文档库 最新最全的文档下载
当前位置:文档库 › 浅谈CA6140A卧式车床的维修

浅谈CA6140A卧式车床的维修

浅谈CA6140A卧式车床的维修
浅谈CA6140A卧式车床的维修

2016 届机械工程系专业机电设备维修与管

学号 021********* 学生姓名刘鹏飞

指导教师孙志平

完成日期 2016年 6月 24日

毕业设计(论文)任务书

毕业设计(论文)题目:浅谈CA6140A卧式车床的维修

专业:机电设备维修与管理姓名:刘鹏飞

毕业设计(论文)工作起止时间:

毕业设计(论文)的内容要求:科学技术的发展,对机械产品提出了高精度高复杂性的要求,而且产品的更新换代也在加快,这对机床设备不仅提出了精度和效率的要求,而且也对其提出了通用性和灵活性的要求。CA6140A卧式车床是在CA6140卧式车床的基础上不断改进完善发展的新品种。是现代机床技术水平的重要标志。是衡量机械制造工艺水平的重要指标,因此,如何更好的使用机床是一个很重要的问题。由于机床是一种价格昂贵的精密设备,因此,其维护更是不容忽视。

指导教师:孙志平

2016年1月5日

目录

摘要 (1)

引言 (2)

第一章CA6140A卧式车床概述 (3)

1.1 CA6140A卧式车床结构部件及功能 (3)

1.2 CA6140A卧式车床的主要技术参数 (4)

1.3 CA6140A卧式车床结构特点 (4)

第二章CA6140A卧式车床分析与维修 (5)

2.1、影响表面加工精度的故障 (5)

2.1.1 车削外圆尺寸达不到要求 (5)

2.1.2车削圆工件表面粗糙度达布到要求 (5)

2.1.3 精车圆柱表面时出现混乱的波纹 (6)

2.1.4 用小滑板移动动作精车时出现工件母线直线度降低或表面粗糙度值增大 (6)

分析 (7)

2.1.5 精车外径时圆周表面上固定的位置上有一节波纹 (7)

2.1.6 工件精车端面后出现端面振摆超和有波纹 (7)

2.1.7 对精车后的工件端面,车床表面直线度发生读数差值 (7)

2.2、产生运动机械障碍的故障 (8)

2.2.1 发生闷车现象 (8)

2.2.2 发生切削自振现象 (8)

2.2.3 停机后主轴有自转现象或制动时间太长 (8)

2.2.4 主轴箱变速手柄杆指向转速数字的位置不准 (9)

2.2.5 主轴箱某一挡或几挡转动噪声特别大 (9)

2.2.6 溜板箱内自动进给手柄容易脱开 (9)

2.3、润滑系统产生的故障 (10)

2.3.1 主轴箱内窗不滴油 (10)

2.3.2 主轴箱手柄座轴端漏油 (10)

2.3.3 主轴箱轴端法兰盘处漏油 (10)

2.3.4 溜板箱轴端漏油 (11)

2.4、机床电气的安装与维修 (11)

2.4.1 CA6140A型普通车床电力拖动特点 (11)

2.4.2 CA6140A型普通车床的电气控制电路 (11)

致谢 (13)

参考文献 (14)

摘要

科学技术的发展,对机械产品提出了高精度高复杂性的要求,而且产品的更新换代也在加快,这对机床设备不仅提出了精度和效率的要求,而且也对其提出了通用性和灵活性的要求。CA6140A卧式车床是在CA6140卧式车床的基础上不断改进完善发展的新品种。是现代机床技术水平的重要标志。是衡量机械制造工艺水平的重要指标,因此,如何更好的使用机床是一个很重要的问题。由于机床是一种价格昂贵的精密设备,因此,其维护更是不容忽视。

【关键字】结构特点、功能、主轴箱、传动系统、机械部分改造、故障分析与检修

引言

车床主要用于内圆、外圆和螺纹等成型面加工的金属切削机器。车床是主要用车刀对旋转的工件进行车削加工的机床。在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。车床主要用于加工轴、盘、套和其他具有回转表面的工件,是机械制造和修配工厂中使用最广的一类机床。车床发展古代的车床是靠手拉或脚踏,通过绳索使工件旋转,并手持刀具而进行切削的。脚踏车床

1797年,英国机械发明家莫兹利创制了用丝杠传动刀架的现代车床,并于1800年采用交换齿轮,可改变进给速度和被加工螺纹的螺距。1817年,另一位英国人罗伯茨采用了四级带轮和背轮机构来改变主轴转速。

为了提高机械化自动化程度,1845年,美国的菲奇发明转塔车床。

1848年,美国又出现回轮车床

1873年,美国的斯潘塞制成一台单轴自动车床,不久他又制成三轴自动车床

20世纪初出现了由单独电机驱动的带有齿轮变速箱的车床。

第一次世界大战后,由于军火、汽车和其他机械工业的需要,各种高效自动车床和专门化车床迅速发展。为了提高小批量工件的生产率,40年代末,带液压仿形装置的车床得到推广,与此同时,多刀车床也得到发展。50年代中,发展了带穿孔卡、插销板和拨码盘等的程序控制车床。数控技术于60年代开始用于车床,70年代后得到迅速发展。

第一章CA6140A卧式车床概述

CA6140A卧式车床是在CA6140卧式车床的基础上不断改进完善,发展的新品种。CA6140A卧式车床采用齿轮有级变速,变速范围较宽,加工范围大,可在低速时加工大模数蜗杆,并有高速细进给量;主轴孔径较大,看通过较粗的加工棒料。CA6140A卧式车床是一种主轴水平布置,用于车削圆柱面、圆锥面、端面、螺纹、成形面等使用范围较广的车床。卧式车床的精度等级共划分为三种等级,即普通精度级P,精密级M和高精度级。GCA6140A卧式车床的精度符合国家标准GB/T4020-1997《卧式车床精度检验》的要求。

1.1 CA6140A卧式车床结构部件及功能

(1)主轴箱。它是装有主轴的箱形部件。主轴箱固定在床身的左端,内部装有主轴和变速传动机构。工件通过卡盘等夹具,装在主轴前端。在主电动机驱动下,动力经主轴箱的变速传动机构传给主轴,使主轴带动工件按规定的转速旋转,实现主运动。

(2)进给箱。它是装有近给变换机构的箱形部件。作用是变换进给量,并把运动传给溜板箱。

(3)溜板箱。它是用于驱动溜板移动的传动箱。作用是带动刀架实现纵向和横向进给、螺纹切削运动或快速移动。

(4)刀架。它也称方刀架,主要用于安装刀具,并可作移动或回转。可同时安装四把刀具,可快速手动换刀,按需要手动转位使用。

(5)尾座。主要配合主轴箱支承工作或加工工具的部件。功能是用后顶尖支承长工件;还可以在尾座套筒内安装钻头、铰刀等孔加工工具,采用手动进给进行空加工;也可横向调整尾座体车削锥轴。

(6)床身。它是用于支承和连接若干部件。部件都安装在床身上以保持部件相互位置精度。

1.2 CA6140A卧式车床的主要技术参数

1.3 CA6140A卧式车床结构特点

(1)床身宽于一般车床,具有较高的刚度,导轨面经中频淬火,经久耐磨。

(2)机床操作灵使集中,滑板没有快移机构。采用单手柄形象化操作,宜人性好。

(3)机床结构刚度与传动刚度均高于一般车床,功率利用率高,适于强力切削。

第二章CA6140A卧式车床分析与维修

机床通过一段时间的工作后,各种各样的故障会不断出现,如零件的自然破损·零件的材质不良·部件组装部不当·操作不按规程等都会引发故障的产生。根据机床的维修原理,结合典故故障的分析处理模式,用推理和综合分析的方法来解决各类故障。

2.1、影响表面加工精度的故障

2.1.1 车削外圆尺寸达不到要求

【故障原因分析】

(1)操作者看错回样回刻度使用不当

(2)车削时盲目吃刀,没有试切削

(3)量具本身有误差或测量不准确

(4)由于切削热的影响,使工件尺寸发生变化

【故障排除与检修】

(1)车削时必须看清回样尺寸要求,正确使用刻度盘,看清刻度数值。

(2)量具使用前必须仔细检查和调整零位,摇臂钻床正确掌握测量方法,实施首件检查制度,避免批量报废。

(3)根据加工余量放出被吃刀量,进行试刀削,然后修正被吃到量。

(4)不能在工件温度较高时测量,应先掌握工件的收缩情况。也可在车削时浇注切削液,降工作的温度。

2.1.2车削圆工件表面粗糙度达布到要求

分析

(1)车床刚性不足,入滑板的镶条过松,传动件不平衡或主轴太松引起振动。

(2)车刀刚性不足引起松动。

(3)工件刚性不足引起松动。

(4)低速切削时没有加切削液。

(5)切削用量选择不合适。

(6)切削拉毛已加工的表面。

检修

(1)消除或防止由于车床刚性不足而引起的不平衡或松动,正确调整车床各部分的间隙。

(2)增加车刀的刚性和正确安装车刀。

(3)增加工件的安装刚性。

(4)低速切削时应加切削液。

(5)进给量不宜太大,精车余量和切削速度要选择适当。

(6)控制切削的形状和排出的方向。

2.1.3 精车圆柱表面时出现混乱的波纹

分析

(1)主轴的轴向游隙超差。

(2)主轴的滚动轴承滚道磨损,某粒滚珠磨损,或间隙过大。

(3)主轴的滚动轴承外圈与主轴箱主轴孔的间隙过大。

(4)用卡盘夹持工件切削时,因卡盘后面的连接盘磨损而与主轴配合松动,车床使工件在车削中不稳定;或卡爪呈喇叭孔形状使工件夹紧不牢。

(5)溜板车床滑动表面之间间隙过大。

(6)进给箱·溜板箱·托架的二支承不同轴,转动时有卡阻现象。

俭修

(1)可调整主轴后端的推力轴承的间隙。

(2)应调整或更换主轴的滚动轴承,并加强润滑。

(3)用千分尺·气缸表等检查主轴孔。车床圆度允许误差为0·012mm,圆柱度允许误差为0·01mm,前后轴孔的同轴度允许误差为0.015mm,轴承外圈与主轴孔的配合过盈量为0~0.02mm。如果超差值过大无法用局部镀镍的方法修复,则可采用鏿孔镶套的办法解决。

(4)可先行并紧卡盘后面的连接盘及安装卡盘的螺钉。如果是卡爪喇叭时,一般用加垫铜皮的方法即可解决。

(5)找正光杠、丝杠与床身导轨的平行度,校正托架的安装位置,调整进给箱、溜板箱、托架二支承的同轴度,使安鞍在移动时无卡阻现象。

2.1.4 用小滑板移动动作精车时出现工件母线直线度降低或表面粗糙度值增大

(1)小滑板导轨底面度及燕尾-的直线超差,使小滑板移动的轨迹与主轴轴心不平行。

(2)小滑板与导轨滑动间隙调整不合适。

(3)小滑板丝杠弯曲螺母不同轴。

俭修

(1)刮研修正小滑板导轨及燕尾。

(2)调整-条使之松紧合适。

(3)校正调直使之同轴。

2.1.5 精车外径时圆周表面上固定的位置上有一节波纹

分析。

(1)齿条表面在某处-出或齿条之间的接缝不良或某粒齿齿厚与众不同。

俭修

(1)仔细校正齿条的接缝配合处,如遇到齿条上某处一齿特粗,可车床修整该与其他齿的齿厚相同,如某一齿特细,可考虑更换齿条。

(2)

2.1.6 工件精车端面后出现端面振摆超和有波纹

分析

(1)主轴轴向-动过大。

(2)中滑板横向进给不均匀。

(3)中滑板丝杠弯曲与螺母间隙过大。

俭修

(1)调整主轴后端的推力轴承。

(2)检查传动齿轮的齿合间隙,并调整中滑板的-条间隙。

(3)调整中滑板板丝杠与螺母的间隙或重配螺母,并校直丝杠。

2.1.7 对精车后的工件端面,车床表面直线度发生读数差值

分析

(1)理论上讲,在测量车刀本身运动轨迹时,在工件端面的前半径内,百分表的读数应该不变的。出现读数-值说明床鞍的上导轨面直。

(2)与床鞍上导轨相配合的-条有-动。

(1)测量床鞍上导轨燕尾面的直线度全长允-为0.02mm,如果确定存在较大误差时应刮研修直,并对燕尾导轨的平行度进行测量,导轨的平行度允差为0.002mm。

(2)检查修理中滑板下与车床鞍相配合的-条。

2.2、产生运动机械障碍的故障

2.2.1 发生闷车现象

分析

主轴在切削负荷较大时,出现了转速明显地低于标牌转速或者自动停车现象。故障产生的常见原因是由于主轴箱中的片式摩损离合器的摩擦片间隙调整过大,或者摩擦与摆杠、滑环等零件磨损严重。普通车床如果电动机的传动带调节过松也会出现这种情况。

俭修

首先应检查并调整电动机传动带的松紧程度,然后再调整摩擦离合器的摩擦片间隙。如果还不能解决问题,应检查相关件的磨损情况,如内,外摩擦片、摆杠、滑环等件的工作表面是否产生严重磨损。发现问题应该及时进行修理或更换。

2.2.2 发生切削自振现象

分析

用切-刀切-时,或者加工工件外圆切削负载较大时,在切削过程中会发生刀具相对工件的振动。切削自振现象的产生及其振动的强弱与设备切削系统的动则度,工件的切削刚度及切削条件有关。普通车床当切削条件改变以后,切削自振现象仍然不能排除,主要应检查设备切削系统刚度的下降情况。尤其主轴前轴承的径向间隙过大,溜板与床身导轨之间的接触面积过小等原因都容易产生这种现象。

俭修

首先要将主轴前轴承安装正确,间隙调整合适,使主轴-孔中心线的径向圆跳动值等要求。在此基础上,再对溜板和床身导轨进行检查和刮修,提高其接触刚度。若还不能解决问题,应对切削系统相关零件的配合关系逐个进行检查,发现影响动刚度的因素,务必进行排除。

2.2.3 停机后主轴有自转现象或制动时间太长

分析

(1)摩擦离合器调整过紧,停机后摩擦片仍未完全脱开。

(2)主轴制动机力不够。

(1)调整好摩擦离合器。

(2)调整主轴制动机构,制动轮的外面包有制动带。普通车床调整后检查当离合器压紧时制动带必须完全松开,否则应把调节螺钉销钉销微松开一些,控制在主轴转速为32or/raim时。2-3转制动。

2.2.4 主轴箱变速手柄杆指向转速数字的位置不准

分析

主轴箱变速机构有链条传动,链条松动了变速位置就不准。

俭修

主轴箱变速机构有链条调整方法:松开螺钉,转动偏心轴调整链条松紧,使转速手柄杆指向转速数字中央,紧上螺钉使钢钢球压钢球,将偏心紧固在主轴箱体上。

2.2.5 主轴箱某一挡或几挡转动噪声特别大

分析

(1)主轴箱内传递这一挡成几挡转速的齿合齿轮齿廓有缺损或变形。

(2)这一挡或几挡转速涉及的轴承有异常。

俭修

(1)根据车床主运动传动链查出传递这一挡或几挡转速的有关齿合齿轮,车床进行分析,对有关齿轮廓逐一进行检查,明显的缺损能凭肉眼看不到的变形,也会导致噪声的增大。调换产生噪声齿轮,问题就能解决。

(2)如果传动链中有关传动轴的轴承有异常,也可以采用上述方法通过转速图找出有关的传动轴,参照滚动轴承分布图,明细表。逐一检查分析,确定异常轴承所在轴,调换产生噪声的轴承,车床问题就能解决。

2.2.6 溜板箱内自动进给手柄容易脱开

分析

(1)溜板箱内脱落蜗杆的压力弹簧调节过松。

(2)蜗杆托架上的控制板与杠杆的倾角磨损。

(3)自动进给手柄的定位弹簧松动。

俭修

(1)调整脱落蜗杆可用特殊扳手松开螺母及弹簧。当蜗杆在进给量不大却自行脱落时加工中心,则应旋紧螺母以压紧弹簧,但绝不能把弹簧压得太紧,

否则在车床过载时,蜗杆不能脱开而失去了它应有的作用,甚至造成车床损坏。

(2)将控制板进行焊补修复,并将挂钩处修锐。

(3)调紧,若定位孔磨损可补后更新打孔,1L溜板箱。

2.3、润滑系统产生的故障

2.3.1 主轴箱内窗不滴油

分析

(1)油箱内缺油或滤油器,加工中心油管堵塞。

(2)油泵磨损,压力过小或油量过小。

(3)进油管漏压。

俭修

(1)检查油箱里是否有润滑油;清洗滤油器;加工中心疏通油管。

(2)检查修理或更换油泵。

(3)检查漏压点,拧紧管接头。

2.3.2 主轴箱手柄座轴端漏油

分析

手柄轴在套中转动轴与孔之间配合为札8H7/f7,油从配合间隙渗出来。

俭修

将轴套内子一端倒棱2.5X45°,使已溅的油顺着倒棱流回箱体内。注意提高装配质量。

2.3.3 主轴箱轴端法兰盘处漏油

分析

(1)法兰盘与箱体孔配合太长,箱体孔与端面不垂直,螺钉紧固后别动。

(2)纸垫太薄没有压缩性。

(3)有的螺孔钻透了。

俭修

(1)尽可能减小法兰盘与箱体孔配合长度。

(2)纸垫加厚或改用塑料垫。

(3)精心加工和装配。

2.3.4 溜板箱轴端漏油

分析

(1)装配质量差,在钻M6螺孔时有的钻透,加工中心顺螺子L漏出。

(2)轴和孔的配合产生了间隙。

俭修

(1)提高装配质量。

(2)把js6配合改为6配合,使得轴与孔配合间隙减小。

2.4、机床电气的安装与维修

2.4.1 CA6140A型普通车床电力拖动特点

(1)车床有三台电动机拖动:主轴电动机M1,冷却泵电动机M2和刀架快速移动电动机M3

(2)主切旋转及工件的进给运动——由主轴电动机M1(为三相笼型异步电动机)拖动

调速为机械有级调速,由齿轮箱完成。

3)刀架的快速移动——由刀架快速移动电动机M3拖动。

(4)切削液的供给——由冷却泵电动机M2拖动切削泵,只要求单向起动。

(5)主拖动电动机的起动、停止采用按钮操作。

(6)线路必须配置过载、短路、欠压、失压等保护功能。

(7)具备安全的局部照明装置。

2.4.2 CA6140A型普通车床的电气控制电路

1.主电路分析(主电路如图M8-1-3所示)

(1)电源由转换开关QSl引入。

(2)主电路中有三台电动机,M1为主轴电动机,M2为冷却泵电动机,M3为刀架快速移动电动机。M1、M2和M3分别由接触器KMl、KM2和KM3控制。

(3)熔断器FU1为整个机床电路的总短路保护,FR1作为M1的过载保护,的过载保护,FR2作为M2的过载保护,FU2为M2、M3及TC的短路保护。

2.控制电路分析(控制电路如图M8-1-4所示)

(1)控制电路由控制变压器TC供电,控制电源电压为110V,FU2作短路保护。

(2)M1起动:按下SB2 —KMl线圈通电—KMl主触头吸合,M1起动;

M1停止:按下SBl —KMl线圈断电—KMl主触头断开,M1停止。

(3)M2起动:M1起动后—KMl动合触头吸合—旋开SA2 KM2线圈得电—M2起动

M2停止:MI停止运行——M2自行停止—旋回SA2到断开位置。

(4)M3起动:按下SB3—采用点动控制—可实现快速进给;

进给操作手柄配合机械装置—可实现刀架前、后、左、右移动方向进给。

3.照明、指示电路分析(照明、指示电路如图M8-1-5所示)。

①照明、指示电路由控制变压器TC供电,指示电路电源电压为6V,照明电路电源电压为24V。当车床电源接通后,指示灯HL亮,表示车床已接通电源,可以开始工作;若旋开开关SAl,车床照明工作灯EL亮。HL、EL分别由FU4和FU5作为短路保护。

②对于SA2接触不良问题,采用电阻测量法检测,修理或更换。

③对于SA2接线处接点问题,采用接好脱落线的方法。

④对于SB3处短路问题,采用清除短路故障的方法。

5.故障五

(1)故障现象:刀架快速移动电动机M3不能起动,如图M8-1-9所示。

(2)故障原因:

①KM3不动作:图M8-1-9中FPtl与FR2之间接线脱落,FB2动合触头断开。

②图M8-1-9中SA2接线处短路,SB3接线处接点脱落。

(3)检修方法:

①对于FRl与FR2之间接线脱落,FR2动合触头断开问题,查找过载原因,使触头恢复闭合。

②对于SB3接触不良问题,采用电阻测量法检测,修理或更换。

③对于SB3接线处接点问题,采用接好脱落线的方法。

④对于SA2处短路问题,采用清除短路故障的方法。

6.故障六

(1)故障现象:车床照明工作灯不亮,如图M8-1-5所示。

(2)故障原因:

①照明工作灯的钨丝烧断、照明工作灯漏气或是照明电路熔断器熔断。

②变压器一次或二次绕组接线松脱。

(3)检修方法:

①对于照明工作灯的钨丝烧断或照明工作灯漏气问题,采用更换照明工作灯的方法。

②对于照明电路熔断器熔断问题,采用电阻测量法检测,更换同型号熔体。

③对于变压器一次或二次绕组接线松脱问题,采用接好脱落线的方法。

致谢

非常感谢孙老师在我大学的最后学习阶段——毕业设计阶段给自己的指导从最初的定题到资料收集到写作、修改到论文定稿她们给了我耐心的指导和无私的帮助。为了指导我们的毕业论文她们放弃了自己的休息时间她们的这种无私奉献的敬业精神令人钦佩在此我向她们表示我诚挚的谢意。同时感谢所有任课老师和所有同学在这四年来给自己的指导和帮助是他们教会了我专业知识教会了我如何学习教会了我如何做人。正是由于他们我才能在各方面取得显著的进步在此向他们表示我由衷的谢意并祝所有的老师培养出越来越多的优秀人才桃李满天下。

参考文献

[1] 陈则钧.机电设备故障诊断与维修.高等教育出版社。2004,1

[2] 吴文先.机电设备维修.机械工业出版社.2006,7

[3]王兆晶.维修电工(高级).机械工业出版社.2008,3

数控车床常见故障和常规处理方法

数控车床常见故障和常规处理方法一、数控车床常见故障分类 数控车床是一种技术含量高且较复杂的机电一体化设备,其故障发生的原因一般都较复杂,给数控车床的故障诊断与排除带来不少困难。为了便于故障分析和处理,数控车床的故障大体上可以分为以下几类。 1.主机故障和电气故障 一般说来,机械故障比较直观,易于排除,电气故障相对而言比较复杂。电气方面的故障按部位基本可分为电气部分故障、伺服放大及位置检测部分故障、计算机部分故障及主轴控制部分故障。至于编程而引起的故障,大多是由于考虑不周或输入失误而造成的,只需按提示修改即可。 (1)主机故障。数控车床的主机部分主要包括机械、润滑、冷却、排屑、液压、气动与防护等装置。常见的主机故障有因机械安装、调试及操作使用不当等原因引起的机械传动故障与导轨运动摩擦过大故障。故障表现为传动噪声大,加工精度差,运行阻力大。 (2)电气故障。 ①机床本体上的电气故障。此种故障首先可利用机床自诊断功能的报警号提示,查阅梯形图或检查i/o接口信号状态,根据机床维修说明书所提供的周纸、资料、排故流程图、调整方法,并结合工作人员的经验检查。 篷悯服放大及检测部分故障。此种故障可利用计算机自诊断功能的报警号,计算机及伺服放大驱动板上的各信息状态指示灯,故障报警指示灯,参阅维修说明书上介绍的关键测试点的渡形、电压值,计算机、伺服放大板有关参数设定,短路销的设置及其相关电位器的调整,功能兼容板或备板的替换等方法来作出诊断和故障排除。 @计算机部分故障。此种故障主要利用计算机自诊断功能的报警号,计算机各板上的信息状态指示灯,各关键测试点的波形、电压值,各有关电位器的调整,各短路销的设置,有关机床参数值的设定,专用诊断组件,并参考计算机控制系统维修手册、电气图等加以诊断及排除。 ④交流主轴控制系统故障。交流主轴控制系统发生故障时,应首先了解操作者是否有过不符合操作规程的意外操作,电源电压是否出现过瞬问异常,进行外观检查是否有短路器跳闸、熔丝断开等直观易查的故障。如果没有,再确认是属于有报警显示类故障.还是无报警显示类故障,根据具体情况而定。 2.系统故障和随机故障 (1)系统故障。此故障是指只要满足一定的条件,机床或数控系统就必然出现的故障。如,网络电压过高或过低,系统就会产生电压过高报警或电压过低报警;切削用量安排得不合适,就会产生过载报警等。 (2)随机故障。此类故障是指在同样条件下.只偶尔出现一次或两次的故障c要想人为地再使其出现同样的故障则是不太容易的,有时很长时间也难再遇到一次。这类故障的诊断和排除都是很困难的。一般情况下,这类故障往往与机械结构的局部松动、错位,数控系统中部分组件工作特性的漂移.机床电气组件可靠性下降等有关。比如:一台数控机床本来正常工作,突然出现主轴停止时产生漂移,停电后再进电,漂移现象仍不能消除。调整零漂电位器后现象消失,这显然是工作点漂移造成的。因此,排除此类故障应经过反复实验,综合判断。有些数控机床采用电磁离合器变挡,离合器剩磁也会产生类似的现象。 3.显示故障和无显示故障 以故障产生时有无自诊断显示来区分这两类故障。 (1)有报警显示故障。现在的数控系统都有较丰富的自诊断功能,可显示出百余种的报警信号。其中,太部分是cNc系统自身的故障报警,有的是数控机床制造厂利用操作者信息,

普通车床的常见故障维修及排除方法

普通车床的常见故障维修及排除方法 发表时间:2017-08-04T11:12:13.150Z 来源:《高等教育》2016年10月作者:赵新立[导读] 本篇文章主要针对普通车床在工作中常见的故障进行相应的探究,并针对这些普通车床故障制定有效的排除措施。 菏泽技师学院赵新立 摘要:随着我国机械制造业的不断发展和优化,普通车床在机械制造中具有不可替代的位置。一方面,先进的车床设备是制造机械的前提和保障;另一方面能够促进机械制造工艺的提高,增强机械制造效益。特别是当前我国国防、建筑、交通、运输等领域的迅速发展,机械制造也更是得到了快速发展,在一定程度上是社会发展的支撑。由此可见,车床在机械制造中具有重要作用。但是,在实际工作中,在长期的车床使用和磨损中,会造成一些车床故障,影响了机械制造工作的正常开展。因此,本篇文章主要针对普通车床在工作中常见的故障进行相应的探究,并针对这些普通车床故障制定有效的排除措施,保障普通车床的正常工作和运行。 关键词:普通车床;故障维修;排除方法 普通车床是机械加工的主体和重要设施,是机械制造中为常见和普通的设备之一,通常,普通车床一般应用于车削加工以及其机械制造工业中,在机械制造中有着非常重要的地位。在当前,为了更大程度地保障普通车床在机械制造过程中正常、高效运行,实现机械制造相关工作的有效实施,就必须要针对普通车床中常见的故障进行掌握,并且能够运用正确的方式排除故障,保障普通车床的正常运行。 一、普通车床的构成及其故障的主要类型 (一)普通车床的主要构成 普通车床是一个相对完善的机械运作体系,有着全面的运作系统,因此,普通车床也是有许多大大小小的部件构成。总的来说,有以下几个方面的部件构成:第一,是主轴箱。主轴箱中又包括箱体、主轴、传动轴、轴上传动件以及变速操作机等。这些小部件共同组成了普通车床的主轴箱。第二,刀架及滑板。刀架及滑板的构成小部件有:四方刀架、托板、床鞍等。第三,进给箱。进给箱的主要作用就是进给运动的传动操以及作装置。第四,溜板箱,通过光杆或是丝杆接受进给箱传来的运动。第五,尾座,包括安装顶尖以及钻头等等。第六,床身。床身基础,主要的作用是承载其它部件,并且保障这些部件能够固定在相应的位置[1]。(二)普通车床常见故障类型 普通车床容易出现的故障有很多,每一种故障可能都会设计不同部件影响不同的功能。在长期车床操作过程中,笔者总结出来一下集中普通车床常见的故障。配件积出不良、机械锈蚀、温度过高、元件老化、部件磨损以及因为车床加工工件尺寸不精准,导致的质量缺陷和机械系统结构性能故障,导致车床不能够正常运行。 二、普通车床故障探究 (一)车床加工件质量欠缺 车床加工件质量不达标这一故障在普通车床机械加工过程中是一种常见的故障。不仅会影响机械制造的质量,而且对普通车床工作的开展也有一定的影响。造成这种故障的主要原因包括:首先,加工件因为车床轴承间隙过大,导致主轴的旋转精度降低,主轴轴向串动大而引起的圆度超差。还因为在工作的时候螺栓松动,安装不正确等引起的车床震动;其次,主轴承的外径或是主轴箱体的轴孔呈现椭圆形,从而因为相互之间的间隙过大,导致加工件的质量不达标;最后,因为卡盘与链接盘配合安装不正确、从而导致加工工件不能够有效地固定住,出现松动的现象。车床加工质量的不达标在很大程度上影响了普通车床相关工作的有效开展[2]。(二)在车削加工中导致工件产生锥度 这种故障主要是因为在车床加工过程中,车床导轨和主轴轴线之间没有重合,从而导致了加工工件产生锥度。同时,也因为车床的床身导轨出现了严重的磨损现象,使得棱形导轨和平导轨的磨损度存在很大的差别,机床在水平面和垂直面内都存在严重的直线度超差问题;除此之外,还因为在使用顶尖固定装夹工件的时候,顶尖轴线与主轴的轴心之间存在偏移等等。 除了上述的故障之外,还有包括“圆柱表面精加工时会出现波纹、精车圆柱直径上出现波纹以及车床螺栓加工中出现的螺距不均匀和乱纹等故障。 三、普通车间故障排除方法 (一)车床加工质量不达标故障排除方法 首先要调整主轴前轴承,使轴向之间的间隙得以消除。检查螺栓,正确安装螺栓,并及时调整和固定,纠正胶带轮等旋转件的径向圆跳动;同时,还要更换轴承外套以及对主轴箱体进行修正;及时检查后顶尖,保障工件装夹的松紧适度。(二)在车削加工中导致的工件产生锥度故障配出方法 首先,要是用卡盘装夹工件,实现纵向进给加工,并且还要调整车床主轴与导轨之间的平行度。同时,还要刮研导轨,可以利用导轨磨床磨削导轨,从而保障符合相应的标准;最后,可以通过采取调整机床尾座,改变偏移量,使其符合相应的规定,从而保障定见州县和主轴先得以重合[3]。 初次之外,针对其它的故障相关工作人员可以针对具体问题实施结局,通过不断地分析、探究和观察,从而有效地排除普通车床机械加工过程中出现的故障。 三、结语 总的来说,普通车床在具体的工作过程中难免会存在很多问题,从而导致工作开展的难度增大,降低工作效率。因此,相关人员应该掌握故障排除方法,从而保障普通车床的正常运行。 参考文献: [1]王腊苗.浅谈普通车床常见的故障诊断与维修方法[J].山东工业技术,2014,22:18. [2]禚小涛.普通车床常见故障分析与维修浅谈[J].科技风,2015,20:26. [3]张高兴.普通车床常见故障的分析与排除[J].科技情报开发与经济,2006,14:270-271.

车床常见电气故障及维修

车床常见电气故障及维修 1漏电自动开关合不上 1)未用钥匙将带锁开关SB断开。 2)气箱门未关好,开关SQ2未压上。 2主轴电动机M1不能启动 1)热继电器以动作过,其常闭触点未复位。这时应检查热继电器FRI动作原因,可能原因是:长期过载、热继电器规格选配不当或整定电流值太小。消除故障产生的因素,再按热继电器复位按钮使热继电器触电复位。 2)按下启动按钮SB2后,接触器KM1线圈没吸合,主轴电动机M1不能启动。故障的原因应在控制电路中,可依次检查熔断器FU2、热继电器FR1和FR2的常闭触点、停止按钮SB1、启动按钮SB2和接触器KM1线圈是否损坏或引出线断线。 3)按下启动按钮SB2后,接触器KM1线圈吸合,但主轴电动机M1不能启动。故障的原因应在主电路中,可依次检查接触器KM1的接触点,热继电器FR1的热元件及三相电动机的接线端和电动机M1。 4)按下主轴电动机启动按钮SB1,电动机发出嗡嗡声,不能启动。这是由电动机缺一相造成的,可能原因是:动力配箱熔断器一相熔断、接触器KM1有一对常开触点接触不良、电动机三根引出线有一根断线或电动机绕组有一相绕组损坏。发现这一故障时应立即断开电源,否则会烧坏电动机,待排除故障后再重新启动,直到正常工作为止。 3主轴电动机M1不能停车 这类故障的原因多为接触器KM1铁芯面上的油污使上下铁芯不能释放、KM1的主触点发生熔焊或停止按钮SB1的常闭触点短路。 4刀架快速移动电动机M3不能启动 按点动按钮SB3,中间继电器KA2没吸合,则故障应在控制电路中,此时可同万用表进行分阶电压测量法依次检查热继电器FR1和FR2的常闭触点,停止按钮SB1的常闭触点,点动按钮及中间继电器KA2的线圈是否短路。 5冷却泵电动机不能启动 冷却泵电动机出现这类故障应先检查主轴电动机是否启动,先启动主轴电动机,然后依次检查旋转开关SA2触点闭合是否良好,熔断器FU1熔体是否熔断,热继电器FR2是否动作未复位,接触器KM2是否损坏,最后检查冷却泵电动机是否已损坏。

C6140车床电气线路常见故障与检修

课题:车床电气线路常见故障分析与检修 一、内容分析 1.本课题内容的实用性很强,是维修电工职业岗位所必须掌握的基本职业技能,它对学生综合运用知识的能力要求很高,即具备阅读电原理图的能力,又需电气线路基本检测方法,是对“车床电气控制”学习效果的综合检查,又为以后较复杂机床电气线路的故障分析与检测做铺垫。 2.教学目标 知识目标:了解机床电气设备故障的诊断步骤和诊断方法;掌握C6140车床电气线路常见故障分析与检修方法 能力目标:训练综合表达能力(文字、口头);提高分析与解决问提的能力;培养学生的维修电工职业岗位意识和团队协作意识。 3.教学重点 车床电气线路常见故障分析 4.教学难点 车床电气线路常见故障检测 二、教学方法与手段 本课题内容要围绕车床电气控制线路图来讲解,适合采用多媒体教学和现场教学,用课件演示车床的控制线路图。结合实训,通过对机床的操作和故障检测,加深对课题内容的理解。在授课的过程中,注意深入浅出,从实用性的角度,调动起学生学习的积极性。 根据我校学生和教学设备的实际情况,以及课题的特点,主要采用以下教学模式: 1.学生讲、教师评,“教”与“学”模拟换位--一种另类互动模式 2.学生扮演维修电工角色,进行岗位体验—情境体验模式 3.现场教,现场学,现场实践——现场教学法 具体教法:先采用多媒体模拟机床控制线路和机床排故是的模拟机床,举一个具体案例,从维修电工的角度介绍故障的检修步聚。然后提出几个常见故障问题,让学生扮演维修电工角色自己来完成。如断开电路中的熔断器,断开自锁触头,断开接触器线圈的电源等,首先让学生根据电原理图进行分析,说出可能会导致的故障现象,再结合动手实际操作,根据要求断开电路,把真实看到的故障现象与刚才分析进行对比是否相吻合。这种“纸上谈兵”的方法,在这里起着很重要的作用,大大地加强了学生的分析能力,培养了学生的逻辑推理能力、思维能力,若分析故障的思路正确的话,其实际的故障也就很快排除。有了以上的知识作为铺垫,学生对故障分析有了感性的认识,根本不需费很大的劲,学生更不用去“死记”,让学

数控车床常见故障诊断维修

第九章数控车床常见故障的诊断与维修 一.数控车床诊断与维修概述 1数控车床故障诊断与维修的概念。 数控车床综合应用了计算机.自动控制.精密测量 .现代机械制造和数据通信等多种技术,是机加工领域典型的机电一体化设备。 要充分发挥数控车床的效率,就要求机床的开动率高,这就给数控车床提出了可靠性的要求。衡量可靠性的主要指标是平均无故障工作时间(MBTF)。 MBTF = 总工作时间/总故障次数 我国每年有近千台数控车床的产量,由于一些用户对数控车床的故障不能及时作出正确的判断和排除,目前国内各行业中数控车床的开动率平均仅达到20%-30%。 数控车床的故障诊断与维修是数控车床使用过程中重要的组成部分,也是目前制约数控车床发挥作用的因素之一,因此数控车床的使用单位培养掌握数控车床的故障诊断与维修的技术人员,有利于提高数控车床的使用率。 2. 数控车床的故障类型与特点。 (1)数控车床的故障类型。 数控车床故障是指数控车床失去了规定的功能。按照数控车床故障频率的高低,车床使用期可以分为三个阶段,即初始运行期.相对稳定运行期和衰老期。

数控车床从整机安装调试后至运行一年左右的时间成称为车床的初始运行期。在这段时间内,机械处于磨合状态,部分电子元器件在电气干扰中经受不了初期的考验而损坏,所以数控车床在这一段时间内的故障比较多。数控车床在经过了初始运行期就进入了相对稳定期,车床在该时期仍然会产生故障,但是故障频率相对减少,数控车床的相对稳定期一般为7-10年。数控车床经过相对稳定期之后就进入了衰老期,由于机械的磨损.电气元件的品质因数下降,数控车床的故障率又开始增大。 数控车床的故障种类很多,可分为以下几类: A.按照故障起因——关联性故障和非关联性故障,所谓非关联 性故障是由于运输.安装等原因造成的故障。关联性故障可分 为系统性故障和随机故障,系统性故障是指数控车床在一定

普通车床的常见故障与排除

普通车床的常见故障与排除 普通车床属于机械行业中最为常见的装备,运行中涉及到很多技术,如电机技术、传感技术、自动化技术等,表现出综合性的特点。普通车床的工作能力强,其可提供高精度、高水平的机械制造服务。虽然普通车床的工作能力强,但是仍旧面临着故障的干扰。 一、普通车床分析 机械加工厂内,普通机床在车间内,占有大部分的影响比重,渗透到机械加工的行业中,行业提高了对普通车床故障的重视度,致力于采取故障排除的方法,保障普通车床的有效性。车床在机械行业中,用于加工各种各样的回转表层,如圆面、锥面等,同时也能够加工螺纹、沟槽等,利用床身、刀架等普通车床的部件,配合普通车床的工作原理,实现主运动、进给运动,在车床车刀、工件的运动过程中,促使毛坯可以加工成指定的几何尺寸。 普通车床使用中,故障是不可避免的问题,如果不能在第一时间排除车床内的故障,就会干扰车床的运行水平,进而影响到车床加工的精度、速度,不利于车床的高效性。普通机床的故障出现于日常的运行和使用中,为了提高普通车床的工作能力,应该将故障作为首要的监督对象,保护好普通机床的运行过程。普通车床故障中存在一些典型的征兆,有经验的操作人员会根据车床故障的征兆,大概地判断运行故障,及时把控车床运行中的故障信息,弥补车床运行时的缺陷,进而落实好故障排除的方法。 二、车床故障原因

普通车床的故障原因表现出多样化的特点,以下列举普通车床故障中最常见的故障原因: 第一,普通车床零部件的质量原因,车床本身的机械装置、元件设备等,其在车床运行的过程中发生了质量问题,导致自身出现失灵或失控的情况,就会影响到普通车床的整体情况,出现磨损、破坏等问题,直接影响到车床的加工精度,进而干扰普通车床的实际运行。零部件的质量原因是普通车床故障中最直接的原因,引起一系列的故障问题。 第二,普通车床的安装、装配工艺内,缺乏精度控制的措施。例如:普通车床主体安装中,如主轴箱、进给箱,其在安装中没有严格按照精度实行控制,只要有一处出现故障,就会干扰到普通车床的整体精度,不能保障普通车床的有效装配,导致安装与装配误差,在车床运行中引出故障干扰,逐渐降低了车床运行的精确度。 第三,普通车床使用时,存在不合理的操作,干扰了车床的技术参数,导致车床在自身加工的范围内,缺乏有效的工作能力。普通车床操作中,如果操作人员不能按照车床的工作规程执行,就会引起诸多故障问题,尤其是普通车床的精确度,直接增加了车床的运行负担,加重了车床的使用压力。 第四,普通车床在运行中,保养与维修措施不到位。保养与维修是降低故障发生率的一项措施,而且决定了车床的使用效率。车床缺乏保养、维修,导致车床处于带病作业的状态,不能维持良好的工作状态,就会缩短车床的运行寿命,不能提高普通车床的加工效率。

常见普通车床故障

常见普通车床故障 常见普通车床故障1、主轴箱温升过高引起车床热变形 2、车床剧烈振动 3、在工作过程中产生刺耳的噪音 普通车床的修理方式>>>>床身修理 一般情况下床身采用磨削加工或精刨,这样可以提高生产效率并降低劳动强度,在没有导轨磨床的情况下也可以采用人工刮削方法。要求如下: ①粗调床身水平,纵横两个方向。 ②如果导轨磨损严重,先用焊接或粘补剂进行修补。 ③以原齿条安装基面找正床身加工导轨。 >>>>大拖板修理 大拖板也叫床鞍,是实现进给运动的主要部件之一,大修时一般采取刮研修复,有时也用配磨加工,但是毕竟我们中国劳动力比较廉价,修理时刮研还是大多数。刮研时应注意的问题: ①拖板上各导轨面直线度0.02。 ②燕尾导轨平轨对丝杠轴承孔上母线平行度0.05,两平轨扭曲0.02/1000。 ③燕尾导轨侧面两轨保证对孔侧母线平行0.05,且两导轨的平行度0.02/全长。 ④大拖板下导轨对床身导轨合研,刮研时注意保证纵横向垂

直度〉90度,以保证加工零件时车凹心。 ⑤配刮或配磨压板,保证间隙0.02。 >>>>中拖板(横滑板)修理 ①中拖板底面平导轨及顶面一般采用磨削加工,见光即可保证平行度0.01。 ②燕尾与中拖板配刮,然后配斜铁(镶条)。 ③刮研丝母安装面,保证与底导轨平行0.01。 >>>>刀架修理 ①修理刀架滑板,刮研滑板上顶面,保证对定位轴的垂直度 0.02/60,定位轴对4个定位锥套等距0.02,下导轨面对刀架安装定位面平行0.03。 ②燕尾导轨对丝杠安装孔平行0.02 ③修理刀架中部,保证各项公差,配刮镶条。 ④四方刀架修理,以上表面为基准磨削各面,见光为止,保证平行,镗中间孔。 >>>>主轴修理 ①主轴精度检验,将主轴架到精密v形铁上检验轴承安装位的跳动。 ②主轴锥孔修理:将主轴及新轴承装到主轴箱上,用标准检验棒(莫氏的或公比的)检验椎孔中心线跳动,再根据检验结果,如果超差用三棱刮刀修刮椎孔至合格。 ③如果主轴箱其他零件有损坏更换就可以了。 >>>>三杠修理 光杠、纵向丝杠、及开关杠俗称三杠,因为很便宜损坏后一

车床常见故障及排除方法

车床常见故障及排除方法 结合车床以及故障原因分析,列举普通车床运行中常见的故障及相关的排除方法,以此来维护普通车床的运行性能。 1、振动故障及排除 普通车床的振动故障是最为常见的故障类型,车床在加工生产的期间,振动是很难避免的,存在一些振动属于正常的运行范围,当 振动较为剧烈时,就会影响普通车床的加工精度,降低车床的生产 效率,同时还会加重车床的磨损,不利于车床刀具的稳定性。当普 通车床出现振动故障时,在陶瓷、硬质合金内,故障的表现最为明显。 车床发生振动故障时,在实践中提出几点排除的措施,辅助普通车床快速恢复到正常的运行状态,如: (1)普通车床的故障维护人员,检查车床上的固定螺栓,如地脚 螺栓,保障螺栓安装的准确性,一旦发现有松动或安装不正确的螺栓,实行现场处理,立即执行故障排除,拧紧螺栓后,确保螺栓的 安装位置准确; (2)控制旋转件的跳动幅度,特别是胶带构件,实现径向圆跳动,防止其跳动幅度过大而造成振动; (3)检查普通车床的主轴中心,避免存在径向过大摆动的问题, 维护人员可以主动地调整主轴摆动,减小主轴的摆动幅度或者直接 采取角度选配法的方式,控制主轴摆动; (4)校正普通车床的磨削刀具,保持稳定的切削路径,保持刀尖 的位置,稍高于中心位置,排除车床工作时的振动问题。 2、噪声故障及排除

噪声故障不仅影响普通车床的运行,同时也会影响车床运行的环境。一般情况下,噪声是故障发生的前提,当普通车床运行时,出 现不符合常规的噪声,就表示车床出现了故障,维护人员需准确地 分析噪声的来源及成因,以便快速地排除故障。普通车床运行后, 噪声会随着周期、温度、负荷的增加而增加,最终导致车床进入不 良的运行状态,干扰正常的运行。 噪声故障的排除要根据普通车床的实际情况执行。列举普通车床噪声故障中,常见的排除方法,如: (1)维护人员检查普通车床的运动副,结合运动副反馈出的情况,调整、修复引起噪声的零件,促使车床的主轴,可以恢复正常,处 理噪声的干扰,保障车床的工作精度; (2)全面检查普通车床的管道,杜绝出现管道不通畅的情况,疏 通有堵塞的管道; (3)噪声故障内,很大一部分是因为相互摩擦,所以定期安排润 滑工作,在适当的位置增加润滑油,控制润滑油的用量、位置,保 证润滑油符合相关的规定。 3、发热故障及排除 普通车床运行时,发热故障集中在主轴位置,因为主轴连接着滚动、滑动的轴承,构成一体化的运行结构,所以主轴处于高速旋转 状态时,就会发散出热量。主轴是普通车床的主要热源,当热量无 法正常散发出来时,就会造成主轴以及周围连接装置过度发热,车 床局部位置的温度升高,引起热变形的问题,发热故障较为严重时,会出现主轴、尾架不同高的问题,直接降低车床的加工精度,还会 存在烧坏主轴的情况。 主轴发热故障,可能是主轴与轴承之间,经过长期摩擦而囤积了热量,导致全负荷车床工作状态下,主轴的刚度变化,影响了主轴 的稳定性。主轴发生故障的排除方法中,在车床运行前,先要主动 地调整好主轴与轴承之间的距离,同时安排好润滑工作,保持油路 的畅通性,再控制好主轴的工作量,避免主轴处于超负荷的工作环 境中。

数控车床电动四工位刀架常见故障分析和维修

数控车床电动四工位刀架常见故障分析和维修本文通过对数控车床电动四工位刀架的结构与工作原理进行阐述, 并以该类刀架的一些典型故障为依据进行分析,剖析了其相应机械 和电气方面的故障原因,并提出相应的维修方案。 本人单位近年来购入多台数控车床供教学使用,随着时间的推移, 部分车床的电动四工位刀架出现不同性质的故障,导致机床无法正 常使用,甚至产生了刀具和工件相撞的现象,给教学带来较大影响。本文通过对该类故障的典型例子进行了原因分析,并提出故障排除 方法,供大家参考。 数控车床电动四工位刀架的工作原理 在进行刀架维修之前,我们先分析一下数控车床电动四工位刀架的 结构和工作原理。 电动四工位刀架工作原理如下描述:当数控系统发出信号,通过放 大线路驱动继电器使电机旋转(正转),电机驱动涡轮蜗杆机构将上刀体升起一定位置后,离合转盘起作用,带动上刀体旋转到所选刀

位,刀位发信盘向数控系统发出信号,假如刀架已旋转到正确刀位,此时刀架控制器(继电器)使电机反转,使得刀体下降,齿牙盘啮合,从而完成精定位,并通过蜗杆、锁紧蜗轮,使电动刀架锁紧,当夹 紧力达到预先调好的状态后,电机停转,完成换刀。 数控车床电动四工位刀架故障维修实例 维修实例1:刀架运转生涩、噪音较大。 故障分析与处理:由于刀架内部为不连续的润滑,长时间工作后润 滑脂变脏失效,导致刀架运转生涩,产生噪音。此时应该使用用柴 油清洗刀架内部机械部分,并涂上新的润滑脂,相应故障消失。 维修实例2:刀架运转卡顿、卡死。 故障分析与处理:当刀架卡死时,刀架顺时针无法转动,首先要检 查主轴螺母是否锁死,需重新调整。其次检查夹紧装置的定位销是 否在棘轮槽内,若在的话,要将棘轮和连接销孔回转一个角度重新 连接,即可解决故障。

C6140车床电气线路常见故障分析与检修讲课教案

C6140车床电气线路常见故障分析与检修

课题:车床电气线路常见故障分析与检修(说课稿) 一、内容分析 1.本课题内容的实用性很强,是维修电工职业岗位所必须掌握的基本职业技能,它对学生综合运用知识的能力要求很高,即具备阅读电原理图的能力,又需电气线路基本检测方法,是对“车床电气控制”学习效果的综合检查,又为以后较复杂机床电气线路的故障分析与检测做铺垫。 2.教学目标 知识目标:了解机床电气设备故障的诊断步骤和诊断方法;掌握C6140车床电气线路常见故障分析与检修方法 能力目标:训练综合表达能力(文字、口头);提高分析与解决问提的能力;培养学生的维修电工职业岗位意识和团队协作意识。 3.教学重点 车床电气线路常见故障分析 4.教学难点 车床电气线路常见故障检测 二、教学方法与手段 本课题内容要围绕车床电气控制线路图来讲解,适合采用多媒体教学和现场教学,用课件演示车床的控制线路图。结合实训,通过对机床的操作和故障检测,加深对课题内容的理解。在授课的过程中,注意深入浅出,从实用性的角度,调动起学生学习的积极性。 根据我校学生和教学设备的实际情况,以及课题的特点,主要采用以下教学模式: 1.学生讲、教师评,“教”与“学”模拟换位--一种另类互动模式

2.学生扮演维修电工角色,进行岗位体验—情境体验模式 3.现场教,现场学,现场实践——现场教学法 具体教法:先采用多媒体模拟机床控制线路和机床排故是的模拟机床,举一个具体案例,从维修电工的角度介绍故障的检修步聚。然后提出几个常见故障问题,让学生扮演维修电工角色自己来完成。如断开电路中的熔断器,断开自锁触头,断开接触器线圈的电源等,首先让学生根据电原理图进行分析,说出可能会导致的故障现象,再结合动手实际操作,根据要求断开电路,把真实看到的故障现象与刚才分析进行对比是否相吻合。这种“纸上谈兵”的方法,在这里起着很重要的作用,大大地加强了学生的分析能力,培养了学生的逻辑推理能力、思维能力,若分析故障的思路正确的话,其实际的故障也就很快排除。有了以上的知识作为铺垫,学生对故障分析有了感性的认识,根本不需费很大的劲,学生更不用去“死记”,让学生轻松地学会了故障分析,无形之中提升了维修技能。 三、学法 由于本课题是在掌握常用控制电器及电气控制基本环节的基础上,对车床电气控制系统进行的故障分析,要求学生在课前要对上模块的内容进行复习,课堂上要紧跟老师的思路走,对电气原理图认真进行分析,根据故障现象缩小范围;再结合动手实际操作,加深理解;课后到校内机加工车间进行现场观摩、参加一定的生产实际操作,增强感性认识。 四、教学过程(教学设计)

数控车床常见故障

数控车床常见故障维修手册

数控车床常见故障维修手册 (一) 刀架类故障 故障现象一:电动刀架的每个刀位都转动不停 ①系统无+24V; COM 输出用万用表量系统出线端,看这两点输出电压是否正常或存在,若电压不存在,则为系统故障,需更换主板或送厂维修 ②系统有+24V; COM 输出,但与刀架发信盘连线断路;或是+24V 对COM 地短路用万用表检查刀架上的+24V、COM 地与系统的接线是否存在断路;检查+24V 是否对COM地短路,将+24V 电压拉低③系统有+24V; COM 输出,连线正常,发信盘的发信电路板上+24V 和COM 地回路有断路发信盘长期处于潮湿环境造成线路氧化断路,用焊锡或导线重新连接 ④刀位上+24V 电压偏低,线路上的上拉电阻开路用万用表测量每个刀位上的电压是否正常,如果偏低,检查上拉电阻,若是开路,则更换1/4W2K 上拉电阻 ⑤系统的反转控制信号TL-无输出用万用表量系统出线端,看这一点的输出电压是否正常或存在,若电压不存在,则为系统故障,需更换主板或送厂维修 ⑥系统有反转控制信号TL- 输出,但与刀架电机之间的回路存在问题检查各中间连线是否存在断路,检查各触点是否接触不良,检查强电柜内直流继电器和交流接触器是否损坏 ⑦刀位电平信号参数未设置好检查系统参数刀位高低电平检测参数是否正常,修改参数常见故障维修手册 ⑧霍尔元件损坏在对应刀位无断路的情况下,若所对应的刀位线有低电平输出,则霍尔元件无损坏,否则需更换刀架发信盘或其上的霍尔元件。一般四个霍尔元件同时损坏的机率很小 ⑨磁块故障,磁块无磁性或磁性不强更换磁块或增强磁性,若磁块在刀架抬起时位置太高,则需调整磁块的位置,使磁块对正霍尔元件 故障现象二:电动刀架不转故障原因处理方法 ①刀架电机三相反相或缺相将刀架电机线中两条互调或检查外部供电 ②系统的正转控制信号TL+无输出用万用表量系统出线端,量度+24V 和TL+两触点,同时手动换刀,看这两点的输出电压是否有+24V,若电压不存在,则为系统故障,需送厂维修或更换相关IC 元器件 ③系统的正转控制信号TL +输出正常,但控制信号这一回路存在断路或元器件损坏检查正转控制信号线是否断路,检查这一回路各触点接触是否良好;检查直流继电器或交流接触器是否损坏 ④刀架电机无电源供给检查刀架电机电源供给回路是否存在断路,各触点是否接触良好,强电电气元器件是否有损坏;检查熔断器是否熔断 ⑤上拉电阻未接入将刀位输入信号接上2K 上拉电阻,若不接此电阻,刀架在宏观上表现为不转,实际上的动作为先进行正转后立即反转,使刀架看似不动 ⑥机械卡死通过手摇使刀架转动,通过松紧程度判断是否卡死,若是,则需拆开刀架,调整机械,加入润滑液 ⑦反锁时间过长造成的机械卡死在机械上放松刀架,然后通过系统参数调节刀架反锁时间 ⑧刀架电机损坏拆开刀架电机,转动刀架,看电机是否转动,若不转动,再确定线路没问题时,更换刀架电机 ⑨刀架电机进水造成电机短路烘干电机,加装防护,做好绝缘措施 故障现象三:刀架锁不紧故障原因处理方法 ①发信盘位置没对正拆开刀架顶盖,旋动并调整发信盘位置,使刀架的霍尔元件对准磁块,使刀位停在准确位置 ②系统反锁时间不够长调整系统反锁时间参数 ③机械锁紧机构故障拆开刀架,调整机械,检查定位销是否折断

数控机床各种常见故障及分析排除方法

数控机床各种常见故障及分析排除方法 数控机床各种故障 由于现代数控系统的可靠性越来越高,数控系统本身的故障越来越低,而大部分故障的发生则是非系统本身原因引起的。系统外部的故障主要指由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。 数控设备的外部故障可以分为软故障和外部硬件损坏引起的硬故障。软故障是指由于操作、调整处理不当引起的,这类故障多发生在设备使用前期或设备使用人员调整时期。对于数控系统来说,另一个易出故障的地方为伺服单元。由于各轴的运动是靠伺服单元控制伺服电机带动滚珠丝杠来实现的。用旋转编码器作速度反馈,用光栅尺作位置反馈。一般易出故障的地方为旋转编码器与伺服单元的驱动模块。也有个别的是由于电源原因而引起的系统混乱。特别是对那些带计算机硬盘保存数据的系统。例如,德国西门子系统840C。 例1:一数控车床刚投入使用的时候,在系统断电后重新启动时,必须要返回到参考点。即当用手动方式将各轴移到非干涉区外后,再使各轴返回参考点。否则,可能发生撞车事故。所以,每天加工完后,最好把机床的轴移到安全位置。此时再操作或断电后就不会出现问题。 外部硬件操作引起的故障是数控修理中的常见故障。一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置出现问题引起的。这类故障有些可以通过报警信息查找故障原因。对一般的数控系统来讲都有故障诊断功能或信息报警。维修人员可利用这些信息手段缩小诊断范围。而有些故障虽有报警信息显示,但并不能反映故障的真实原因。这时需根据报警信息和故障现象来分析解决。 例2:我厂一车削单元采用的是SINUMERIK840C系统。机床在工作时突然停机。显示主轴温度报警。经过对比检查,故障出现在温度仪表上,调整外围线路后报警消失。随即更换新仪表后恢复正常。 例3:同样是这台车削中心,工作时CRT显示9160报警“9160NO PART WITH GRIPPER 1CLOSED VERIFY V14-5”。这是指未抓起工件报警。但实际上抓工件的机械手已将工件抓起,却显示机械手未抓起工件报警。查阅PLC图,此故障是测量感应开关发出的。经查机械手部位,机械手工作行程不到位,未完全压下感应开关引起的。随后调整机械手的夹紧力,此故障排除。 例4:一台立式加工中心采用FANUC-OM控制系统。机床在自动方式下执行到X轴快速移动时就出现414#和410#报警。此报警是速度控制OFF和X轴伺服驱动异常。由于此故障出现后能通过重新启动消除,但每执行到X轴快速移动时就报警。经查该伺服电机电源线插头因电弧爬行而引起相间短路,经修整后此故障排除。 例5:操作者操作不当也是引起故障的重要原因。如我厂另一台采用840C系统的数控车床,第一天工作时完全正常,而第二天上班时却无论如何也开不了机,工作方式一转到自动方式下就报警“EMPTYING SELECTED MOOE SELECTOR”。加工完工件后,主轴不停,机械手就去抓取工件,后来仔细检查各部位都无毛病,而是自动工作条件下的一个模式开关位置错了。所以,当有些故障原因不明的报警出现的话,一定要检查各工作方式下的开关位

数控车床常见故障的诊断与维修

第九章数控车床常见故障地诊断与维修 一.数控车床诊断与维修概述 1数控车床故障诊断与维修地概念. 数控车床综合应用了计算机.自动控制.精密测量 .现代机械制造和数据通信等多种技术,是机加工领域典型地机电一体化设备.b5E2RGbCAP 要充分发挥数控车床地效率,就要求机床地开动率高,这就给数控车床提出了可靠性地要求.衡量可靠性地主要指标是平均无故障工作时间

对稳定运行期和衰老期.5PCzVD7HxA 数控车床从整机安装调试后至运行一年左右地时间成称为车床地初始运行期.在这段时间内,机械处于磨合状态,部分电子元器件在电气干扰中经受不了初期地考验而损坏,所以数控车床在这一段时间内地故障比较多. 数控车床在经过了初始运行期就进入了相对稳定期,车床在该时期仍然会产生故障,但是故障频率相对减少,数控车床地相对稳定期一般为7-10年.数控车床经过相对稳定期之后就进入了衰老期,由于机械地磨损.电气元件地品质因数下降,数控车床地故障率又开始增大jLBHrnAILg 数控车床地故障种类很多,可分为以下几类:

数控车床常见故障维修手册

数控车床常见故障维修手册 (一) 刀架类故障 故障现象一:电动刀架的每个刀位都转动不停 ①系统无+24V; COM 输出用万用表量系统出线端,看这两点输出电压是否正常或存在,若电压不存在,则为系统故障,需更换主板或送厂维修 ②系统有+24V; COM 输出,但与刀架发信盘连线断路;或是+24V 对COM 地短路用万用表检查刀架上的+24V、COM 地与系统的接线是否存在断路;检查+24V 是否对COM地短路,将+24V 电压拉低 ③系统有+24V; COM 输出,连线正常,发信盘的发信电路板上+24V 和COM 地回路有断路发信盘长期处于潮湿环境造成线路氧化断路,用焊锡或导线重新连接 ④刀位上+24V 电压偏低,线路上的上拉电阻开路用万用表测量每个刀位上的电压是否正常,如果偏低,检查上拉电阻,若是开路,则更换1/4W2K 上拉电阻 ⑤系统的反转控制信号TL-无输出用万用表量系统出线端,看这一点的输出电压是否正常或存在,若电压不存在,则为系统故障,需更换主板或送厂维修 ⑥系统有反转控制信号TL- 输出,但与刀架电机之间的回路存在问题检查各中间连线是否存在断路,检查各触点是否接触不良,检查强电柜内直流继电器和交流接触器是否损坏 ⑦刀位电平信号参数未设置好检查系统参数刀位高低电平检测参数是否正常,修改参数常见故障维修手册 ⑧霍尔元件损坏在对应刀位无断路的情况下,若所对应的刀位线有低电平输出,则霍尔元件无损坏,否则需更换刀架发信盘或其上的霍尔元件。一般四个霍尔元件同时损坏的机率很小 ⑨磁块故障,磁块无磁性或磁性不强更换磁块或增强磁性,若磁块在刀架抬起时位置太高,则需调整磁块的位置,使磁块对正霍尔元件 故障现象二:电动刀架不转故障原因处理方法 ①刀架电机三相反相或缺相将刀架电机线中两条互调或检查外部供电 ②系统的正转控制信号TL+无输出用万用表量系统出线端,量度+24V 和TL+两触点,同时手动换刀,看这两点的输出电压是否有+24V,若电压不存在,则为系统故障,需送厂维修或更换相关IC 元器件 ③系统的正转控制信号TL +输出正常,但控制信号这一回路存在断路或元器件损坏检查正转控制信号线是否断路,检查这一回路各触点接触是否良好;检查直流继电器或交流接触器是否损坏 ④刀架电机无电源供给检查刀架电机电源供给回路是否存在断路,各触点是否接触良好,强电电气元器件是否有损坏;检查熔断器是否熔断 ⑤上拉电阻未接入将刀位输入信号接上2K 上拉电阻,若不接此电阻,刀架在宏观上表现为不转,实际上的动作为先进行正转后立即反转,使刀架看似不动 ⑥机械卡死通过手摇使刀架转动,通过松紧程度判断是否卡死,若是,则需拆开刀架,调整机械,加入润滑液 ⑦反锁时间过长造成的机械卡死在机械上放松刀架,然后通过系统参数调节刀架反锁时间 ⑧刀架电机损坏拆开刀架电机,转动刀架,看电机是否转动,若不转动,再确定线路没问题时,更换刀架电机 ⑨刀架电机进水造成电机短路烘干电机,加装防护,做好绝缘措施 故障现象三:刀架锁不紧故障原因处理方法 ①发信盘位置没对正拆开刀架顶盖,旋动并调整发信盘位置,使刀架的霍尔元件对准磁块,使刀位停在准确位置 ②系统反锁时间不够长调整系统反锁时间参数 ③机械锁紧机构故障拆开刀架,调整机械,检查定位销是否折断

数控车床刀架常见故障维修

数控车床刀架常见故障维修 数控技术及数控机床的应用,成功地解决了某些形状复杂,一致性要求高的中、小批零件的自动化问题,这不仅大大提高了生产效率和加工精度,还减轻了工人的劳动强度,缩短了生产准备周期。但是,在数控车床使用过程中,数控车床难免会出现各种故障,所以故障的维修就成了数控车床使用者最关键的问题。一方面销售公司售后服务不能得到及时保证,另一方面掌握一些维修技术可以快速判断故障所在,缩短维修时间,让设备尽快运转起来。在日常故障中,我们经常遇见的是刀架类、主轴类、螺纹加工类、系统显示类、驱动类、通信类等故障。而刀架故障在其中占有很大比例。在这里,分类介绍一下日常工作中遇见的四工位电动刀架各类故障及相应地解决方法,希望能给大家提供一些有益的借鉴。所用数控系统是广州数控设备有限公司所生产的gsk系列车床数控系统。中国国际模具网 故障现象一:电动刀架锁不紧中国国际模具网 故障原因处理方法中国国际模具网 ①发信盘位置没对正 :拆开刀架的顶盖,旋动并调整发信盘位置,使刀架的霍尔元件对准磁钢,使刀位停在准确位置。中国国际模具网 ②系统反锁时间不够长:调整系统反锁时间参数即可(新刀架反锁时间t=1.2s即可)。中国国际模具网 ③机械锁紧机构故障 :拆开刀架,调整机械,并检查定位销是否折断。中国国际模具网 故障现象二:电动刀架某一位刀号转不停,其余刀位可以转动中国国际模具网 故障原因处理方法中国国际模具网 ①此位刀的霍尔元件损坏:确认是哪个刀位使刀架转不停,在系统上输入指令转动该刀位,用万用表量该刀位信号触点对+24v触点是否有电压变化,若无变化,可判定为该位刀霍尔元件损坏,更换发信盘或霍尔元件。中国国际模具网 ②此刀位信号线断路,造成系统无法检测到位信号:检查该刀位信号与系统的连线是否存在断路,正确连接即可。中国国际模具网 ③系统的刀位信号接收电路有问题:当确定该刀位霍尔元件没问题,以及该刀位信号与系统的连线也没问题的情况下更换主板。 数控技术及数控机床的应用越来越广泛,其加工柔性好,精度高,生产效率高,还减轻了工人的劳动强度,缩短了生产准备周期,具有很多的优点,但由于技术越来越先进、复杂,而数控车床使用过程中,难免会出现各种故障,故障及时排除就成了数控车床正常使用的保证。我校有十几台数控设备,数控系统有FANUC-OI、广数、华中等多种类 在数控机床维修中,经常会遇见一些刀架系统故障,给生产带来较大影响。如何快速判断故障所在,缩短维修时间,让设备尽快运转起来,显得尤为重要。本文针对四工位立式数控刀架系统在实践中所遇到的故障现象进行了研究和分析,找出了导致故障的原因,并对故障处理的关键

数控线切割机床常见的电气故障及维修

前言 随着社会和科学技术的发展,社会生产力的提高,数控设备越来越多地被用到机械加工中来。了解这些设备的工作原理,及时准确地分析和排除设备故障是我们维修电工必须具备的技能。数控线切割机床作为现代特种加工的一种重要的设备,它由高频脉冲电源、驱动电源、数控系统及机床电器等几部分组成。如果不了解工作原理及工作过程,分不清这几者之间的关系对分析和排除机床故障来说将较困难。本人通过多年对线切割机床的维修,听取了多位线切割操作工的好的建议,吸收了多位电工同行的维修经验,对线切割机床电气故障进行总结和分析,以便让初接触线切割电气维修者少走弯路。

数控线切割机床常见的电气故障及维修 线切割数控机床是由高频脉冲对工件形成火花放电,加上切削液的冲洗作用,经数控系统对步进电机的控制拖动来进行加工工件。线切割机床故障一般常见以下几大类:一是运丝筒故障;二是拖板运行故障;三是高频电源部分故障;四是频繁断丝故障。由于线切割机床的数控系统,高频电源,驱动电源,机床电器这几部分相互联系,所以在了解了线切割机床工作原理情况下,依据机床电气原理图作全面分析,才能找出故障原因。下面我以江苏锋陵DK7763型线切割数控机床为例作以分析。 运丝筒故障运丝筒故障主要有运丝筒不换向或丝筒冲出;运丝筒不运转或断丝后不停转。 一运丝筒不换向或运丝筒冲出。运丝筒不换向是由于丝筒换向开关SQ1或SQ2故障,FU4、FU5其一烧坏使丝筒电机缺相,继电器KA1触点接触不良使丝筒电机缺相等几个原因造成(见附图一)。丝筒冲出是在运丝筒电机不换向且限位开关SQ3未断开所至(见附图一)。 二运丝筒不运转或断丝后不停转。此故障原因有多种情况,故障分析较复杂,且若断丝以后丝筒不停转将会使钼丝绕乱而造成不必要的损失。分析附图一可知若电源和接触器KM2无故障,运丝筒启停是由SB1、KA3、SQ3、SB3、SB4触点决定,SB1、SB3、SB4是常闭或常开按钮,SQ3是限位开关,故障容易排除。我主要分析一下常闭触点KA3。中间继电器KA3是起断丝停机的作用,由断丝保护控制板(附图二)上继电器K2的常开触点K2控制,继电器K2的通断由晶体管T1通断控制,而断控开关

相关文档