文档库 最新最全的文档下载
当前位置:文档库 › 快速凝固TiAl基合金微晶的显微组织

快速凝固TiAl基合金微晶的显微组织

快速凝固TiAl基合金微晶的显微组织
快速凝固TiAl基合金微晶的显微组织

A铝合金显微组织及断口分析

目录 1 绪论 (1) 1.1断口分析的意义 (1) 1.2 对显微组织及断口缺陷的理论分析 (1) 1.3研究方法和实验设计 (3) 1.4预期结果和意义 (3) 2 实验过程 (4) 2.1 生产工艺 (4) 2.1.1 加料 (4) 2.1.2 精炼 (4) 2.1.3 保温、扒渣和放料 (5) 2.1. 4 单线除气和单线过滤 (5) 2.1. 5连铸 (6) 2.2 实验过程 (6) 2.2. 1 试样的选取 (6) 2.2.2 金相试样的制取 (8) 2.2.3 用显微镜观察 (9) 2.3 观察方法 (10) 2.3.1显微组织的观察 (10) 2.3.2 对断口形貌的观察 (11) 3 实验结果及分析 (11) 3.1对所取K模试样的观察 (11) 3.2 金相试样的观察及分析 (12) 3.2.1 对显微组织的观察 (12) 3.2.2 断口缺陷 (15)

结论 (23) 致谢 (24) 参考文献 (25) 附录 (27)

1 绪论 1.1断口分析的意义 随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。 然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。而这些缺陷往往是通过显微组织和断口分析来研究的。 另外,通过显微组织和断口分析所得到的结果可以分析这些缺陷产生的原因,研究断裂机理,比结合工艺过程分析缺陷产生的原因,从而对改进工艺提出一定的有效措施,确定较好的生产工艺,以提高铝合金铸锭的性能。 但关于该合金的微观组织及其断口分析研究较少,研究内容深但不够综合,每篇论文多研究其部分缺陷,断口的获得多为拉伸端口。因此,希望对A356铝合金的断口缺陷有一个较为全面的研究。 1.2 对显微组织及断口缺陷的理论分析 铸件的力学性能与其微观组织有密切联系[11]。A356合金是一个典型的Al-Si-Mg系三元合金,它是Al-Si二元合金中添加镁、形成强化相Mg2Si,通过热处理来显著提高合金的时效强化能力,改善合金的力学性能。A356合金处于α-Al+Mg2Si+Si三元共晶系内,其平衡组织为初生α-Al+(α-Al+Si)共晶+

实验一铁碳合金平衡组织的观察与分析

实验一 铁碳合金平衡组织的观察与分析 一、实验目的 1认识和熟悉铁碳合金平衡状态下的显微组织特征; 2?了解含碳量对铁碳合金平衡组织的影响。建立起 3. 了解平衡组织的转变规律并能应用杠杆定律。 平衡状态是指铁碳合金在极为缓慢的冷却条件下完成转变的组织状态。 退火状态下的碳钢组织可以看成是平衡组织。 图1是以组织组成物表示的铁碳合金相图。 在室温下碳钢和白口铸铁的组织都是由铁素 体和渗碳体两种基本相构成。 但是由于含碳量不同、 合金相变规律的差异, 致使铁碳合金在 室温下的显微组织呈现出不同的组织类型。表 1列出各种铁碳合金在室温下的显微组织。 表织 合金分类 含碳量/% 显微组织 工业纯铁 <0.0218 铁素体(F ) 碳钢 亚共析钢 0.0218 ?0.77 F+珠光体(P ) 共析钢 0.77 P 过共析钢 0.77 ?2.11 P+二次渗碳体(C n ) 白口铸铁 亚共晶白口铸铁 2.11 ?4.3 P+ C n +莱氏体(L e ) 共晶白口铸铁 4.3 L e 过共晶白口铸铁 4.3 ?6.69 L e +二次渗碳体(C l ) 铁碳合金显微组织中, 铁素体和渗碳体两种相经硝酸酒精溶液浸蚀后均呈白亮色, 而它 们之间的相界则呈黑色线条。采用煮沸的碱性苦味酸钠溶液浸蚀, 铁素体仍为白色,而渗碳 体则被染成黑色。 图1以组织组成物表示的铁碳合金相图 概述 Fe-Fe 3C 状态图与平衡组织的关系; 在实验条件下, A+Lc*Fe^C A*F C ^C B 9000- “匕 F+ F +FejC ■

铁碳合金的各种基本组织特征如下: 1. 工业纯铁 含碳量小于0.0218 %的铁碳合金称为工业纯铁,其显微组织为单相铁素体或铁素体+极少量三次渗碳体。为单相铁素体时,显微组织由亮白色的呈不规则块状晶粒组成,黑色网状线即为不同位向的铁素体晶界,如图2(a)所示。当显微组织中有三次渗碳体时,则在某 些晶界处看到呈双线的晶界线,表明三次渗碳体以薄片状析出于铁素体晶界处,如图2(b)所示。 (a) 250X (b) 700X 图2工业纯铁的显微组织 2. 碳钢 碳钢按含碳量的不同,将组织类型分为3种:共析钢、亚共析钢和过共析钢。其组织 特征如下: (1) 共析钢 含碳量为0.77 %的铁碳合金称为共析钢,其显微组织是珠光体。珠光体是层片状铁素 体和渗碳体的机械混合物。两相的相界是黑色的线条,在不同放大倍数条件下观察,则具有不同的组织特征,在高倍数(>500倍)电镜下观察时,能清晰地分辨珠光体中平行相间的宽条铁素体和细片状渗碳体,如图3(a)所示。在300?400倍光学显微镜下观察时,由于显 微镜的鉴别能力小于渗碳体片厚度,这时所看到的渗碳体片就是一条黑线?如图3(b)所示。珠光体有类似指纹的特征。 (A) SOTx (b) 300 x 图3共析钢的珠光体组织 (2) 亚共析钢 含碳量为0.0218%?0.77%的铁碳合金称为亚共析钢,室温下的显微组织是铁素体+珠光体。铁素体呈白色不规则块状晶粒,珠光体在放大倍数较低或浸蚀时间长、浸蚀液浓度加大时,则为黑色块状晶粒,如图4所示。

铁碳合金相显微组织观察

实验一、铁碳合金相显微组织观察 一、实验目的 1)观察碳钢和铸铁试样在平衡状态下的显微组织。 2)熟悉工业纯铁、灰口铸铁等材料的组织特征,了解各种工业用铸铁的显微组织特征。 并熟悉随含碳量的增加,组织的变化特征。 二、实验原理 通常将含碳量<2.11%的Fe-C合金称为钢,含碳量>2.11%的合金称为铸铁。根据铁碳二元相图,它们在室温下的组成相都是铁素体和渗碳体,但它们在显微组织上有很大的差异。 三、实验器材 显微镜,供观察样品每组8块 四、实验内容 (1)画出铁碳合金状态图,并写出所观察组织成分构成; (2)画出所观察样品的显微组织示意图(4个图),注明合金成分、放大倍数及各组织组成物的名称,说明其特征; (3)用箭头标明相组成物和组织组成物的名称于组织图外;

(参考资料) 1、铁碳合金在室温下的显微组织特征 工业纯铁:含碳量<0.0218%的铁碳合金通常称为工业纯铁,它为两相组织,即由铁素体和三次渗碳体组成。显微组织中黑色线条是铁素体的晶界、而亮白色基体是铁素体的多边形状等轴晶粒。 碳钢 共析钢:含碳量为0.77%的铁碳合金。其显微组织由单一的共析珠光体组成。亚共析钢:含碳量在0.0218%—0.77%范围内的铁碳合金。其组织由先共析铁素体和珠光体所组成,随着含碳量的增加,铁素体的数量逐渐减少,而珠光体的数量则相应地增多,显微组织中亮白色为铁素体,暗黑色为珠光体。 过共析钢:含碳量在0.77%与2.11%之间的铁碳合金。其组织由珠光体和先共析渗碳体(即二次渗碳体)组成。钢中含碳量越多,二次渗碳体数量越多。显微组织中存在片状珠光体和网络状二次渗碳体,经4%硝酸酒精浸蚀后珠光体呈暗黑色,而二次渗碳体则成白色网状。 白口铸铁:含碳量大于 2.11%的铁碳合金叫白口铸铁。其中的碳以渗碳体的形式存在,断口呈白亮色而得此名。 亚共晶白口铸铁:含碳量<4.3%的白口铸铁称为亚共晶白口铸铁。在室温下亚共晶白口铸铁的组织为珠光体+二次渗碳体+莱氏体。用4%硝酸酒精溶液浸蚀后,在显微镜下呈现黑色枝晶状的珠光体和斑点状莱氏体,其中二次渗碳体与共晶渗碳体混在一起,不易分辨出来。 共晶白口铸铁:共晶白口铸铁的含碳量为4.3%,它在室温下的组织由单一的共晶莱氏体组成。经4%硝酸酒精浸蚀后,在显微镜下,珠光体呈暗黑色细条或斑点状,共晶渗碳体呈亮白色。 过共晶白口铸铁:含碳量>4.3%的白口铸铁称为过共晶白口铸铁,在室温时的组织由一次渗碳体和莱氏体组成。用4%硝酸酒精溶液浸蚀后,在显微镜下可观察到在带黑色斑点的莱氏体基体上分布着亮白色的粗大条片状的一次渗碳体。

二元合金的显微组织

二元合金的显微组织文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

实验三二元合金的显微组织 (Microstructures of Binary Alloys) 实验学时:1 实验类型:综合 前修课程名称:《材料科学导论》 适用专业:材料科学与工程 一、实验目的 运用二元共晶型相图,分析相图中典型组织的形成及特征。 二、概述 二组元在液态下互溶,而在固态下有限互溶,且具有共晶转变特征的相图叫二元共晶相图。本次实验,以Pb—Sn系合金相图为例分析共晶、亚共晶、过共晶等不同成分合金的结晶过程及结晶后所形成组织的特征。简略相图如下: ⒈共晶合金 含%的合金为共晶合金(图中合金Ⅰ)。当从液态缓慢冷却时,在温度Te发生共晶转变,既Le→αc+βd。这一过程在Te温度下一直到液相完全消失为止。所得到的共晶组织由αc和βd两个固溶体组成。它们的相对量可用杠杆定律计算: 继续冷却时,将从α和β中分别析出βⅡ和αⅡ。由于从共晶体中析出的次生相常与共晶体中的同类相混在一起,很难分辨,这样,在结晶过程全部结束时合金获得非常细密的两相机械混合物。样品制备中的腐蚀剂是4%的硝酸酒精,显微镜中,α相呈暗色,β相呈亮色。参见图3-1。 (3-1)铅锡二元共晶(3-2)铅锡二元亚共晶 ⒉亚共晶合金 凡成分位于共晶点e以左,c点以右的合金(如图中的合金Ⅱ)叫亚共晶合金。

合金Ⅱ熔化后在液相线与固相线之间缓慢冷却时,不断地从液相中结晶出α固溶体。随着温度的下降,液相成分沿ac线变化,逐渐趋向于e 点;α相的成分沿固相线ac变化,并逐渐趋向于c点。 当温度降到共晶温度时,α相和剩余液相的成分将分别到达c点和e点。这时,成分为e点的液相发生前述的共晶转变,直到剩余液相全部转变为共晶组织为止。这时,亚共晶合金的组织是由先共晶α相和共晶体(α+β)所组成。在共晶温度以下继续冷却的过程中,将分别从α和β相中析出βⅡ和αⅡ。在显微镜下,除了从先共晶α相晶粒内或边界上析出的βⅡ有可能观察到外,共晶组织中析出的βⅡ和αⅡ一般不易辨认。合金中组织组成物的相对量也可以用杠杆定律来计算。亚共晶组织中的初晶α呈枝晶状分布。参见图3-2。 ⒊过共晶合金 凡成分位于共晶点e以右,d点以左的合金(如图中的合金Ⅲ)称为过共晶合金。这类合金的结晶过程类似于亚共晶合金,所不同的是:先共晶相不是α,而是β固溶体。结晶后的组织是由先共晶β相和共晶体(α+β)所组成。初晶β也呈枝晶状分布。参见图3-3、3-4。 (3-3)铅锡二元过共晶(100倍)(3-4)铅锡二元过共晶(25倍) ⒋离异共晶 靠近相图上的c点和d点成分的合金,由于初生相较多,发生共晶转变时,液相的量已所剩不多,且呈壳状分布在初生相的周围。此时,共晶转变过程中的某一个相不再形核,而是在初生相上成长;同时析出的另一个相被排挤到晶界上,使得失去了共晶组织的形态特征,这种现象称为离异共晶。参见图3-5。 (3-5)铅锡二元离异共晶(从左侧靠近d点,100倍)

快速凝固技术

快速凝固技术的研究进展 摘要:快速凝固技术是当材料科学与工程中研究比较活跃的领域之一,目前已成为一种金属材料潜在性能与开发新材料的重要手段。快速凝固技术得到的合金与常规合金有着不同的组织和结构特征,对材料科学和其它学科的理论研究以及开展实际生产应用起了重要的作用。介绍了快速凝固技术的原理和特点、主要方法和在实际中的应用和存在的问题。 关键词:快速凝固技术;合金;应用;存在问题

1 引言 随着对金属凝固技术的重视和深入研究,形成了许多种控制凝固组织的方法,其中快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段,同时也成了凝固过程研究的一个特殊领域[1]。过去常规铸造合金之所以会出现晶粒粗大,偏析严重、铸造性能差等缺陷的主要原因是合金凝固时的过冷度和凝固速度很小,这是由于它们凝固时的冷速很小而引起的。要消除铸造合金存在的这些缺陷,突破研制新型合金的障碍,核心是要提高熔体凝固时的过冷度,从而提高凝固速度,因此出现了快速凝固技术。 目前,快速凝固技术作为一种研制新型合金材料的技术已开始研究了合金在凝固时的各种组织形态的变化以及如何控制才能得到符合实际生活、生产要求的合金。着重于大的温度梯度和快的凝固速度的快速凝固技术,正在走向逐步完善的阶段。 2 快速凝固技术 1960年美国的Duwez等用铜辊快淬法,首次使液态合金在大于107K/S的冷却速度下凝固,在Cu—Si合金中发现了无限固溶的连续固溶体;在Ag—Ge合金中出现新的亚稳相;在Au—Si合金中形成非晶结构。在快速冷却所形成的亚稳结晶组织中,出现了一系列前所未见的重要的结构特征,表现出各种各样比常规合金优异的使用性能[2]。此后,快速凝固技术和理论得到迅速发展,成为材料科学与工程研究的一个热点。 快速凝固是指通过对合金熔体的快速冷却(≥104~106 K/s)或非均质形核被遏制,使合金在很大过冷度下,发生高生长速率(≥1~100 cm/s)凝固[3]。通过快速凝固技术获取的粉末和材料会具有特殊的性能和用途。由于它是一种非平衡的凝固过程[4],详细的说就是凝固过程中的快冷、起始形核过冷度大,生长速率高,促使固液界面偏离平衡,生成亚稳相(非晶、准晶、微晶和纳米晶),从

铁碳合金平衡组织观察实验报告23

铁碳合金平衡组织观察实验报告 一、实验目的 (1)观察和识别铁碳和金(碳素钢和白口铸铁)在平衡状态下的显微组织特征; (2)了解铁碳合金成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分、组织、性能之间的关系; (3)熟悉金相显微镜的使用。 二、实验原理 状态图是研究铁碳合金组织与成分关系的重要工具,了解和掌握状态图,对于制定钢铁材料的各种加工工艺有着很重要的指导意义。 所谓平衡状态的显微组织是指合金在极缓慢的条件下冷却到室温所得到的组织。铁碳合金的平衡组织主要是指碳钢和白口铸铁的缓慢冷却到室温得到的组织,它们是(特别是碳钢)工业上应用最广泛的金属材料,它们的性能与其显微组织有密切的关系。 三、使用的仪器设备 金相显微镜 四、实验方法、步骤 (1)实验前,阅读实验指导书,为实验做好理论方面的准备; (2)在老师的指导下调节好金相显微镜; (3)在金相显微镜下分别观察工业纯铁、20钢、45钢、65钢、T8钢、T12钢、亚共晶白口铁、共晶白口铁、过共晶白口铁等9种铁碳合金的平衡组织,识别钢和铁的组织形态的特征;根据相图分析各合金的形成过程;建立成 分,组织之间相互关系的概念; (4)画出所观察金相样品的显微组织示意图。 五、实验结果分析 (1)根据所观察并画出的金相样品的显微组织示意图,在图中标出组织,在图下标出:含碳量、组织、放大倍数、侵蚀剂。 样品名称:1.2%碳钢 状态:退火 显微组织:珠光体和网状渗碳体 放大倍数:500倍 侵蚀剂:3%硝酸酒精溶液 样品名称:共晶白口铁 状态:铸造 含碳量:4.3% 显微组织:莱氏体 放大倍数:400倍;侵蚀剂:3%酒精溶液 样品名称:工业纯铁 含碳量:C%小于0.02%

二元合金的显微组织

二元合金的显微组织内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

实验三二元合金的显微组织 (Microstructures of Binary Alloys) 实验学时:1 实验类型:综合 前修课程名称:《材料科学导论》 适用专业:材料科学与工程 一、实验目的 运用二元共晶型相图,分析相图中典型组织的形成及特征。 二、概述 二组元在液态下互溶,而在固态下有限互溶,且具有共晶转变特征的相图叫二元共晶相图。本次实验,以Pb—Sn系合金相图为例分析共晶、亚共晶、过共晶等不同成分合金的结晶过程及结晶后所形成组织的特征。简略相图如下: ⒈共晶合金 含Sn61.9%的合金为共晶合金(图中合金Ⅰ)。当从液态缓慢冷却时,在温度 Te发生共晶转变,既Le→α c +β d 。这一过程在Te温度下一直到液相完全消失为 止。所得到的共晶组织由α c 和β d 两个固溶体组成。它们的相对量可用杠杆定律 计算: 继续冷却时,将从α和β中分别析出β Ⅱ和α Ⅱ 。由于从共晶体中析出的次生相 常与共晶体中的同类相混在一起,很难分辨,这样,在结晶过程全部结束时合金获得非常细密的两相机械混合物。样品制备中的腐蚀剂是4%的硝酸酒精,显微镜中,α相呈暗色,β相呈亮色。参见图3-1。 (3-1)铅锡二元共晶(3-2)铅锡二元亚共晶 ⒉亚共晶合金

凡成分位于共晶点e以左,c点以右的合金(如图中的合金Ⅱ)叫亚共晶合金。 合金Ⅱ熔化后在液相线与固相线之间缓慢冷却时,不断地从液相中结晶出α固溶体。随着温度的下降,液相成分沿ac线变化,逐渐趋向于e 点;α相的成分沿固相线ac变化,并逐渐趋向于c点。 当温度降到共晶温度时,α相和剩余液相的成分将分别到达c点和e点。这时,成分为e点的液相发生前述的共晶转变,直到剩余液相全部转变为共晶组织为止。这时,亚共晶合金的组织是由先共晶α相和共晶体(α+β)所组成。在共 晶温度以下继续冷却的过程中,将分别从α和β相中析出β Ⅱ和α Ⅱ 。在显微镜 下,除了从先共晶α相晶粒内或边界上析出的β Ⅱ 有可能观察到外,共晶组织中 析出的β Ⅱ和α Ⅱ 一般不易辨认。合金中组织组成物的相对量也可以用杠杆定律来 计算。亚共晶组织中的初晶α呈枝晶状分布。参见图3-2。 ⒊过共晶合金 凡成分位于共晶点e以右,d点以左的合金(如图中的合金Ⅲ)称为过共晶合金。这类合金的结晶过程类似于亚共晶合金,所不同的是:先共晶相不是α,而是β固溶体。结晶后的组织是由先共晶β相和共晶体(α+β)所组成。初晶β也呈枝晶状分布。参见图3-3、3-4。 (3-3)铅锡二元过共晶(100倍)(3-4)铅锡二元过共晶 (25倍) ⒋离异共晶 靠近相图上的c点和d点成分的合金,由于初生相较多,发生共晶转变时,液相的量已所剩不多,且呈壳状分布在初生相的周围。此时,共晶转变过程中的某

铁碳合金平衡组织显微分析

铁碳合金平衡组织显微分析 金相试样的制备 一、实验目的 1.熟悉金相显微试样的制备过程 2.了解掌握金相显微试样的制备方法 二、概述 在利用金相显微镜作金相显微分析时,必须首先制备金相试样,我们在显微镜中所观察到的显微组织,是靠光线从试样观察面上的反射来实现的。若试样观察面上的反射光能进入物镜。我们就可以从目镜中观察到反射的象,否则就观察不到。 图2-1 光线在不同表面上的反射情况 由图2-1所示可见,未经制备的试样的表面相当于无数多个与镜筒不垂直的平滑表面,这是不能成象的。因此,我们要先把试样观察面制备成光滑平面。但是光滑平面在显微镜下只看到光亮一片,而不能看到显微组织结构特征,故还须用一定的浸蚀剂浸蚀试样观察面,使某些耐浸蚀弱的区域不同程度地受到浸蚀而呈现微观察的凸凹不平。这些区域的反射光线被散射而呈暗色。由于明暗相衬,在显微观察中就能表示试试样磨面组织结构的特征了。 金相试样的制备包括试样的切取、镶嵌、磨制抛光、锓蚀等五个步骤。 1. 取样 试样应根据分析目的和要求在有代表的位置上截取。一般地说,取横截面主要观察:1、试样边缘到中心部位显微组织的变化。2、表层缺陷的检验、氧化、

过滤、折叠等。3、表面处理结果的研究,如表面淬火、硬化层、化学热处理层、镀层等。4、晶粒度测定等。通过纵截面可观察:1、非金属夹杂;2、测定晶粒变形程度;3、鉴定带状组织及通过热处理消除带状组织的效果等。试样一般可用手工切割、机床切割、切片机切割等方法截取(试样大小为φ12×12mm圆柱体或12×12×12mm的立方体)。不论采用哪种方法,在切取过程中均不宜使试样的温度过高,以免引起金属组织的变化,影响分析结果。 2. 镶嵌 当试样的尺寸太小(如金属丝、薄片等)时,直接用手来磨制很困难,需要使用试样夹或利用样品镶嵌机,把试样镶嵌在低熔点合金或塑料(如胶木粉、聚乙烯及聚合树脂等)中,如图2-2所示。 图2-2 试样的镶嵌(见实验室挂图) 3. 磨制 试样的磨制一般分粗磨和细磨两道工序。 a. 粗磨:粗磨的目的是为了获得一个平整的表面,钢铁材料试样的粗磨可用锉刀锉平,也可在砂轮机上磨制。但应注意:试样对砂轮压力不宜过大。否则会在试样表面形成很深的磨良,增加精磨和抛光的困难,要随时用水冷却试样,以免受热引起组织交化;试样边缘的棱角若无保存必要,可先行磨圆(倒角),以免在细磨及抛光时撕破砂纸或抛光布,甚至造成试样从抛光机上飞出伤人。 b. 细磨:经粗磨后试样表面虽较平整,但仍还存在有较深的痕(如图2-3)所示。细磨的目的就是为了消除这些磨痕,以得到平整而光滑的磨面,为下一步

镁合金快速凝固技术的研究现状及进展

Sep2007 VoI.56NO.9 铸适 FOUNDRY909? 镁合金快速凝固技术的研究现状及进展 肖冬飞?,谭敦强1,欧阳高勋1,陈伟: (1南昌大学材料科学与工程学院,江西南昌330031;2.中国兵器科学院宁波分院,浙江宁波315103) 摘要:一NINON技术是改善镁台金组织结构、提高镁合金各项性能的重要技术。本文综述了快速凝固镁合盎的制备方法,描述了镁合盘各种快速凝固特征,旨在为今后高性能镁合金的研究提供方向和途径= 关键词:镁合金;快速凝固;单辊法;喷射成形 中图分类号:TGl46.T2文献标识码:A文章编号:lOOt一4977(2007)09—0909~05 CurrentStatusandDevelopmentofRapidlySolidified MagnesiumAlloys X限ODong.feil。TANDun.qian91.OUYANGGao-xunl,CHENWei2 (1.SchoolofMaterialsScienceandEngineering,NanchangUniversity,Nanchang330031,Jiangxi,China;2.NingboBranchofChinaOrdnanceScience,Ningbo315103,Zhejiang,Chinaj Abstmct:Rapidsolidificationtechnologycanimproveorganizationandpropertiesofmagnesiumalloys.Inthispaper,jtwasjntroducedthattherapidsolidificationtechnologytopreparethemagnesiumalloysanddescribesthecharacteristicsofrapidlysolidifiedmagnesiumalloysforthepurposeofprovidingthedirectionandthewayfortheresearchofhighperformancemagnesiumalloys. Keywords:magnesiumalloy;rapidsolidification;singleroller;sprayforming 作为工程应用中最轻的金属结构材料,镁合金具有比刚度及比强度高、电磁屏蔽性能强、尺寸稳定、资源丰富等一系列优点,在汽车、电子、航空、航天等领域具有越来越广阔的应用前景。但镁合金自身的一些缺点,如变形能力差、抗腐蚀性能和耐高温性能不高以及传统制备技术不足等成为其发展应用的瓶颈。采用快速凝固技术可以克服镁合金的一些缺点,实现镁合金综合性能的改善。近年来世界各国投入大量人力物力开展快速凝固镁合金的研究,并取得了大量成果。作者描述了镁合金的各种快速凝固特征,同时综述了近年来国内外镁合金快速凝固制备方法的研究现状和最新进展。旨在为今后高性能镁合金的研究提供参考。 1镁合金快速凝固特征 相对于传统铸锭冶金10-3~102K?S-I的冷却速度,快速凝固技术的冷却速度一般为103~109K呵1。在快的冷却速度下,镁合金凝固过程中的各种传输现象被抑制,从而使合金元素在固态基体中能继续保持高的溶解度,晶粒组织的长大受到抑制,合金成分及组织变得均匀,同时在凝固过程中也易产生一些新相。快速凝固镁台金组织结构上的改变也导致了镁合金力学性能和抗腐蚀性能的改善。 1.1扩展a(Mg)基固溶体的固溶度 快速凝固技术能明显扩展合金元素在基体镁中的固溶度【11,冷速越高,同溶度越大。原子半径与镁原子半径差在±15%范围内的合金元素在d(Mg)基体中的固溶度都可通过快速凝固提高。经熔体快淬后,银在镁中的最大固溶度提高1.5倍,钡则提高约1000倍。快速凝固镁合金中的同溶度扩展比机械合金化高,例如在快速凝固Mg.A1系合金中,Al在Mg中的最大固溶度为9lat.%,而在机械合金化处理的合金中仅为4.5at.%q。合金元素在a(Mg)基体中同溶度的增加,能使密排六方晶体结构的a(Mg)的轴比c/a值明显减小,可以在常温下激活非基面滑移,从而提供更多的滑移系以提高镁合金的塑性变形能力。 1.2细化组织形成多相弥散体系 快速凝固技术能有效细化镁合金的晶粒组织,减小枝晶网胞尺寸,在晶界或网胞上生成细小弥散的沉淀相,从而减小或消除合金成分偏析,抑制孪晶的形成。快速凝固镁合金的晶粒尺寸可减小到原始铸态尺寸的1/16,枝晶臂间距仅为5—8斗m。采用双辊快淬工艺可使 基金项目:国家国防重点基础研究发展规划资助项目。收稿日期:2007_【M-28。 作者简介:肖冬飞(1981一),男.湖南宣章人,硕士研究生,主要从事高性能镁合金研究。通讯联系人:谭敦强.E-mail:tdtmqiang@sohuCOfll万方数据

铁碳合金平衡组织观察与分析

实验四铁碳合金平衡组织观察与分析 一、实验目的 1、熟悉掌握铁碳合金(碳钢及白口铸铁)在平衡状态下的显微组织。 2、分析成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分、组织与性能之间的相互关系。 二、实验原理 铁碳合金的显微组织是研究和分析钢铁材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷却条件下(如退火状态,即接近平衡状态)所得到的组织。可根据以组织组成物标注的Fe-Fe3C合金相图来分析铁碳合金在平衡状态下的显微组织,如图4–1所示。 图4–1以组织组成物标注的Fe-Fe3C合金相图 铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广的金属材料,它们的性能与其显微组织密切相关。此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深

对Fe-Fe3C相图的理解。 从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相所组成。但是由于含碳量不同,铁素体和渗碳体的相对数量、析出条件以及分布情况均有所不同,因而呈现各种不同的组织形态。 在Fe-Fe3C相图中,ABCD为液相线,AHJECF为固相线。相图中各特征点的温度、成分及其含义见表4–1。 表4–1铁碳相图中各特征点的说明 Fe- Fe3C相图中有二条水平线(此处不介绍包晶线及包晶反应): ECF水平线(1148?C)为共晶线,在该线温度下将发生共晶转变:L4.3→ A2.11 + Fe3C 。转变产物为奥氏体和渗碳体的机械混合物,称高温莱氏体(Ld)。 PSK水平线(727?C)为共析线,在该线温度下将发生共析转变:A0.77→ F0.0218 + Fe3C 。转变产物为铁素体和渗碳体的机械混合物,称珠光体(P)。共析线又称为A1线。 Fe- Fe3C相图中还有固态转变线:GS为A体?F体固溶体转变线,又称为A3线;ES线为碳在A体中的固溶线。称为A cm线;PQ线为碳在F体中的固溶线。

铁碳合金非平衡组织观察

实验四铁碳合金非平衡组织观察一、实验目的 识别铁碳合金在不同热处理状态下的显微组织 加深对TTT曲线的理解及非平衡状态下钢的成份热处理工艺、组织之间的关系的认识。二.实验原理碳钢经热处理后的组织,可以是平衡或接近平衡状态(如退火、正火)的组织,也可是不平衡组织(如淬火组织),因此在研究热处理后的组织时,不但要参考铁碳相图,还要利用C曲线。 铁碳相图能说明慢冷时不同碳质量分数的铁碳合金的结晶过程和室温下的组织,计算相的质量分数。C曲线则能说明一定成分的铁碳合金在不同冷却条件下的转变过程,及能得到哪些组织,如图4-1。 1.冷却时所得的各种组织组成物的形态a.珠光体(图4-2) 珠光体是奥氏体高温转变的产物,根据其片层间距的大小可分为: (1)珠光体(P)是铁素体与渗碳体的机械混合物,层片较粗。 (2)索氏体(s)是铁素体与渗碳体的机械混合物。其层片比珠光体更细密,在显微镜的高倍(700倍以上)放大下才能分辨。 (3)屈氏体(T)也是铁素体与渗碳体的机械混合物。片层比索氏体更细密,在一般光学显微镜下无法分辨,只能看到如墨菊状的黑色组织。当其少量析出时,沿晶界分布呈黑色网状包围马氏体。当析出量较多时,呈大块黑色晶团状。只有在电子显微镜下才能分辨其中的片层。b.贝氏体 贝氏体是奥氏体中温转变的产物,也是铁素体与渗碳体的两相混合物,但其金相形态与珠光体类组织不同,并因钢的成分和形成温度不同而有差别。其组织形态主要有二种:(1)上贝氏体(B)上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗

碳体所组成的非层状组织。当转变量不多时,在光学显微镜下为成束的铁素体条向奥氏体晶界内伸展,具有羽毛状特征。在电镜下铁素体以几度到十几度的小位向差相互平列,渗碳体沿条的长轴方向排列成行。 (2)下贝氏体下贝氏体是在片状铁索体内部沉淀有碳化物的混合物组织。由于下贝氏体易受浸蚀,所以在显微镜下呈黑色针状,在电镜下是以片状铁索体为基体,其中分布着很细的碳化物片,大致与铁索体片的长轴呈55。~65。的角度。C.马氏体( 马氏体(M)是奥氏体低温转变的产物,是碳在α—Fe中的过饱和固溶体。马氏体可分为两大类,即板条状马氏体和片状马氏体。 (1)板条状马氏体在光学显微镜下,板条状马氏体的形态呈现为一束束相互平行的细长条状马氏体群,在一个奥氏体晶粒内可有几束不同取向的马氏体群。每束内的条与条之间以小角度晶界分开,束与束之间具有较大的位向差。板条状马氏体的立体形态为细长的板条状,其横截面据推测呈近似椭圆形。由于条状马氏体形成温度较高,在形成过程中常有碳化物析出,即产生自回火现象,故在金相试验时易被腐蚀呈现较深的颜色。在电子显微镜下,马氏体群是由许多平行的板条所组成。经透射电镜观察发现,板条状马氏体的亚结构是高密度的位错。含碳低的奥氏体形成的马氏体呈板条状,故板条状马氏体又称低碳马氏体.因亚结构为位错又称位错马氏体。 (2)片状马氏体在光学显微镜下,片状马氏体呈针状或竹叶状,片间有一定角度,其立体形态为双凸透镜状。因形成温度较低,没有自回火现象,故组织难以浸蚀,所以颜色较浅,在显微镜下呈白亮色。用透射电镜观察,其亚结构为孪晶。 含碳高的奥氏体形成的马氏体呈片状,故称为片状马氏体,又称高碳马氏体;根据亚结构特点.又称孪晶马氏体。 马氏体的粗细取决于淬火加热温度,即取决于奥氏体晶粒的大小。高碳钢在正常淬火温度下加热,淬火后得到细针状马氏体,在光学显微镜下呈布纹状,仅能隐约见到针状,故又称为隐晶马氏体。如淬火温度较高,奥氏体晶粒粗大,则得到粗大针状马氏体。d.残余奥氏体(Ar) 当奥氏体中碳质量分数大于0.5%时,淬火时总有一定量的奥氏体不能转变成为马氏体,而保留到室温,这部分奥氏体即为残余奥氏体。它不易受硝酸酒精溶液的浸蚀,在显微镜下呈白亮色,分布在马氏体之间,无固定形态,淬火后未经回火时,残余奥氏体与马氏体很难区分,都呈白亮色。只有回火后才能分辨出马氏体间的残余奥氏体。淬火钢经不同温度回火后,所得的组织通常分为三种: (1)回火马氏体淬火钢在150℃—250℃之间进行低温回火时,马氏体内析 出碳化物,这种组织称为回火马氏体。与此同时,残余奥氏体也开始转变为回火马氏体。在显微镜下回火马氏体仍保持针(片)状形态。因回火马氏体易受浸蚀。所以为暗色针状组织。回火马氏体具有高的强度和硬度,而韧性和塑性较淬火马氏体有明显改善。 (2回火屈氏体是淬火钢在350℃~500℃进行中温回火所得的组织,是铁素体与粒状渗碳体组成的极细密混合物。组织特征是,铁素体基本上保持原来针(片)状马氏体的形态,而在基体上分布着极细颗粒的渗碳体,在光学显微镜下分辨不清,为黑点。但在电子显微镜下可观察到渗碳体颗粒。回火屈氏体有较好的强度,最佳的弹性,韧性也较好。(3)回火索氏体是淬火钢在500~C~650~C高温回火时所得到的组织。它是由粒状渗碳体和等轴形铁素体组成的混合物。在光学显微镜下可观察到渗碳体小颗粒,它均匀分布

镁合金力学性能强化的几种途径

镁合金力学性能强化的几种途径 摘要对近几年镁合金力学性能强化的研究进行了总结,主要途径归纳为三个方面,一是热处理,二是合金化,三是加工工艺。 关键词:镁合金力学性能热处理合金化加工工艺 镁及镁合金是目前最轻的金属结构材料,具有密度低、比强度和比刚度高的特点,而且还具有优良的阻尼性能、较好的尺寸稳定性和机械加工性能及较低的铸造成本。广泛应用于航空航天、汽车和电子等行业。但是,镁合金密排六方的晶体结构及较少的滑移系决定了其塑性变形能力较差,所以应该用一些方法来提高其力学性能,本文就近几年镁合金力学性能方面的研究进行总结,并提出建议。 1 镁及其合金的力学性能 镁是一种二价的碱金属元素,属于密排六方晶系,这种密排六方结构使之在力学和物理性能方面表现出强烈的各向异性。纯镁象其他纯金属一样,表现出相对低的强度。其弹性模量E=45GPa,切变模量K=17GPa,比弹性模量E/ρ=25GPa。因此必须用其他元素进行合金化以获得所需要的性能。目前主合金元素是Al、Zn 和Re等,这些合金元素使镁合金得到不同程度的强化。变形镁合金主要通过热变形和冷变形来提高强度。热处理是提高镁合金力学性能的重要途径。另外其他一些工艺或处理也能有效提高镁合金的力学性能,如颗粒增强复合材料、半固态铸造和熔体热速处理、表面处理等。 2强化途径 2.1 热处理 2.1.1铸造镁合金的热处理 铸造镁合金的室温和高温力学性能强化途径有固溶处理和失效处理[1]。对某高锌镁合金Mg-Zn-Al-RE进行热处理[2],固溶处理温度340℃,保护剂为硫铁矿石,保温时间20 h,热水淬火,淬火介质采用70~75℃热水;时效处理温度180℃,保温时间10 h,出炉空冷。经固溶及时效处理后,合金的相成分主要为α-Mg,还有含微量稀土的其它固溶强化三元相。其中比较典型的固溶强化相有Ф相

铁碳合金平衡组织观察精讲实验报告

实验四铁碳合金平衡组织观察 一、实验目的: 1.了解铁碳合金在平衡状态下的显微组织。 2.分析成分对铁碳合金显微组织的影响,从而理解成分、组织与性能之间的相互关系。 二、实验原理及内容: 铁碳合金的显微组织是研究和分析钢铁材料性能的基础,平衡组织指合金在极其缓慢的冷却速度下得到的组织。在实验条件下,退火态的铁碳合金组织可以看成平衡组织。铁碳合金平衡组织是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广的金属材料,它们性能与其显微组织密切相关。 1. 铁碳合金平衡状态图 铁碳合金的平衡组织是指铁碳合金在极为缓慢的冷却条件下所得到的组织。可以根据铁碳相图(如图5-1所示),来分析铁碳合金在平衡状态下的显微组织。 图5-1 Fe-Fe C相图 3 从—相图上可以看到所有的碳钢和白口铸铁在室温时的组织均由铁素体(F)和渗碳体()这两个基本相组成,但是由于含碳量的不同,铁素体和渗碳

体的相对数量、析出条件以及分布情况均有所不同。因而呈现各种不同的组织形态,其性能也各不相同。

2.几种基本组织组成物 用侵蚀剂显露的碳钢和白口铸铁,在金相显微镜下具有下面几种基本组织组成物。 表1 各种铁碳合金在室温下的平衡组织 3、各种组成相或组织组成物的特征 a)铁素体(F)是碳溶于α-Fe的固溶体。铁素体为体心立方晶格。 具有磁性及良好的塑性,硬度较低,一般为80HB~120HB,经3%~5% 硝酸酒精溶液浸蚀后,在显微镜下观察呈白色晶粒,见工业纯铁的组织 (如图1所示)。亚共析钢中,随着钢中碳质量分数的增加,珠光体量增 加而铁素体量减少。铁素体量较多时,呈块状分布(如图2所示)。当钢 中碳质量分数接近共析成份时,铁素体往往呈断续的网状,分布于珠光 体的周围(如图3所示)。

实验六 二元合金显微组织分析

实验六二元合金显微组织分析 一、实验目的 1.熟悉几种典型的二元合金平衡和非平衡显微组织及几种典型成分的铁碳 合金的平衡组织。 2.学会根据已知相图及显微组织观察分析各种组织的形成过程。 3.建立二元合金中成分、组织和性能之间变化的规律。 二、实验设备 1.金相显微镜30台;2. 标准金相试样5套;3. 标准金相挂图1套;4. 铁碳相图挂图1套。 三、实验内容 由于纯金属性能的局限,特别是在强度方面远不能满足工业的要求,故生产中使用的金属材料几乎都是合金。实用合金有二元合金,也有多元合金。而不少多元合金可粗略地作为二元合金来分析。所以就金属材料的研究而言,二元合金是最基本的合金体系。 二元合金的主要分析方法,一是借助于合金相图以分析相的组成;二是借助于显微观察以分析显微组织的形状。二元相图的种类很多,不同种类的二元合金经不同处理后的显微组织观察也有很丰富的内容。本实验选配了几种典型成分的合金,经不同处理,供大家观察其组织,从而进一步熟悉不同的二元相图及二元系合金中成分、组织及性能之间的关系,同时了解平衡组织与实际铸造生产时所得到的非平衡组织之间的差异和联系。 铁碳相图是比较复杂的二元相图,它是由四种基本形式的相图—匀晶相图、包晶相图、共晶相图和共析相图所构成。铁碳合金在工业生产中有着广泛的应用,铁碳合金的研究对生产实验有着重要的指导意义。本实验准备了各种典型成分的碳钢退火态试样和铸态白口铸铁试样,供大家观察其平衡组织(铁碳合金不平衡组织的观察作为另一项实验的内容),以进一步了解钢(铁)的碳分、组织和性能三者之间的关系。

本实验所用试样如下: 1. 铁碳合金试样: (1)纯铁退火态4%硝酸酒精腐蚀; (2)20钢退火态4%硝酸酒精腐蚀; (3)45钢退火态 4%硝酸酒精腐蚀; (4)60钢退火态4%硝酸酒精腐蚀; (5) T8钢退火态4%硝酸酒精腐蚀; (6)T12钢退火态4%硝酸酒精腐蚀; (7)T12钢退火态苦味酸钠腐蚀; (8)T12钢球化退火4%硝酸酒精腐蚀; (9)亚共晶白口铁铸态4%硝酸酒精腐蚀; (10)共晶白口铁铸态4%硝酸酒精腐蚀; (11)过共晶白口铁铸态4%硝酸酒精腐蚀; 2. 其它二元合金试样: (1)纯铜退火态; (2)含氧工业纯铜铸态; (3)30%Ni-70%Cu 铸态; (4)30%Ni-70%Cu 铸造后 900℃退火; (5)纯Ni 退火态; (6)12%Sb-88%Sn 铸态; (7)20%Sb-80%Sn 铸态; (8) 8%Sb-92%Sn 铸态; (9)13%Sb-87%Pb 铸态慢冷; (10) 135Sb-87%Pb 铸态快冷; (11) 30%Sb-70%Pb 铸态快冷; 四、实验步骤 1.认真观察实验室准备的碳钢和其它二元合金各个试样的显微组织,联系 相图了解其组织形成过程。

快速凝固技术概述

快速凝固技术国内外发展及其应用 1.快速凝固技术国内外发展 随着对金属凝固技术的重视和深入研究,形成了许多种控制凝固组织的方法,其中快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段,同时也成了凝固过程研究的一个特殊领域。 快速凝固的概念和技术源于20世纪60年代初Duwez等人的研究,他们发现某些共晶合金在平衡条件下本应生成双相混合物,但当液态合金以足够快的冷却速度凝固合金液滴被气体喷向冷却板时,则可能生成过饱和固溶体、非平衡晶体,更进一步生成非晶体。上述结果稍后被许多研究结果所证实,而且由此发现一些材料具有超常的性能,如电磁、电热、强度和塑性等方面的性能,出现了用于电工、电子等方面的非晶材料。20世纪70年代出现了用快速凝固技术处理的晶态材料,80年代人们逐渐把注意力转向各种常规金属材料的快速凝固制备上,90年代大块非晶合金材料的开发与应用取得重大进展。快速凝固技术是目前冶金工艺和金属材料专业的重要领域,也是研究开发新材料手段。 快速凝固一般指以大于 5 10 ~ 6 10 K/s的冷却速率进行液相凝固成固相,是一种非平衡的 凝固过程,通常生成亚稳相(非晶、准晶、微晶和纳米晶),使粉末和材料具有特殊的性能和用途。由于凝固过程的快冷、起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。加快冷却速度和凝固速率所起的组织及结构特征可以近似地用图1来表示。从上图我们不难看出,随着冷却速度的加快,材料的组织及结构发生着显著的变化,可以肯定地说,它也将带来性能上的显著变化[1]。 快速凝固技术得到的合金具有超细的晶粒度,无偏析或少偏析的微晶组织,形成新的亚稳相和高的点缺陷密度等与常规合金不同的组织和结构特征。实现快速凝固的三种途径包括:动力学急冷法;热力学深过冷法;快速定向凝固法。由于凝固过程的快冷,起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。 1.1快速凝固技术的主要方法 (1)动力学急冷快速凝固技术 动力学急冷快速凝固技术简称熔体急冷技术,其原理可以概括为:设法减小同一时刻凝固的熔体体积与其散热表面积之比,并设法减小熔体与热传导性能很好的冷却介质的界面热阻以

快速凝固镁合金

快速凝固镁合金 镁的晶体结构为密排六方,合金元素在镁基体中扩散速率很低,而且在通常使用的镁合金中凝固范围均较宽,因此在凝固过程中容易产生晶间偏析和形成非平衡相,故镁合金塑形很差。快速凝固过程中,镁合金的各种传输现象被减弱或抑制,晶粒组织的长大受到局限,易形成超细的晶粒度、无偏析或者少偏析的微晶组织和亚稳相。组织上的改变导致镁合金力学性能和抗腐蚀性能的改善,使其具有良好的室温力学性能、高温力学性能和抗腐蚀性能,可制备非晶、准晶、微晶和纳米晶合金。 快速凝固制备镁及镁合金的方法很多,主要分为3类:1) 雾化喷射技术,包括喷射成型技术。2) 连续急冷模冷铸造技术。3) 在已有的镁合金材料的表面进行的原位快凝技术[18,19]。目前采用较多的单辊快速凝固装置可制备薄带状产品。 1.1快速凝固技术发展概述 快速凝固作为一种新型的金属材料制备技术,其基本原理是设法将合金熔体分散成细小的液滴,减小熔体体积与散热面积的比值,提高熔体凝固时的传热速度,抑制晶粒长大,消除成分偏析。快速凝固合金组织特点:(1) 偏析倾向减小,成分均匀化;(2) 形成超饱和固溶体;(3) 组织超细化、尺寸均匀化;(4) 晶体缺陷增加产生亚稳晶体相,甚至准晶、非晶相。回顾快速凝固技术50余年的发展历史,可分为以下三个阶段:1) 伴随着非晶合金的问世,在随后的二十多年快速凝固技术主要用于研究和生产非晶、微晶功能材料;2) 八十年代后,应用快速凝固技术在Al-Mn 合金中率先发现晶体学上极具理论研究价值的准晶相,从而掀起了准晶研究的热潮;3) 近二十几年来,研究主要集中在快速凝固材料组织与性能的定量控制与预测上。如深过冷快速凝固技术的开发、非晶中纳米晶的析出、表面重熔技术以及高压下非平衡材料的制备等。非平衡条件下材料的组织形成与控制己成为材料学界研究的新热点。 与传统材料制备技术相比,快速凝固技术具有一系列优点,如合金熔体的凝固速度快、冷速高、合金元素过饱和固溶度高、晶粒组织细小、合金成分及组织均匀、容易产生亚稳相等。由此而制得的材料具有优异的力学性能和抗腐蚀性能,以及通过产生新的相组成而获得耐摩擦、高电阻率等其他优异性能。目前,综合开发镁及镁合金已成为国际共识,确立的几个主要研发方向包括:降低生产成本、研究和开发产品的制备工艺、防腐与表面处理、提高合金室温和高温机械性能新

相关文档
相关文档 最新文档