指标值的确定影响岩石高边坡稳定性的因素主要有边坡自身条件、环境因素和施工影响[2,9]。其中,边坡自身条件主要受岩体变形模量E o 、岩体结构特征R QD 及深部岩体变形速率 的控制;环境因素对边坡稳定性影响较大的主要是地震水平加速度a 和日最大降雨量P MP ;而施工对边坡的影响表现于排水D 和支护S 两方面。因此,将上述7个因素作为边坡稳定性评价指标,并将边坡稳定等级分为稳定( )、较稳定(%)、一般稳定(&)、不稳定(?)、极不稳定(!)5个等级,各指标分级标准[9]

(

80(水 电 能 源 科 学 2011年

见表1,其中排水和支护按等级标准在0~1间均匀取值。

表1 边坡稳定性评价指标分级标准

T ab.1 Cla ss if ic at io n st a nda rd fo r disc rimina t io n

indic e s o f s lope st abilit y

评价指标安全等级

%&?!E o /GP a 13.0~28.07.0~13.04.0~7.0 1.5~4.00.0~1.5R QD 90~10075~9050~7530~500~30a/g 0.00~0.050.05~0.100.10~0.150.15~0.200.20~0.40P M P /mm 0~2020~4040~6060~100100~150 0~22~3

3~5

5~8

8~10

排水D 优(0.8~1.0)良(0.6~0.8)中(0.4~0.6)差(0.2~0.4)很差(0.0~0.2)

支护S

及时、强及时、较强一般(0.4~0.6)差(0.2~0.4)很差(0.0~0.2)(0.8~1.0)

(0.6~0.8)

注: 单位:m m /d 。

以锦屏一级水电站左岸拱肩槽边坡为例,评价指标选取的数据截止2010年8月底。锦屏一级水电站混凝土双曲拱坝是世界第一高拱坝,坝高305.0m ,两岸基岩主要为三叠系中上统杂谷脑组(T 2~3Z )变质岩,左岸边坡整体稳定问题的控制性因素主要由f 42~9断层、煌斑岩脉(X)、近SN 向一系列陡倾角深部裂缝(以SL44~1为典型代表)组合而成的变形拉裂体稳定问题。锦屏左岸拱间槽边坡各评价指标值见表2,其中深部岩体变形速率根据现场监测资料选取典型测点PD44X 的值为该指标的值。

表2 锦屏左岸拱间槽边坡各评价指标值Ta b.2 E v aluat ing indic at o r v a lue of s lo pe o n lef t

spandre l gr oo v e of J inping pro jec t

评价指标取值评价指标取值E o /GPa 1.9 /(mm (d -1)

0.035R QD 85D 0.7(优)a /g 0.98S

0.7(及时、强)

P M P /mm

10

2.2 模型确定及精度测试

根据表1在各级别范围内随机产生25个样

本x *ij

及对应的稳定性等级y i 共同组成样本系

列,并由式(3)将x *ij 归一化为x ij (i =1,2, ,25,j =1,2, ,7)。用Matlab 语言编写了PSO PP 程序,PSO 各参数取值如下:M =30,p =7,c 1=c 2=2,T =450,w 在0.85~0.45范围内随迭代次数的增加均匀减小。程序运行后得出最优投影方向a *=(-0.085,-0.047,0.163,0.371,0.526,-0.556,-0.491)。投影方向中各分量的符号表示对应的评价指标与边坡稳定等级的对应关系,正号表示对应指标值越大,边坡稳定等级越大,边坡

越不稳定;负号表示指标值越大,边坡稳定等级越

小,边坡越稳定。投影方向中各分量的绝对值表示该指标对边坡稳定性的影响,由此可见7个指标对边坡稳定性的影响从大到小依次为:D > >S >P MP >a >E o >R Q D 。

可用式(7)表示z *

i 与y i 的关系,通过M atlab

语言编写程序实现粒子群优化式(8),粒子群参数取值为M =100,p =2,c 1=c 2=2,T =500,w 在0.85~0.40的范围内随迭代次数增加均匀减小。程序运行后输出逻辑斯谛曲线的参数c(1)=-0.834、c(2)=2.264,由此得出岩石高边坡稳定性评价模型为:

y *

i =5/(1+e (-0.834-2.264z *i

)

)(9)由式(9)可求出各样本等级的计算值,并与样

本经验等级比较,见表3、图2。由表、图可知,有80%的样本的计算值的绝对误差不超过0.3,最大绝对误差不超过0.5,平均相对误差仅为5.132%。

由此可见,采用粒子群优化投影寻踪模型来评价岩石高边坡稳定性是可行的。

表3 y

i

与计算值y *i 的误差分析

T ab.3 E rr or analy s is re sult bet w e e n ex pe rie nt ia l

g rade s a nd PSO PP v alue s

绝对误差值落在下列区间的百分比/%[0,0.1][0,0.2][0,0.3][0,0.4][0,0.5]平均绝对误差平均相对误差/%

52

68

80

92

100

0.145

5.132

图2 边坡安全等级稳定性经验值与PSO PP 计算值的对比Fig.2 Compariso n be t w e en empirica l and PSO PP v alues

2.3 锦屏左岸拱肩槽边坡稳定性等级确定

为精确确定评价对象的稳定性等级,必须确定稳定性等级的PSO PP 计算值的分级阀值。由图2知,PSO PP 计算值均在经验值上下跳动,每一等级样本的计算值上下均未超过该等级与相邻等级的平均值。考虑到PSO PP 计算值为连续的实数,且在等级分类区间端点值附近存在一定的误差,但PSO PP 的输出值是在某一阈值范围内,故采用)四舍五入?的规则,并规定若某一边坡稳定性等级介于某两类之间,阈值取其平均值[10]

。岩石高边坡稳定性等级的PSO PP 计算值分级阀值见表4。将模型求出的最优投影方向a *=(-0.085,-0.047,0.163,0.371,0.526,-0.556,-(

81(第29卷第1期 司俊燕等:PSO PP 模型在岩石高边坡稳定性评价中的应用

0.491)及以上各评价指标值带入式(4),计算得该边坡的投影值z i =- 1.015,再将该投影值带入式(9),得出锦屏一级左岸拱间槽边坡稳定性的PSO PP 计算值y *

i =0.893。由表4可知,0.893<1.5,由此可确定该边坡属稳定 级(稳定)。

表4 PSO PP 分级阀值

T ab.4 Class ific at io n t hre sho ld v alue s o f PSO PP

边坡稳定性等级

%

&

?

!

PSO PP 计算值

<1.51.5~2.5 2.5~3.5 3.5~4.5>4.5

3 结语

a.建立了岩石高边坡稳定性评价的POS PP 模型,给出了具体的实现步骤,并将其应用于锦屏一级水电站左岸拱间槽边坡稳定性评价中,获得

了合理的边坡稳定性级别。

b.PSO PP 模型具有很强的适应性和通用性,仅需给出评价指标的分级标准和评价对象的各指标值,与所评价问题的性质无关,可广泛应用于各种评价问题中。运用PSO PP 模型对锦屏一级左岸拱肩槽边坡稳定性评价结果合理、可信。

参考文献:

[1] 汪明武,金菊良.投影寻踪方法在边坡稳定性评价

中的应用[J].岩土工程学报,2002,24(5):619 621.[2] 叶长远,夏洪吉.模糊综合评判法在边坡稳定性分

析中的应用[J].中国水运,2008,6(1):126 127.

[3] 康志强,周辉,冯夏庭,等.大型岩质边坡岩体质量

的可拓学理论评价[J].东北大学学报(自然科学版),2007,28(12):1770 1774.

[4] 何翔,李守巨,刘迎曦,等.岩土边坡稳定性预报的人工

神经网络方法[J].岩土力学,2003,24(S2):73 76.

[5] 王瑾,张求明,黄波.粒子群优化算法的分析与研究

[J].计算机与现代化,2009(7):22 25.

[6] 韦良,方崇,刘萍,等.粒子群投影寻踪模型的算法

实现及其在粉煤灰科学分类中的应用[J].混凝土,2009(12):40 45.

[7] 付强,赵小勇.投影寻踪模型原理及其应用[M ].北

京:科学出版社,2008.

[8] 舒栋才,樊明兰,林三益.水资源系统可持续利用的

投影寻踪评价模型[J].水电能源科学,2003,21(4):50 52.

[9] 谈小龙,徐卫亚,梁桂兰.可拓方法在岩石边坡整体

安全评价中的应用[J].岩石力学与工程学报,2009,28(12):2503 2509.

[10]徐飞,徐卫亚.岩爆预测的粒子群优化投影寻踪模

型[J].岩土工程学报,2010,32(5):718 723.

PS O PP Model for High Rock Slope S tability Evaluation and Its Application

SI Junyan 1,2,GU O H aiqing 1,2,XU Fei 3,NIE Weiping 1,2

(1.Key Labor ator y o f M inistr y of Education for G eomechanics and Embankment Eng ineering ,H ohai U niv ersity ,

N anjing 210098,China; 2.Geo technical R esear ch Institute,H ohai U niv ersit y,N anjing 210098,China;

3.Hainan H ighw ay Surv ey and Desig n Instit ute,Haiko u 570206,China)

Abstract:T he hig h ro ck slo pe st abilit y ev aluatio n is a com plicated uncertain problem.A new model(PSO PP )for high ro ck slope st abilit y evaluation is established by using pa rticle sw arm optimization(P SO ),pr ojection pursuit(PP)and log istic curv e function (L CF).And it is applied to ev aluate the high ro ck slo pe stabilit y o n the left spandr el gr oo ve o f Jin ping I Hy dr opow er P roject.T he r esult s indicate that the model is r easo nable and effective with higher accuracy.

Key words:slope stabilit y evaluat ion;part icle sw arm optim izat ion;pro jectio n pursuit;log istic curv e function;slope on the left spandrel g ro ov e o f Jinping project

(上接第66页)

Analysis of Dynamic Characteristics and Seismic Response of Large sized

Multi troughs Rectangular Aqueduct

YU AN H aijun 1,ZH ANG Jingna 2,REN Yilou 1,MA Weny ing 1

(1.Colleg e o f H ydroelect ric Engineer ing ,H ebei U niver sity o f Eng ineering ,H andan 056021,China;

2.H andan H ydroelect ric Investig atio n and Design Inst itute,H andan 056000,China)

Abstract:Based on the H ousner model,dynamic analy sis model o f fluid so lid co upling fo r larg e sized multi tr oughs aqueduct is established by consider ing int eractio n o f sloshing water and aqueduct body under influence of ear thquake.T aking the South No rth W ater T ransfer Pr oject in middle r outes fo r an ex ample,the dynamic char acteristics and seismic displacement responses w ith time histo ry fo r larg e sized multi tr oughs aqueduct are analy zed.T he r esult sho ws that the transverse seismic o f the o pen sty le and multi sidew all aqueduct bo dy play the contro l act ion,especially the seismic protec t ion in the two ends o f sidew all and midw all sho uld be strengt hen.

Key words:multi tr oughs aqueduct;fluid so lid coupling ;dynamic char acteristics;seismic respo nse

(

82(水 电 能 源 科 学 2011年

边坡稳定性分析资料讲解

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报

等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电 工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的问题。如果岩坡由于力过大和强度过低,则它可以处于不稳定的状态,一部分岩体向下或向外坍滑,这一种现象叫做滑坡。滑坡造成危害很大,为此在施工前,必须做好稳定分析工作。 岩坡不同于一般土质边坡,其特点是岩体结构复杂、断层、节理、裂隙互相切割,块体极不规则,因此岩坡稳定有其独特的性质。它同岩体的结构、块体密度和强度、边坡坡度、高度、岩坡表面和顶部所受荷载,边坡的渗水性能,地下水位的高低等有关。 岩体内的结构面,尤其是软弱结构面的的存在,常常是岩坡不稳定的主要因素。大部分岩坡在丧失稳定性时的滑动面可能有三种。一种是沿着岩体软弱岩层滑动;另一种是沿着岩体中的结构面滑动;此外,当这两种软弱面不存在时,也可能在岩体中滑动,但主要的是前面两种情况较多。在进行岩坡分析时,应当特别注意结构面和软弱层的影

【精品】第9章边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价. 9。1边坡的变形与破坏类型 9。1.1概述

随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边

坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。

公路边坡稳定性评价方法及滑坡防治措施实用版

YF-ED-J2674 可按资料类型定义编号 公路边坡稳定性评价方法及滑坡防治措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

公路边坡稳定性评价方法及滑坡 防治措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 引言 近年来,随着国民经济的飞速发展,“村 村通公路”工程的进一步实施,在地形困难路 段修建的公路越来越多。受各种条件的限制, 大填、大挖方路段频繁出现,相伴而来出现了 较多的路堤边坡失稳,边坡及路堑边坡坍塌等 地质灾难现象,给公路建设、运营带来巨大的 经济损失。因此在公路建设中需要选用合理的 方法评价其边坡稳定性,根据评价结果确定合 理的边坡治理措施进而做到既保证公路运营的

安全,又节约投资。由此看来,稳定性评价的方法显得至关重要。本文对边坡稳定性评价方法和滑坡防治措施进行研究,为二程技术人员在实际工程中选用合理的评价方法和防治措施提供参考。 1、公路边坡病害的分类 边坡病害可分为以下3类。 1、1滑坡 滑坡是路基山坡土体或岩体由于长期受地下水、地表水活动的影响使其结构逐渐失去支撑力,在自重的作用下,整体沿着一定软弱面向下滑动。滑坡按其引起滑动的力学特性来区分,可分为牵引式和推移式滑坡。牵引式滑坡是下部先滑动,使上部失去支撑而变形滑动,一般速度较慢,可延续相当长时间,横向张性

高边坡的防治

边坡是指线路近旁的天然斜坡或经过施工开挖形成的路堑斜坡、填筑形成的方坡等等。 一、边坡的变形特征 1、公路边坡是将地质体的一部分改造成人为工程设施,因此其稳定性取决于自然山坡的稳定状况(稳定、不稳定、极限平衡)、地质条件(地层岩性、地质构造、坡体结构、岩体结构、水文地质条件、风化程度等)和人为改造的程度(开挖深度、坡形、坡率等)。 2、人工边坡是对自然坡体的改造,改变了自然坡体的应力状态和地下水的渗流条件,而且是在短短几个月内改造完成的。自然坡体的应力调整有一个过程,强度低的软弱岩层调整较快,常在施工期就发生变形;强度高的坚硬岩层调整较慢,或可自身稳定,或在1~3年后发生变形。只有当人工边坡对其改变不大时,才可保持稳定,否则就会发生失稳,甚至引起自然坡体的破坏。 3、自然山坡和人工边坡都处在各种自然营力的作用之下,如阳光照射、降雨冲刷和下渗、风化和地震等。但人工边坡所造成的自然状态的改变使这种作用更强烈,如开挖暴露风化加剧、破坏植被地表水容易下渗、坡体松弛、爆破震动等都使边坡更容易发生变形。 4、自然条件千差万别,所以边坡设计也变得十分复杂,每个高边坡工点都需单独分析和计算,这也是目前高边坡设计尚无规范可循的原因。 二、高边坡形成的原因分析 (一)主观原因: 1、公路选线时对地质工作重视不够,没有将“地质选线”落实到实处,对已经存在的古老滑坡和潜在滑坡认识不足,将线路布设在这些地段,甚至大填、大挖,造成老滑坡复活或新生滑坡。 2、对高边坡的危害认识不够,强调节约工程投资,本来可以内移作隧道或外移作桥或半路半桥的,为节省投资而造成大挖方,结果造成高边坡变形破坏,有时其治理费用比桥、隧还多。 (二)客观方面: 1.山区公路(特别是高等级公路)对线形和道路走向有特定的要求,也不可能一味强求优良的工程地质条件,而回避不良地质、高边坡等岩土工程问题,因此就不可避免的在近于极限平衡的天然山坡上或其内开拓修建。

公路工程高边坡常见防治措施总结,超全面!

公路工程高边坡常见防治措施总结,超全面! 边坡是指线路近旁的天然斜坡或经过施工开挖形成的路堑斜坡、填筑形成的方坡等等。高 边坡灾害是我们道路工程中危害较大的一个地方,所以今天小编特意过来和大家分享分享 高边坡的防治技术都有哪些。 一、边坡的变形特征 1、公路边坡是将地质体的一部分改造成人为工程设施,因此其稳定性取决于自然山坡的 稳定状况(稳定、不稳定、极限平衡)、地质条件(地层岩性、地质构造、坡体结构、岩体结构、水文地质条件、风化程度等)和人为改造的程度(开挖深度、坡形、坡率等)。 2、人工边坡是对自然坡体的改造,改变了自然坡体的应力状态和地下水的渗流条件,而 且是在短短几个月内改造完成的。自然坡体的应力调整有一个过程,强度低的软弱岩层调 整较快,常在施工期就发生变形;强度高的坚硬岩层调整较慢,或可自身稳定,或在1~ 3年后发生变形。只有当人工边坡对其改变不大时,才可保持稳定,否则就会发生失稳, 甚至引起自然坡体的破坏。 3、自然山坡和人工边坡都处在各种自然营力的作用之下,如阳光照射、降雨冲刷和下渗、风化和地震等。但人工边坡所造成的自然状态的改变使这种作用更强烈,如开挖暴露风化 加剧、破坏植被地表水容易下渗、坡体松弛、爆破震动等都使边坡更容易发生变形。 4、自然条件千差万别,所以边坡设计也变得十分复杂,每个高边坡工点都需单独分析和 计算,这也是目前高边坡设计尚无规范可循的原因。 二、高边坡形成的原因分析 (一)主观原因: 1、公路选线时对地质工作重视不够,没有将“地质选线”落实到实处,对已经存在的古老 滑坡和潜在滑坡认识不足,将线路布设在这些地段,甚至大填、大挖,造成老滑坡复活或 新生滑坡。 2、对高边坡的危害认识不够,强调节约工程投资,本来可以内移作隧道或外移作桥或半 路半桥的,为节省投资而造成大挖方,结果造成高边坡变形破坏,有时其治理费用比桥、 隧还多。 (二)客观方面: 1.山区公路(特别是高等级公路)对线形和道路走向有特定的要求,也不可能一味强求优 良的工程地质条件,而回避不良地质、高边坡等岩土工程问题,因此就不可避免的在近于 极限平衡的天然山坡上或其内开拓修建。

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

边坡稳定性计算说明

边坡稳定性计算 一、编制依据 为保证挖方施工安全,施工现场做到“安全、文明”,满足施工进度要求,以下列法律、法规、标准、规范、规程、相关文件为强制性前提,进行边坡稳定性计算。 1、现有施工图设计; 2、《公路桥涵施工技术规范》(JTJ041-2000); 3、《路桥施工计算手册》(人民交通出版社); 4、《土力学与地基基础》; 二、工程概况及地质情况 岢岚至临县高速公路是《山西省高速公路网规划》“3纵11横11环”中西纵高速公路的重要组成部分,也是山西省西部把第四横(保德-五台长城岭)和第五横(平定杨树庄—佳县)高速公路窜连起来的重要路段。 项目区路线走廊带地形起伏极大,总体地势为东北高西南低,地貌主体为隆起的基岩中山与黄土梁峁,部分区域为海拔较低的河流沟谷及冲沟,。受构造活动和水流侵蚀作用的影响,本区地形切割剧烈,河谷发育,沟壑纵横,依据地貌成因类型及其显示特征,将本区划分为黄土丘陵区、侵蚀堆积河川宽谷区、山岭区、黄土覆盖中低山区四个地貌单元,岩性主要为第四系冲、坡积及风积粉土及粉质粘土等。 三、计算 本项目地形复杂,涵洞、桩基及路基施工作业面比较多。根据挖方路段在全线的分布情,选择有代表性路段进行分析计算。由于项目地质挖方为风积粉土及粉质粘土,是典型的黄土地貌。根据施工图纸给出的计算参数,对于黄土挖方路段,拟定边坡参数γ=19g/cm3,C=40 Kpa,φ=29°,采用瑞典条分法进行计算,稳定安全系数达到1.2以上。 3.1 瑞典条分法原理 如图所示边坡,瑞典条分法假定可能滑动面是一圆弧AD,不考虑条块两侧的作用力,即假设Ei和Xi的合力等于Ei+1和Xi+1的合力,同时它们的作用线

公路边坡稳定性评价方法及滑坡防治措施

公路边坡稳定性评价方法及滑坡防治措施摘要:本文介绍了公路边坡稳定性评价方法及滑坡防治措施。 引言 近年来,随着国民经济的飞速发展,“村村通公路”工程的进一步实施,在地形困难路段修建的公路越来越多。受各种条件的限制,大填、大挖方路段频繁出现,相伴而来出现了较多的路堤边坡失稳,边坡及路堑边坡坍塌等地质灾难现象,给公路建设、运营带来巨大的经济损失。因此在公路建设中需要选用合理的方法评价其边坡稳定性,根据评价结果确定合理的边坡治理措施进而做到既保证公路运营的安全,又节约投资。由此看来,稳定性评价的方法显得至关重要。本文对边坡稳定性评价方法和滑坡防治措施进行研究,为二程技术人员在实际工程中选用合理的评价方法和防治措施提供参考。 1、公路边坡病害的分类 边坡病害可分为以下3类。 1、1滑坡 滑坡是路基山坡土体或岩体由于长期受地下水、地表水活动的影响使其结构逐渐失去支撑力,在自重的作用下,整体沿着一定软弱面向下滑动。滑坡按其引起滑动的力学特性来区分,可分为牵引式和推移式滑坡。牵引式滑坡是下部先

滑动,使上部失去支撑而变形滑动,一般速度较慢,可延续相当长时间,横向张性裂隙发育,表面多呈阶梯状或陡坎状。推移式滑坡是上部岩土挤压下部岩土体产生变形,滑动速度较快,滑体表面波状起伏,多见于有堆积分布的斜坡地段。 1.2崩塌 所谓崩塌是整体岩土块脱离母体,忽然从较陡的斜坡上崩落下来,并顺斜坡猛烈翻转、跳跃,最后堆落在山脚。其具有突发性,危害较大,与滑坡的区别是崩塌发生急促,破坏体散开,并有倾倒、翻滚现象。而滑坡体一般总是沿着固定滑动面整体、缓慢地向下滑动。 1.3剥落 所谓剥落是指边坡表层受风化,在冲刷和重力作用下,不断沿斜坡滚落。2边坡稳定性评价依据 在对边坡进行稳定性评价之前,需要搜集工程地质环境资料,这既是选取边坡稳定性评价方法的依据,也是边坡稳定性评价的基础性资料。它包括自然地理条件、地层岩性、地质构造及地震、水文地质条件等,可以通过查阅历史资料、调查访问及地质勘探获得”。 2边坡稳定性分析 边坡稳定性分析主要采用定性与定量相结合的评价方法,根据2种方法的评价结果,得出统一结论,确定该边坡的治理措施。

高边坡专项施工方案(正式)

编订:__________________ 单位:__________________ 时间:__________________ 高边坡专项施工方案(正 式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1772-42 高边坡专项施工方案(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常 工作或活动达到预期的水平。下载后就可自由编辑。 一、编制依据 1.1《铁路隧道工程施工安全技术规程》(J947-2009)。 1.2湘桂铁路扩改工程柳南段Ⅳ标相关设计文件、图纸。 1.3国家和铁道部颁布的现行技术标准、施工规范、工程质量检验评定标准及相关文件。 1.4湘桂铁路扩改工程柳南段采用的通用图、标准图、定型图。 二、安全专项施工措施 2.1石方爆破作业以及爆破器材的管理、运输、使用等工作必须遵守国家现行的有关规范、规定。 2.2必须严格遵守国家现行的《爆破安全规程》,主动接受当地公安部门的监督管理。

2.3施工机械作业时,除按规范操作外并应按事先设计的行走路线进行,其工作位置应平坦稳固,并应有专人指挥,指挥人员不得进入机械作业范围内。 2.4挖方高边坡实行“随开挖、随加固、随保护”,施工时严格按照设计方案进行施工。 2.5高边坡施工人员必须带好安全帽,系好安全带,绑挂安全带的绳索牢固地拴在可靠的安全桩上,绳索应垂直,不得在同一个安全桩拴2根及以上安全绳上拴2人以上。 2.6高边坡施工应设置安全通道;开挖工作面应与装运作业面相互错开,严禁上、下交叉作业,边坡上方有人工作时,边坡下方不准有人停留或通行。 2.7清理边坡上突出的石块和整修边坡时,应从上而下顺序进行,坡面上的松动土、石块必须及时清除,严禁在危石下方作业,休息和存放机具。 2.8施工中如发现山体有滑动、崩塌迹象危及施工安全时,应立即停止施工,撤出人员和机具,并报告监理办和指挥部处理。

边坡稳定计算

附件四:边坡稳定性计算书 1、汽机房区域边坡稳定性计算书(适用于基坑基底标高为-7.00m~-9.00m)H=8.5m 天然放坡支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ] ---------------------------------------------------------------------- 天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法 基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 1.00m 天然放坡计算结果:

岩石路堑边坡稳定性分析

岩石路堑边坡稳定性分析 [摘要]本文主要阐述了影响岩石路堑边稳定性的主要因素,并且简要说明了岩石路堑边稳定性的分析方法,最后向大家介绍了,堑边路面稳定性的防治措施。 【关键词】堑边路面稳定性;分析方法;防治措施 1、影响岩石路堑边坡稳定性的主要因素 1.1岩石构造和地质类型 影响边坡稳定性的因素主要有地理因素和工程因素。地理因素包括岩石的结构密度,地貌特征等等因素。而工程因素主要包括人为因素,工程损伤和地震等不可预计的事件。在地理因素之中,岩性对边坡的稳定及其边坡的坡高和坡角起重要的控制作用。坚硬的岩石如花岗岩、石灰岩等可以形成非常稳定的堑边坡。而在淤泥集中的路段,由于淤泥的流动性非常强,几乎难以形成坚固的边坡。 不同的岩是层组成的边坡,其变形破坏的程度也有着很大的不同,以黄土地区为例,边坡的变形破坏形式以滑坡为主,而在花岗岩、厚层石灰岩、沙岩地区则以崩塌为主。在碎屑岩以及松散土层的地区,容易产生碎屑流或者泥石流等自然灾害。在区域构造比较复杂,褶皱比较强烈,新构造运动比较活动的地区,边坡稳定性差。断层带岩石破碎,风化严重,又是地下水最丰富和活动的地区极易发生滑坡。岩层结构的形状对边坡稳定也有很大影响,水平岩层的边坡稳定性较稳定,不过却存在陡倾的节理裂隙,则易形成崩塌和剥落。同向缓倾的岩质边坡的稳定性比反向倾斜的差。同向陡倾层状结构的边坡,一般稳定性较好,但由于是由薄层或软硬岩层的岩石组成,可能因蠕变而产生挠曲弯折或倾倒。比较稳定的山坡上反向倾斜的类型,但垂直层面走向的山坡则易产生切层滑坡[1]。 1.2影响堑边坡稳定性中水的作用 地表水和地下水是影响边坡稳定性的重要因素。不少滑动都是由于水的流动而引起的。处于水下的透水边坡将承受水的浮托力的作用,而不透水的边坡,将承受静水压力;充水的张开裂隙将承受裂隙水静水压力的作用;地下水的渗流,将对边坡岩体产生动水压力;水对边坡岩体还产生软化或泥化作用,使岩土体的抗剪强度大为降低;地表水的冲刷,地下水的溶蚀和潜蚀也直接对边坡产生破坏作用。此外,工程荷载、地震、爆破等因素对边坡稳定性也会产生很大的影响。 2、岩石路堑边的破坏类型及稳定性的分析方法 2.1岩石路堑边的破坏类型 岩坡的破坏类型分为平面滑动和楔形滑动以及旋转滑动三种。从形态上看来

高边坡施工及验收标准.(DOC)

高边坡施工工艺流程及验收标准 编制: _______________ 审核: _______________ 部门: _______________

2013年月日 编制说明 为了加强我公司高边坡支护工程的施工管理,提高施工质量,参照《建筑桩基技术规范》(JGJ94-94)《建筑基坑支护技术规程》(JGJ 120-99)、《建筑边坡工程技术规范》(GB50330-2002)等相关规定,结合施工现场的实际情况,由工程中心综合管理二部编制《高边坡施工工艺流程及验收标准》,用以指导边坡支护工程施工作业。施工中各工序均应坚持材料报验及工序报验的原则,严格检查各工序是否符合设计及施工规范的要求,从而保证整个边坡支护工程的施工质量,确保边坡的稳定。

目录 一、边坡支护类型 (1) 二、施工工艺 (1) 1、格构梁锚索施工工艺 (1) 2、抗滑桩锚索施工工艺 (2) 3、锚喷支护施工工艺 (3) 三、质量验收标准及要求 (3) 1、锚索(杆)成孔 (3) 2、锚索(杆)制安 (4) 3、锚索(杆)灌浆 (4) 4、锚索张拉 (5) 5、锚索封锚 (5) 6、挂网喷射砼 (5) 7、抗滑桩 (6) 8、格构梁 (7) 四、质量保证措施 (7) 五、施工中应注意事项 (8) 1、锚索成孔 (8) 2、锚索安装 (8) 3、锚索灌浆 (8) 4、锚索张拉 (9) 六、附图........................... 11 一、边坡支护类型 常见的边坡支护类型有:重力式挡墙、扶壁式挡墙、悬臂式支护、

格构梁锚索支护、抗滑桩锚索支护、锚喷支护、坡率法。在贵阳地区, 常见的高边坡支护类型为:格构梁锚索支护、抗滑桩锚索支护及锚喷支护。 二、施工工艺 1、格构梁锚索施工工艺 格构梁锚索的施工,分四步进行:⑴坡面的挂网喷浆;⑵锚索的成孔、安装、灌浆;⑶格构梁的施工;⑷锚索张拉、封锚。为了确保施工质量,各工序均应坚持材料及工序报验的原则,相关要求如下(施工工艺流程图详见图一): ⑴施工前,须完成钢筋、砂、石、水泥等原材料送检及相关砼、砂浆的配合比; ⑵进行坡面修整,将坡面松散土石、凹凸不平处进行修整,设置泄水孔; ⑶喷射第一层砼,厚度不小于2.5cm (保证钢筋网片的保护层厚度); ⑷按照设计及施工规范要求进行钢筋网片的制安; ⑸喷射第二层砼,累计喷射厚度须满足设计要求; ⑹按照施工方案搭设脚手架; ⑺钻机就位,锚索成孔后,立即制作锚索,安装锚索,灌浆; ⑻格构梁钢筋、模板及砼的施工; ⑼锚索张拉前先进行锚具、夹片的检测,合格后,再进行锚垫板及锚具的安装; ⑽油表及千斤顶校核后,方可进行锚索的张拉。

边坡稳定性分析

边坡稳定性分析 内容摘要 目前,边坡失稳的防治仍然是一项很艰巨的任务,对边坡的稳定性分析及处治技术进行深入研究具有重要的意义。论文首先简要阐述了边坡工程稳定性分析及处治技术研究的意义,介绍了边坡工程稳定性分析的一些常用方法,并结合笔者的实践经验,提出了边坡工程处治对策。 边坡稳定分析是岩土工程中的重要研究课题。边坡稳定性分析的观点变化是随着人类理论方面的突破和实践经验的积累而变化的。总的来说,边坡稳定性分析是一个逐步由定性分析向定量、半定量分析发展的过程,并且可视化程度越来越高。文章从定性分析、定量分析、不确定分析等角度介绍了几种主要的边坡稳定性分析方法 关键词:边坡;边坡稳定性;边坡失稳;稳定性分析;处治对策 1

边坡稳定性分析 目录 内容摘要 (1) 1绪论 (4) 1.1 边坡稳定性概念 (4) 1.1.1 边坡体自身材料的物理力学性质 (4) 1.1.2 边坡的形状和尺寸 (5) 1.1.3 边坡的工作条件 (5) 1.1.4 边坡的加固措施 (5) 1.2 边坡的稳定性表示方法 (5) 1.3 边坡破坏 (6) 2 边坡的分类 (6) 3 边坡稳定性的影响因素 (7) 3.1 潜在影响因素 (7) 3.1.1 地形因素 (7) 3.1.2 地质材料因素 (7) 3.1.3 地质构造因素 (8) 3.2 诱发影响因素 (8) 3.2.1 环境因素 (8) 3.2.2 人为因素 (9) 4 边坡稳定性的分析方法 (10) 4.1 定性分析方法 (10) 4.1.1 工程地质类比法 (10) 4.1.2 地质分析法(历史成因分析法) (10) 4.1.3 图解法 (10) 4.1.4 边坡的分析数据库和专家系统 (11) 4.2 定量分析方法 (11) 4.2.1 极限平衡法 (11) 2

边坡稳定性计算方法11111

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗 剪度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析 该滑动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条 进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的 剪应力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无粘性 土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图 9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。假定 边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面 AC 上的力 系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由 粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里 假定φ= 0 。边坡沿AC的安全系数F s 用作用在 AC面上的抗滑力矩和下滑力矩之比表 示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ= 0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法 前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。为了将圆弧滑动法应用于φ> 0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳定安全系数。 采用分条法计算边坡的安全系数F ,如图 9 - 4 所示,将滑动土体分成若干土条。土条的宽度越小,计算精度越高,为了避免计算过于繁

公路边坡稳定性评价方法及滑坡防治措施示范文本

公路边坡稳定性评价方法及滑坡防治措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

公路边坡稳定性评价方法及滑坡防治措 施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 引言 近年来,随着国民经济的飞速发展,“村村通公路” 工程的进一步实施,在地形困难路段修建的公路越来越 多。受各种条件的限制,大填、大挖方路段频繁出现,相 伴而来出现了较多的路堤边坡失稳,边坡及路堑边坡坍塌 等地质灾难现象,给公路建设、运营带来巨大的经济损 失。因此在公路建设中需要选用合理的方法评价其边坡稳 定性,根据评价结果确定合理的边坡治理措施进而做到既 保证公路运营的安全,又节约投资。由此看来,稳定性评 价的方法显得至关重要。本文对边坡稳定性评价方法和滑 坡防治措施进行研究,为二程技术人员在实际工程中选用

合理的评价方法和防治措施提供参考。 1、公路边坡病害的分类 边坡病害可分为以下3类。 1、1滑坡 滑坡是路基山坡土体或岩体由于长期受地下水、地表水活动的影响使其结构逐渐失去支撑力,在自重的作用下,整体沿着一定软弱面向下滑动。滑坡按其引起滑动的力学特性来区分,可分为牵引式和推移式滑坡。牵引式滑坡是下部先滑动,使上部失去支撑而变形滑动,一般速度较慢,可延续相当长时间,横向张性裂隙发育,表面多呈阶梯状或陡坎状。推移式滑坡是上部岩土挤压下部岩土体产生变形,滑动速度较快,滑体表面波状起伏,多见于有堆积分布的斜坡地段。 1.2崩塌 所谓崩塌是整体岩土块脱离母体,忽然从较陡的斜坡

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

岩石边坡治理

应用锚杆治理岩石边坡的研究 摘要: 应用正交设计原理对常张高速公路某边坡锚固参数进行了优化设计, 结果表明以边坡水平变形量为评价指标, 主要锚固参数对锚固效果的影响显著性依次为: 锚杆长度> 锚杆间距> 混凝土喷层厚度。 关键词: 锚杆, 正交设计, 锚固参数, 水平变形 在各类边坡工程中, 开挖岩石高边坡工程是十分常见而又非常重要的, 往往由于其复杂的地质结构而成为边坡工程中的重点与难点。岩石工程边坡的稳定问题事关工程建设和运行期间的安全和经济效益, 对其稳定性进行综合评价和控制具有非常重要的工程实践意义和经济价值。在我国, 治理岩石边坡的最有效措施就是锚固, 然而锚固参数( 锚杆长度、锚固间距、喷混凝土厚度等) 的选取至今都没能很好的解决, 设计大多数停留在经验( 规范) 的层次上。因此, 如何确定岩石边坡最优锚固参数就显得尤为重要。 1 锚杆加固机理 研究锚杆的加固机理必须考虑其锚固方式, 它与所加固的岩体之间的相互作用。研究表明, 作为岩体内在因素的岩体结构在岩体的变形破坏发展过程中起着决定性作用, 而作为外因的外力即荷载, 是通过内因起作用的。在岩体表面或内部修建工程时, 应把岩体视为工程结构的一部分或全部, 岩体与地下洞室的支护结构形成一个完整的支护体系。而且在整个体系中, 岩体应视为主要的承载体单元。在岩体加固工程中, 对不稳定岩体不一定采取支护措施, 而从改造变更岩体结构的观点出发, 对劈裂、块裂结构的岩体直接进行处理, 使它变为完整的岩体。锚杆的作用效果还可从改变岩体应力状况方面来理解。岩体变形和破坏机制包括结构变形和破坏及材料变形和破坏两种因素, 其中材料的变形和破坏多

某边坡稳定性评价分析

某边坡稳定性评价分析 作者简介:张帆(1968-),男,高级工程师,浙江温州人,主要从事岩土工程勘察设计等 方面工作。 摘要:该边坡主要由志留系龙马溪组泥质砂岩和粉砂质泥岩与第四系洪坡积碎石土等构成,高边坡为I 型,本文某高边坡的工程地质条件进行了分析,并结合稳定性计算方对其提出了 2 防治措施。 关键词:边坡;稳定性;评价分析 该边坡主要由志留系龙马溪组泥质砂岩和粉砂质泥岩与第四系洪坡积碎石土等构成,高边坡型,坡长100m,坡面积2500 m2。按照相关《技术要求》,该边坡安全等级为三级。地 为I 2 貌上属构造侵蚀、剥蚀中、低山区,切坡顶处高程约190~210m左右,自然斜坡坡角一般30°左右。 1工程地质概况 边坡区地层主要有志留系龙马溪组(S1l)和第四系(Q)。 ①志留系(S)。志留系地层分布于北东部和东部,呈南北向延伸,在本区出露的为罗惹坪 组(S1lr)。下部为灰绿色、黄绿色细粒长石石英砂岩、粘土质粉砂岩、粉砂质粘土岩(或 页岩),含生物碎屑泥灰岩;上部为灰绿色、黄绿色粘土质粉砂岩夹粉砂质粘土岩(或页岩)。 ②第四系(Q)。工作区出露的第四纪地层有残坡积层(Q el+dl),崩坡积层(Q col+dl)、洪积 层(Q dl+pl)、滑坡堆积层(Q del)和人工堆积层(Q ml)等类型,其中残坡积层分布最广,其岩性 为碎石夹(及)土;崩坡积层为块石夹少量土;滑坡堆积层为碎块石夹(及)土和滑动岩体。除此以外,其他成因的第四系厚度较薄,一般厚度数十厘米至数米。 高边坡区地下水主要有第四系孔隙水及基岩裂隙水。其中孔隙水主要赋存于第四系堆积物中,埋深浅,无承压,受大气降水补给,无统一地下水位,季节变化明显。基岩裂隙水主要赋存 在砂岩、泥质粉砂岩、粉砂质泥岩风化带和基岩裂隙中,地下水位埋深相对较大。 根据地下水水质分析资料,地下水对混凝土不具有腐蚀性。 2地质特征及主要地质问题 高边坡区目前尚未发现整体的大面积变形破坏现象,由于修建移民公路切坡,使原有的斜坡 应力平衡状态破坏,导致边坡顶部产生卸荷裂隙,加剧岩体风化破碎,在降雨及其它外荷载 作用下,将导致边坡岩体表面剥落、掉块。Ⅰ段、Ⅱ段和Ⅲ段边坡由于卸荷裂隙发育、岩体 破碎,不排除边坡表层岩体卸荷、风化、剥落与掉块的可能。第Ⅳ段边坡也存在浅表层碎石 土的滑动。

平面、折线滑动法边坡稳定性计算书

平面、折线滑动法边坡稳定性计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑边坡工程技术规范》GB50330-2002 3、《建筑施工计算手册》江正荣编著 一、基本参数 边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20 土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12 边坡高度H(m) 11.862 边坡斜面倾角α(°)40 坡顶均布荷载q(kPa) 0.2 二、边坡稳定性计算 计算简图 滑动面参数 滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m) 1 35 5.67 2 35 5.6 3 35 5.67 土条面积计算:

R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/m T1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/m R2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/m T2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/m R3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865 kN/m T3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/m K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1) 第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为: ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφi K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25 满足要求!

相关文档
相关文档 最新文档