文档库 最新最全的文档下载
当前位置:文档库 › A NaCl-stable serine proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce

A NaCl-stable serine proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce

A NaCl-stable serine proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce
A NaCl-stable serine proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce

A NaCl-stable serine proteinase from Virgibacillus sp.SK33isolated from Thai ?sh sauce

Sornchai Sinsuwan a ,Sureelak Rodtong b ,Jirawat Yongsawatdigul a,*

a School of Food Technology,Suranaree University of Technology,Nakhon Ratchasima 30000,Thailand b

School of Microbiology,Suranaree University of Technology,Nakhon Ratchasima 30000,Thailand

a r t i c l e i n f o Article history:

Received 30December 2008

Received in revised form 24June 2009Accepted 24June 2009

Keywords:

Virgibacillus sp.

NaCl-stable proteinase Subtilisin-like proteinase Serine proteinase Fish sauce

a b s t r a c t

An extracellular proteinase from Virgibacillus sp.SK33,isolated from 1month-old ?sh sauce,was puri?ed to electrophoretic homogeneity,using hydrophobic interaction chromatography and hydroxyapatite with puri?cation fold of 2.5and 7%yield.The anomalous molecular weight (MW)of 19kDa was obtained from SDS–PAGE,whereas a MW of 33.7kDa was determined by MALDI-TOF.Optimum conditions for catalytic activity were 55°C and pH 7.5.The proteinase was strongly inhibited by phenylmethanesulfonyl ?uoride (PMSF)and preferentially hydrolysed Suc-Ala-Ala-Pro-Phe-AMC,indicating a serine proteinase with sub-tilisin-like characteristics.K m and k cat of the puri?ed proteinase were 27l M and 12s à1,respectively.Pro-teinase activity,toward both synthetic and anchovy substrates,increased with NaCl up to 25%.The proteinase exhibited high stability in both the absence and presence of NaCl up to 25%.Approximately 2.5-fold increase in activity was observed in the presence of divalent cations,including Ca 2+,Mg 2+and Sr 2+at 100mM.MALDI-TOF MS and LC–ESI-MS/MS analyses,as well as N-terminal sequences,revealed that the puri?ed enzyme did not match microbial proteinases in the database,indicating it to be a novel proteinase.

ó2009Elsevier Ltd.All rights reserved.

1.Introduction

Most commercial proteinases are derived from mesophilic microorganisms and exhibit activity in the neutral to alkaline pH range,mild temperature and low ionic strength (Petersen,1981).Low thermal stability of these enzymes is a major limitation in their application (Anwar &Saleemuddin,1998).A proteinase from B.amyloliquefaciens could not function at >50°C,while Bacillus licheniformis proteinase was readily inactivated near pH 4(Adler-Nissen,1993).In addition,activity of Bacillus proteinases decreased with increasing NaCl concentration (Gupta et al.,2005).Protein-ases from mesophilic bacteria show relatively poor activity in ex-treme conditions.

Extremophilic microorganisms are considered to be an impor-tant source of enzymes that are able to function under harsh con-ditions (Kumar &Takagi,1999).Extremophiles are organisms thriving in extreme conditions,which include thermophiles,acido-philes,alkalophiles,psychrophiles and halophiles.Archaebacteria can produce proteinases that are able to perform a catalytic reac-tion at relatively high NaCl concentration (5.8–30%).A chymotryp-sin-like proteinase was puri?ed from arhaeon Natrialba asiatica

172P1and showed optimum activity at 30%NaCl (Kamekura &Seno,1990),whereas optimum activity of the puri?ed chymotryp-sin-like proteinase from arhaeon Natrialba magadii was at 1–1.5M NaCl (5.8–8.8%)(Giménez,Studdert,Sánchez,&De Castro,2000).Moderate halophiles are microorganisms growing well at 3–15%NaCl and proteinase activity also increases with NaCl concen-tration (Ventosa,Nieto,&Oren,1998).Activity of crude proteinases from Virgibacillus sp.SK33isolated from ?sh sauce fermentation was ?rst reported to increase with NaCl concentration up to 25%and showed higher proteolytic activity toward anchovy than did Alcalase and Protamex (Sinsuwan,Rodtong,&Yongsawatdigul,2008).Virgibacillus sp.SK33could be a good source of proteinases hydrolysing protein at high NaCl condition.To effectively utilise proteinases produced from Virgibacillus sp.SK33,their biochemical characteristics must be elucidated.Therefore,our objective was to purify and to biochemically characterise the predominant extracel-lular proteinase from Virgibacillus sp.SK33.2.Materials and methods 2.1.Chemicals

t -Butyloxycarbonyl(Boc)–Asp(oBzl)-Pro-Arg-7-amino-4-meth-ylcoumarin (AMC),succinyl(Suc)-Ala-Ala-Pro-Phe-AMC and carbo-benzoxy(Z)-Phe-Arg-AMC were purchased from Bachem A.G.

0308-8146/$-see front matter ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.foodchem.2009.06.064

*Corresponding author.Tel.:+6644224359;fax:+6644224387.E-mail address:jirawat@sut.ac.th (J.Yongsawatdigul).Food Chemistry 119(2010)

573–579

Contents lists available at ScienceDirect

Food Chemistry

j o u r n a l h o m e p a g e :https://www.wendangku.net/doc/782623957.html,/loc

ate/foodchem

(Dubendorf,Switzerland).Boc-Gln-Ala-Arg-AMC,Boc-Val-Leu-Lys-AMC,Z-Arg-Arg-AMC,leupeptin,trypsin inhibitor I(soybean),N-tosyl-L-lysine chloromethyl ketone(TLCK),N-tosyl-L-phenylalanine chloromethyl ketone(TPCK),phenylmethanesulfonyl?uoride (PMSF),bestatin,pepstatin A,trans-epoxysuccinyl-L-leucylamido-(4-guanidine)-butane(E-64),N-ethylmaleimide(NEM),iodoacetic acid(IAA),dithiothreitol(DTT),2-mercaptoethanol(b-ME),bovine serum albumin,L-tyrosine and casein were purchased from Sigma Chemical Co.(St.Louis,MO,USA).Ethylenediaminetetraacetic acid (EDTA),L-cysteine,imidazole and L-histidine were purchased from Fluka(Buchs,Switzerland).All other chemicals used were of ana-lytical grade.

2.2.Strain and growth condition

Strain SK33was isolated from?sh sauce fermentation and iden-ti?ed to be Virgibacillus sp.according to the16S rRNA gene se-quence(Accession No.DQ910838).Virgibacillus sp.SK33was a Gram-positive/variable,long rod of0.6–0.7?3.0–6.6l m,non-motility and terminal or subterminal ellipsoidal spores.It grew over a wide pH range of4–11and20–45°C(Sinsuwan et al., 2008).The puri?ed culture of Virgibacillus sp.SK33was cultivated in a halobacterium salt broth supplemented with yeast extract(1% yeast extract,0.3%trisodium citrate,0.2%potassium chloride,2.5% magnesium sulphate and5%NaCl)at40°C with a shaking speed of 100rpm for3days.Crude proteinase was collected by centrifuga-tion at8000g for30min at4°C.

2.3.Puri?cation

All puri?cation steps were carried out at$4°C,using a Puri?er 10(?KTA,GE Healthcare Bio-Sciences AB,Uppsala,Sweden). Ammonium sulphate was slowly added to the crude proteinase to attain a?nal concentration of1M.The crude proteinase was subsequently centrifuged at10,000g for30min and?ltered through a0.45l m-membrane?lter.The?ltrate was loaded onto a phenyl-Sepharose(GE Healthcare Bio-Sciences AB,Uppsala,Swe-den)column(2.6?6.5cm)equilibrated with1M(NH4)2SO4, 50mM Tris–HCl,pH8.0and washed with the same buffer.Elution was performed with a linear gradient from1to0M(NH4)2SO4, 50mM Tris–HCl,pH8.0.Fractions of5ml were collected at a?ow rate of1ml/min.Active fractions were pooled and dia?ltrated against50mM Tris–HCl(pH8.0),using a membrane with molecu-lar weight cut-off(MWCO)of10kDa(Vivaspin,Sartorius AG,Goet-tingen,Germany).

Dia?ltrated sample was applied to a hydroxyapatite column (5ml)(Econo-PacòCHT-II Cartridge,Bio-Rad Laboratories,Hercu-les,CA,USA)equilibrated with50mM Tris–HCl(pH8.0).The col-umn was washed with equilibrating buffer and eluted with a linear gradient of0–0.3M(NH4)2SO4,50mM Tris–HCl,pH8.0. Fractions of2.5ml were collected at a?ow rate of0.5ml/min.Ac-tive fractions were pooled.Protein content was monitored at 280nm and proteinase activity was determined as described below.

2.4.Activity staining

Activity staining was determined according to García-Carre?o, Dimes,and Haard(1993).The puri?ed proteinase was mixed with an equal volume of a sample buffer containing b-ME(125mM Tris–HCl(pH6.8),20%glycerol,4%SDS and10%b-ME)and in the absence of b-ME.The gel containing12.5%acrylamide was run at 100V(Laemmli,1970).Subsequently,it was immersed in2%case-in,100mM Tris–HCl,pH8.0,at4°C for30min,and washed twice with100mM Tris–HCl(pH8.0).Proteolytic reaction was carried out in100mM Tris–HCl(pH7.5)at55°C for30min.Gel was stained in0.1%Coomassie brilliant blue R-250,40%methanol and 10%acetic acid for1h and destained in25%ethanol and10%acetic acid.A clear zone indicated the presence of proteinase.

2.5.Enzymatic activity assay

Proteinase activity was assayed by the method of Barrett and Kirschke(1981)with some modi?cations.A?uorogenic substrate, Suc-Ala-Ala-Pro-Phe-AMC,was used as a substrate.The reaction mixture(1ml)contained50l l of the puri?ed enzyme,1l M syn-thetic substrate,200mM Tris–HCl(pH7.5)and was incubated at 55°C for5min.The reaction was stopped by adding1.5ml of the stopping solution(30%butanol,35%methanol and35%deionised water).Fluorescence intensity was measured at the excitation and emission wavelengths of380and460nm,respectively(RF-1501,Shimadzu Co.,Kyoto,Japan).Units of enzymatic activity were expressed as katal.

2.6.Biochemical characteristics

2.6.1.Estimation of molecular weight by gel?ltration

The molecular weight(MW)of the native proteinase was deter-mined using a Superose6(GE Healthcare Bio-Sciences AB,Uppsala, Sweden)column(1.6?85cm)equilibrated and eluted with 0.15M NaCl,50mM Tris–HCl,pH8.0.Fractions of0.85ml were collected at a?ow rate of0.85ml/min.Void volume(V o)was deter-mined using blue dextran(Sigma Chemical Co.,St.Louis,MO,USA). The ratio of elution volume(V e)to V o was calculated.The column was calibrated using a protein standard consisting of b-amylase (200kDa),alcohol dehydrogenase(150kDa),bovine serum albu-min(66kDa),carbonic anhydrase(29kDa)and cytochrome C (13kDa)(Sigma Chemical Co.,St.Louis,MO,USA).

2.6.2.Estimation of molecular weight by MALDI-TOF

The puri?ed proteinase was dialysed twice against100volumes of deionised water,using a dialysis membrane with MWCO10kDa (Pierce Chemical Company,Rockford,IL,USA).The dialyzed sample was mixed with an equal volume of matrix solution(10mg/ml a-cyano-4-hydroxy-cinnamic acid(4-HCCA)in acetonitrile(ACN) and0.1%tri?uoroacetic acid(TFA)(1:2))and subsequently the mixture was spotted onto the MALDI holder.Mass measurement was carried out using the MALDI-TOF(MS model re?ex V,Bruker Daltonik GmbH,Bremen,Germany)with a2GHz LeCroy digitiser and337nm nitrogen laser.

2.6.

3.Isoelectric point determination

Isoelectric point(pI)of the puri?ed proteinase was determined by PhastGel isoelectric focusing(IEF)with a PhastGel IEF3–9(GE Healthcare Bio-Sciences AB,Uppsala,Sweden).The operating con-dition was performed by prefocusing,sample application and focusing steps at2000,100and2000V,respectively.The temper-ature was controlled at15°C.A broad range pI standard(3–10) was used(GE Healthcare Bio-Sciences AB,Uppsala,Sweden).The protein band was detected by silver staining.

2.6.4.Effect of temperature/pH and thermal stability

The optimal temperature of proteinase activity was measured at4,30,35,40,45,50,55,60,65,70,75and80°C in200mM Tris–HCl(pH8.0),which was the optimal pH of crude proteinase. pH pro?le was measured at55°C at various pHs:pH5.0,5.5,6.0, using100mM sodium acetate;pH6.5,7.0,using100mM Tris-maleate;pH7.5,8.0,8.5,9.0,using200mM Tris–HCl;pH9.5, 10.0,using100mM borate buffer;pH11.0,using200mM carbon-ate buffer,and pH12.0,using200mM phosphate buffer.

Thermal stability of the enzyme was investigated by pre-incu-bating the puri?ed enzyme(5l g)in200mM Tris–HCl(pH7.5)

574S.Sinsuwan et al./Food Chemistry119(2010)573–579

at30,35,40,45,50,55,60,65and70°C for30min.When incuba-tion time was reached,samples were immediately cooled in iced water.The residual activity was determined at the optimal condi-tion obtained from the above experiments.

2.6.5.Effect of NaCl on activity and stability

Effect of NaCl on proteinase activity was determined by incu-bating the puri?ed proteinase in200mM Tris–HCl(pH7.5)at var-ious NaCl concentrations(0–25%)at55°C for5min.Deionised water(1.5ml)was used instead of the stopping reagent.The reac-tions were terminated by heating at90°C for5min.The residual activity was calculated as the percentage of sample without NaCl as100%.

NaCl stability of the puri?ed proteinase was monitored by pre-incubating the puri?ed enzyme(5l g)in5%,10%,15%,20%and25% NaCl,in200mM Tris–HCl,pH7.5at55°C for60min.The sample were rapidly cooled and assayed at the optimum condition, 200mM Tris–HCl(pH7.5),20%NaCl,at55°C.

2.6.6.Effect of inhibitors and other substances

The effects of various inhibitors and other substances on pro-teinase activity were determined.Reaction without substances was taken as100%activity.In addition,effects of divalent ions, Ca2+,Sr2+and Mg2+,on proteinase activity were determined at var-ious concentrations ranging from0–100mM.

2.6.7.Substrate speci?city and kinetic constant

Activity of the puri?ed proteinase was determined using various synthetic substrates at1l M,including Boc-Asp(oBzl)-Pro-Arg-AMC,Boc-Gln-Ala-Arg-AMC,Boc-Val-Leu-Lys-AMC,Suc-Ala-Ala-Pro-Phe-AMC,Z-Arg-Arg-AMC and Z-Phe-Arg-AMC. Activity was determined under the standard assay condition. Speci?c activity was expressed as kat/mg protein.

K m and k cat value of the puri?ed proteinase were determined in 200mM Tris–HCl(pH7.5)at55°C.Suc-Ala-Ala-Pro-Phe-AMC,at concentrations ranging from10to200l M,was used.Kinetic parameters were determined using linear regression of the Hanes-Wolff plot(Copeland,2000).

2.7.Mass spectrometry for protein identi?cation

The puri?ed proteinase was applied on SDS–PAGE(Laemmli, 1970)and visualised by staining with Coomassie brilliant blue R-250.The protein band was excised,placed in96-well plates and washed with water.Tryptic digestions were performed on an Ettan TM Spot Handing Workstation robot(GE Healthcare Bio-Sciences AB,Uppsala,Sweden)according to the manufacturer’s speci?cation.The peptide sample was mixed with an equal volume of matrix solution(10mg/ml4-HCCA in ACN and0.1%TFA(1:2)), applied onto a sample holder and dried at room temperature. The peptide mass?ngerprint(PMF)of tryptic-digested peptides was determined by MALDI-TOF(MS model re?ex V,Bruker Dalto-nik GmbH,Bremen,Germany)equipped with a2GHz LeCroy dig-itiser and337nm nitrogen laser.The spectrum of digested peptides was obtained by the positive ion mode at an acceleration voltage of20kV and400ns extraction delay.Mass data were com-pared with the non-redundant protein sequence database(NCBInr) of National Center for Biotechnology Information using the MAS-COT search engine(Matrix Science,London,UK).

Further protein identi?cation was also carried out using liquid chromatography–electrospray ionisation tandem mass spectrome-try(LC–ESI-MS/MS)equipped with a Finnigan LTQ linear ion trap mass spectrometer(Thermo Electron Co.,Waltham,MA,USA). Tryptic digested peptides were acidi?ed with0.1%TFA in30% ACN and separated using a Zorbax300SB-C18column(5l m, 5?0.3mm)(Agilent Technologies,Inc.,Palo Alto,CA,USA)with elution gradient2–60%buffer B(buffer A,0.1%formic acid in deionised water;buffer B,0.1%formic acid in ACN)at a?ow rate of100l l/min.The tryptic-digested peptide ions were detected in a survey scan from400to1600amu.LC-ESI-MS/MS data were examined using a SEQUEST search algorithm with NCBInr.Amino acid sequences of some peptides from de novo peptide sequencing were searched using the Basic Local Alignment Search Tool (BLAST).

2.8.N-terminal amino acid sequence analysis

The puri?ed proteinase was dialyzed twice against100volumes of deionised water,using a dialysis membrane with MWCO10kDa, at4°C overnight(Pierce Chemical Company,Rockford,IL,USA). The sample was concentrated by ultra?ltration with a membrane of MWCO10kDa(Vivaspin,Sartorius AG,Goettingen,Germany). The N-terminal amino acid sequence of the enzyme was deter-mined,using a protein sequencer(Applied Biosystems Procise 492HT,Applied Biosystems,Foster City,CA,USA)connected to a reverse-phase high performance liquid chromatography(RP-HPLC) apparatus for phenylthiohydantoin-derivative identi?cation.

2.9.Hydrolysis of anchovy proteins

Whole anchovy(Stolephorus indicus)was homogenised in cooled50mM Tris-maleate,pH7.0,at various NaCl concentrations (0%,5%,10%,15%,20%and25%NaCl)at a ratio of?sh to buffer of 1:5.The homogenate was stirred at4°C for30min.The homoge-nate was centrifuged at13,000g for30min.The supernatants were used as a substrate of the puri?ed enzyme.Protein content was determined by a dye binding method(Bradford,1976),using bo-vine serum albumin as a standard.

The reaction mixture(1ml)contained0.5nkat puri?ed protein-ase,200mM Tris–HCl(pH7.5),100l M leupeptin and1.5mg/ml of anchovy protein solubilised at various NaCl concentrations.Con-centration of NaCl in the reaction was adjusted with respect to NaCl concentration of the substrate.The mixture was incubated at55°C for30min.The reaction was stopped by adding trichloro-acetic acid(TCA)to a?nal concentration of10%.The samples were cooled at4°C for1h to allow complete protein precipitation and then centrifuged at10,000g for10min.TCA-soluble oligopeptide contents were determined by the Lowry method(Lowry,Roseb-rough,Farr,&Randall,1951),using tyrosine as a standard.Blanks were prepared in the same manner except that the heated protein-ase(90°C for5min)was used.

3.Results

3.1.Puri?cation and biochemical characteristics

Purity of proteinase from Virgibacillus sp.SK33increased about 2.5-fold with a yield of7%(Table1).The puri?ed proteinase showed a single band in SDS–PAGE in the absence and presence of b-ME,with an apparent MW of$19kDa(Fig.1A).In addition, zymograms showed a single band with high activity(Fig.1A). MW of the puri?ed proteinase,under native conditions as deter-mined by gel?ltration chromatography,was$43kDa.The MAL-DI-TOF spectra showed two peaks at m/z of16,881and33,724 (Fig.1B).The small intensity at m/z16,881was likely the doubly charged ion.Hence,the absolute MW of the proteinase was 33.7kDa.The MW of proteinase,estimated using MALDI-TOF, was about2times greater than that observed by SDS–PAGE.

pI of the puri?ed proteinase was$4.28(Fig.2).The proteinase activity was gradually increased with temperature and reached the maximum activity at55°C(Fig.3).The proteinase also showed

S.Sinsuwan et al./Food Chemistry119(2010)573–579575

high thermal stability at its optimal temperature,55°C(Fig.3).The puri?ed proteinase showed high activity over a wide pH range of 6.5–8.5,with an optimum pH of7.5(Fig.4).

Activity of the puri?ed proteinase increased with NaCl and reached a maximum at10%NaCl and remained constant up to 25%NaCl(Fig.5).Approximately2.5-fold increase in activity was observed at25%NaCl.In addition,activity of the puri?ed protein-ase towards anchovy protein increased with increasing NaCl con-centrations and attained the maximum at20–25%NaCl(p<0.05) (Fig.6).The puri?ed proteinase activity was completely inhibited by PMSF,whereas metallo proteinase inhibitors did not affect the activity(Table2).The studied metal ions had no effect on protein-ase activity(Table2).Divalent cations,namely Ca2+,Sr2+and Mg2+, showed activation effects up to100mM(Table2and Fig.7). Among various synthetic substrates tested,the puri?ed proteinase hydrolysed only Suc-Ala-Ala-Pro-Phe-AMC,with an activity of

Table1

Puri?cation of the puri?ed proteinase from Virgibacillus sp.SK33.

Step Total unit activity(nkat)Total protein(mg)Speci?c activity(nkat/mg protein)Puri?cation(fold)Yield(%)

Crude in1M(NH4)2SO49.4 3.7 2.51100 Phenyl-sepharose 1.60.5 3.3 1.316 Hydroxyapatite0.70.1 6.4 2.5

7

Fig.1.Estimation of molecular weight of the puri?ed proteinase from Virgibacillus sp.SK33.(A)SDS–PAGE(12.5%T)of the puri?ed proteinase visualised by silver staining and activity staining(zymogram).S=standard molecular weight;SDS=treatment buffer containing SDS and SDS+ME=treatment buffer containing SDS and2-mercaptoethanol;(B)MALDI-TOF spectra.

576S.Sinsuwan et al./Food Chemistry119(2010)573–579

Fig.2.Isoelectric focusing of the puri?ed proteinase.Applied voltages at 2000,100and 2000V were used for prefocusing,sample application and focusing steps,respectively.Temperature was kept at 15°C.Silver staining was performed.S =isoelectric focusing

standard.

Fig. 3.Temperature pro?le and thermal stability of the puri?ed proteinase.Thermal stability was determined at pH 7.5for 30

min.

Fig.4.

pH

pro?le of the puri?ed

proteinase.=

sodium acetate;

=Tris–

maleate;

=Tris–HCl;=borate buffer;

=glycine–NaOH and =phosphate buffer.All samples were incubated at 55°C.

Fig.5.Effects of NaCl on activity and stability of the puri?ed

Virgibacillus sp.SK33proteinase.NaCl stability was determined at 55°C for 60min.

Fig.6.Effects of NaCl on proteolytic activity of the puri?ed Virgibacillus sp.SK33proteinase (0.5nkat)using anchovy proteins as a substrate.Letters indicate signi?cant differences at p <0.05.

Table 2

Effect of various substances on the activity of the puri?ed proteinase.Substances Final concentration (mM)Relative activity (%)Control 100EDTA

1094Imidazole 1088Dithiothreitol

10952-Mercaptoethanol

10100L -cysteine

10

97

Metal ions CuCl 21106CdCl 21113CoCl 21108FeCl 31119MnCl 21108HgCl 2196ZnSO 4

1127Mono and divalent cations LiCl 210102NaCl 10105KCl 1099MgCl 210125CaCl 210122SrCi 210119BaCl 2

10

65

S.Sinsuwan et al./Food Chemistry 119(2010)573–579577

39nkat/mg protein.K m and k cat value of the puri?ed proteinase from Virgibacillus sp.SK33were27l M and12sà1,respectively.

3.2.Protein identi?cation by mass spectrometry

PMF of the Virgibacillus sp.SK33proteinase showed19peptides that did not match any proteins from microorganisms in the data-base.Insigni?cant protein scores were obtained when compared with the small-conductance mechano-sensitive channel from Pseu-domonas entomophila L48and the hypothetical protein L8106_10252from Lyngbya sp.PCC8106.LC-ESI-MS/MS spectra also con?rmed the nonexistence of peptides derived from the Vir-gibacillus sp.SK33proteinase.In addition,amino acid sequences obtained from the de novo sequencing,namely LTVLNWR,VDVLG-GAFR and RMDVDEVKDPLSAPRARR,showed no signi?cant similar-ities to the known microbial proteinases.The N-terminal sequence of the enzyme was distinctively different from other bacterial pro-teinases(Table3).Based on these results,the predominant pro-teinase from Virgibacillus sp.SK33seemed to be a novel proteinase,exhibiting high activity and stability at high salt content.

4.Discussion

The puri?ed proteinase,in the presence and absence of b-ME, showed the same protein pattern on SDS–PAGE(Fig.1A).In addi-tion,a reducing agent,DTT,had no effect on enzyme activity(Table 2).It was,therefore,postulated that the disulphide bond was unli-kely to be the main force stabilizing the enzyme structure.The dis-crepancy in molecular weight determination between MALDI-TOF and SDS–PAGE suggested an anomalous electrophoretic mobility of the enzyme.Such a phenomenon was also reported in ribonuclease U2,a very acidic protein with the pI of2.8–3.3(García-Ortega et al., 2005).Part of the peptides from elastase digestion of a streptococ-cal inhibitor protein also showed irregular electrophoretic behav-iour under SDS–PAGE,with nearly twice its true molecular weight(Fernie-King,Seilly,&Lachmann,2004).Apparent molecu-lar weight determination based on SDS–PAGE is rather erratic, especially when a protein contains abnormally high charges and/ or amino acids impeding SDS binding.

Archaebacteria,Halobacterium mediterranei and Natrialba maga-dii,produced proteinases with maximum activity at55–60°C (Giménez et al.,2000;Stepanov et al.,1992),which was similar to that of the puri?ed proteinase from Virgibacillus sp.SK33.An-other distinct characteristic of the enzyme was its high thermal stability at the optimal temperature,55°C,in contrast to several microbial proteinases,which were unstable in such a condition (Kim&Kim,2005).Optimum activity,at neutral pH(7.5),of Virgi-bacillus sp.SK33proteinase could be advantageous for food appli-cation.It should be noted that a small shoulder at around pH9.5–10was observed.This could be caused by the effect of borate buffer used at these pH values.

The puri?ed proteinase from a moderate halophile,Virgibacillus sp.SK33,showed activity in either the absence or presence of NaCl. In addition,activity increased with increasing NaCl concentration with the highest2.5-fold increase at25%NaCl.The enhancing ef-fect of NaCl on proteinase activity was observed in both a synthetic and?sh protein substrate(Figs.5and6).Another distinct feature of this enzyme was its high stability over a wide range of NaCl con-centration,0–25%.Archaebacterium proteinase from Halobacteri-um halobium was completely and irreversibly inactivated at<2M NaCl(11.7%NaCl)(Izotova et al.,1983),whereas H.halobium ATCC 43214proteinase was irreversibly inactivated at<4M NaCl(Kim& Dordick,1997).On the other hand,activity of eubacterial protein-ase was often unstable under high salt content.Activities of B.sub-tilis JM-3and Filobacillus sp.RF2–5proteinases decreased to$10% of the original at30%NaCl(Hiraga et al.,2005;Kim&Kim,2005). The low pI value of Virgibacillus sp.SK33proteinase implied that the surface of the enzyme contained many acidic amino acids, which is a unique characteristic of halophilic proteinases.A nega-tively charged surface would allow the enzyme to interact with hydrated salt ions and water,protecting the enzyme from the salt-ing-out effect.Thus,high thermal and NaCl stability of Virgibacillus sp.SK33proteinase would be a vital feature for application at high salt content,such as in?sh sauce or soy sauce fermentation.

Activity of the puri?ed proteinase increased almost$2times at 100mM Ca2+,Sr2+and Mg2+(Fig.7).These divalent cations might induce structural changes,leading to more?exibility of the sub-strate-binding site.However,the effect of divalent ions varied with strain.Proteinase from B.pumilus was also activated by Mg2+or Ca2+(Kumar,2002),whereas Natrialba asiatica172P1proteinase activity was not affected by Ca2+,Sr2+and Mg2+(Kamekura&Seno, 1990).Our results demonstrate that the puri?ed proteinase from Virgibacillus sp.SK33was activated not only by high NaCl content, but also by Ca2+.Addition of Ca2+could be a critical means to obtain maximum activity.The puri?ed proteinase displayed speci?city toward Suc-Ala-Ala-Pro-Phe-AMC,indicating that phenylalanine at the P1position and proline at the P2position, located on the cleaved peptide bond,were preferred.Likewise,a subtilisin preferentially hydrolyses large and non-b-branched hydrophobic residues at P1and small neutral side chains at P2 (Graycar,Ballinger,&Wells,2004).According to these results of synthetic substrates and inhibitors,the puri?ed enzyme is classi-?ed as a subtilisin-like proteinase.

Recently,MS techniques have been used for protein identi?ca-tion.A45-kDa puri?ed proteinase from Serratia rubidaea was ana-lysed by ESI-MS/MS and showed similar homology to a50-kDa proteinase of S.marcescens(Doddapaneni et al.,2007).PMF,LC-ESI-MS/MS,and de novo sequencing results revealed that peptide pattern and amino acid sequences of the puri?ed proteinase from Virgibacillus sp.SK33did not match those in the database.In addi-tion,N-terminal amino acid sequences of the puri?ed enzyme showed no homology to any bacterial proteinases.These results suggest that the puri?ed proteinase is a novel proteinase.

Table3

Comparison of N-terminal amino acid sequences between the puri?ed proteinase and proteinases from non-and halophiles.

Proteinase/strain N-terminal amino acid sequence Reference

The proteinase from Virgibacillus sp.SK33S Y E W–W D R R R

Proteinases from extreme and moderate halophiles

Natrialba asiatica172P1A T P N D P Q Y G Q Kamekura and Seno(1990)

Halobacterium mediterranei D T A N D P K Y G S Stepanov et al.(1992)

Filobacillus sp.RF2–5A L D T G V-W D-Hiraga et al.(2005)

Salinivibrio sp.AF-2004A T A G G T G P G G Karbalaei-Heidari,Ziaee,Schaller,and Amoozegar(2007) Expro-I(B.subtilis FP-133)A E S V P Y G V S E Setyorini,Takenaka,Murakami,and Aoki(2006)

Expro-II(B.subtilis FP-133)A D A T G X G G N Q Setyorini et al.(2006)

578S.Sinsuwan et al./Food Chemistry119(2010)573–579

5.Conclusions

A novel serine proteinase from Virgibacillus sp.SK33was puri-?ed and characterised.The unique characteristic of the subtilisin proteinase was the ability to hydrolyse ?sh protein in either the absence or presence of high NaCl content (25%).The proteinase showed high stability over a wide range of NaCl concentration of 0–25%.In addition,the enzyme was activated by Ca 2+.The enzyme can be applied to hydrolyze protein at a high salt concentration.This could be an important processing-aid agent for protein hydro-lysis processes involving high salt content,such as ?sh sauce or soy sauce fermentation.Acknowledgements

This work was ?nancially supported by a research grant from the National Center for Genetic Engineering and Biotechnology (BIOTEC),Thailand,under research agreement No.BT-B-06-FG-19-4603.We also thank Mr.Surasak Jiemsup,Genome Institute (GI),BIOTEC,Thailand,for technical assistance in mass spectrome-try analyses.References

Adler-Nissen,J.(1993).Proteases.In T.Nagodawithana &G.Reed (Eds.),Enzymes in

food processing (3rd ed.,pp.159–203).San Diego:Academic Press.

Anwar,A.,&Saleemuddin,M.(1998).Alkaline proteinases:A review.Bioresource

Technology,64,175–183.

Barrett,A.J.,&Kirschke,H.(1981).Cathepsin B,cathepsin H,and cathepsin L.In S.P.

Colowick &N.O.Kaplan (Eds.).Methods in enzymology (Vol.80,pp.535–561).New York:Academic Press.

Bradford,M.(1976).A rapid sensitive method for quantitation of microgram

quantities of protein utilizing the principle of protein dye binding.Analytical Biochemistry,72,248–254.

Copeland,R.A.(2000).Enzymes:A practical introduction to structure,mechanism,and

data analysis (2nd ed.).New York:Wiley-VCH.

Doddapaneni,K.K.,Tatineni,R.,Vellanki,R.N.,Gandu,B.,Panyala,N.R.,Chakali,B.,

et al.(2007).Puri?cation and characterization of two novel extra cellular proteases from Serratia rubidaea .Process Biochemistry,42,1229–1236.

Fernie-King, B. A.,Seilly, D.J.,&Lachmann,P.J.(2004).The interaction of

streptococcal inhibitor of complement and its proteolytic fragments with human beta defensins.Immunology,111,444–452.

García-Carre?o, F.L.,Dimes,L. E.,&Haard,N. F.(1993).Substrate–gel

electrophoresis for composition and molecular weight of proteinase or proteinaceous proteinase inhibitors.Analytical Biochemistry,214,65–69.

García-Ortega,L.,De los Ríos,V.,Martínez-Ruiz, A.,O?aderra,M.,Lacadena,J.,

Martínez del Pozo,A.,et al.(2005).Anomalous electrophoretic behavior of a very acidic protein:Ribonuclease U2.Electrophoresis,26,3407–3413.

Giménez,M.I.,Studdert,C.A.,Sánchez,J.J.,&De Castro,R.E.(2000).Extracellular

protease of Natrialba magadii :Puri?cation and biochemical characterization.Extremophiles,4,181–188.

Graycar,T.P.,Ballinger,M.D.,&Wells,J.A.(2004).Subtilisin (2nd ed..In A.J.

Barrett,N.D.Rawlings,&J.F.Woessner (Eds.).Handbook of proteolytic enzymes (Vol.2,pp.1786–1792).Amsterdam:Elsevier.

Gupta,A.,Roy,I.,Patel,R.K.,Singh,S.P.,Khare,S.K.,&Gupta,M.N.(2005).One-step

puri?cation and characterization of an alkaline protease from haloalkaliphilic Bacillus sp.Journal of Chromatography A,1075,103–108.

Hiraga,K.,Nishikata,Y.,Namwong,S.,Tanasupawat,S.,Takada,K.,&Oda,K.(2005).

Puri?cation and characterization of serine proteinase from a halophilic bacterium,Filobacillus sp.RF2–5.Bioscience,Biotechnology,and Biochemistry,69,8–44.

Izotova,L.S.,Strongin,A.Y.,Chekulaeva,L.N.,Sterkin,V.E.,Ostoslavskaya,V.I.,

Lyublinskaya,L.A.,et al.(1983).Puri?cation and properties of serine protease from Halobacterium halobium .Journal of Bacteriology,155,826–830.

Kamekura,M.,&Seno,Y.(1990).A halophilic extracellular protease from a

halophilic archaebacterium strain 172P1.Biochemistry and Cell Biology,68,352–359.

Karbalaei-Heidari,H.R.,Ziaee, A. A.,Schaller,J.,&Amoozegar,M. A.(2007).

Puri?cation and characterization of an extracellular haloalkaline protease produced by the moderately halophilic bacterium,Salinivibrio sp.strain AF-2004.Enzyme Microbial Technology,40,6–272.

Kim,J.,&Dordick,J.S.(1997).Unusual salt and solvent dependence of a protease

from an extreme halophile.Biotechnology and Bioengineering,55,471–479.

Kim,W.J.,&Kim,S.M.(2005).Puri?cation and characterization of Bacillus subtilis

JM-3protease from anchovy sauce.Journal of Food Biochemistry,29,591–610.Kumar,C.G.(2002).Puri?cation and characterization of a thermostable alkaline

protease from alkalophilic Bacillus pumilus .Letters in Applied Microbiology,34,13–17.

Kumar,C.G.,&Takagi,H.(1999).Microbial alkaline proteases:From a bioindustrial

viewpoint.Biotechnology Advance,17,561–594.

Laemmli,U.K.(1970).Cleavage of structural proteins during the assembly of the

head of bacteriophage T 4.Nature,227,680–685.

Lowry,O.H.,Rosebrough,N.J.,Farr, A.L.,&Randall,R.J.(1951).Protein

measurement with the Folin phenol reagent.The Journal of Biological Chemistry,193,265–275.

Petersen,B.P.(1981).The impact of the enzymic hydrolysis process on recovery

and use of proteins.In G.G.Birch,N.Blakebrough,&K.J.Parker (Eds.),Enzymes and food processing (pp.149–175).London:Applied Science.

Setyorini, E.,Takenaka,S.,Murakami,S.,&Aoki,K.(2006).Puri?cation and

characterization of two novel halotolerant extracellular proteases from Bacillus subtilis strain FP-133.Bioscience Biotechnology Biochemistry,70,433–440.

Sinsuwan,S.,Rodtong,S.,&Yongsawatdigul,J.(2008).Production and

characterization of NaCl-activated proteinases from Virgibacillus sp.SK33isolated from ?sh sauce fermentation.Process Biochemistry,43,5–192.

Stepanov,V.M.,Rudenskaya,G.N.,Revina,L.P.,Gryaznova,Y.B.,Lysogorskaya,E.

N.,Filippova,I.Y.,et al.(1992).A serine proteinase of an archaebacterium,Halobacterium mediterranei :A homologue of eubacterial subtilisins.The Biochemical Journal,285,281–286.

Ventosa,A.,Nieto,J.J.,&Oren,A.(1998).Biology of moderately halophilic aerobic

bacteria.Microbiology and Molecular Biology Reviews,62,

504–544.

Fig.7.Effects of divalent ions on the puri?ed proteinase activity.

S.Sinsuwan et al./Food Chemistry 119(2010)573–579579

变电所母线桥的动稳定校验

变电所母线桥的动稳定校验 随着用电负荷的快速增长,许多变电所都对主变进行了增容,并对相关设备进行了调换和校验,但往往会忽视主变母线桥的动稳定校验,事实上此项工作非常重要。当主变增容后,由于阻抗发生了变化,短路电流将会增大许多,一旦发生短路,产生的电动力有可能会对母线桥产生破坏。特别是户内母线桥由于安装时受地理位置的限制,绝缘子间的跨距较长,受到破坏的可能性更大,所以应加强此项工作。 下面以我局35kV/10kv胡店变电所#2主变增容为例来谈谈如何进行主变母线桥的动稳定校验和校验中应注意的问题。 1短路电流计算 图1为胡店变电所的系统主接线图。(略) 已知#1主变容量为10000kVA,短路电压为7.42%,#2主变容量为12500kVA,短路电压为7.48%(增容前短路电压为7.73%)。 取系统基准容量为100MVA,则#1主变短路电压标么值 X1=7.42/100×100×1000/10000=0.742, #2主变短路电压标么值 X2=7.48/100×100×1000/12500=0.5984 胡店变电所最大运行方式系统到35kV母线上的电抗标么值为0.2778。 ∴#1主变与#2主变的并联电抗为: X12=X1×X2/(X1+X2)=0.33125; 最大运行方式下系统到10kV母线上的组合电抗为: X=0.2778+0.33125=0.60875

∴10kV母线上的三相短路电流为:Id=100000/0.60875*√3*10.5,冲击电流:I sh=2.55I =23032.875A。 d 2动稳定校验 (1)10kV母线桥的动稳定校验: 进行母线桥动稳定校验应注意以下两点: ①电动力的计算,经过对外边相所受的力,中间相所受的力以及三相和二相电动力进行比较,三相短路时中间相所受的力最大,所以计算时必须以此为依据。 ②母线及其支架都具有弹性和质量,组成一弹性系统,所以应计算应力系数,计及共振的影响。根据以上两点,校验过程如下: 已知母线桥为8×80mm2的铝排,相间中心线间距离为210mm,先计算应力系数: ∵频率系数N f=3.56,弹性模量E=7×10.7 Pa,单位长度铝排质量M=1.568kg/m,绝缘子间跨距2m,则一阶固有频率: f’=(N f/L2)*√(EI/M)=110Hz 查表可得动态应力系数β=1.3。 ∴单位长度铝排所受的电动力为: f ph=1.73×10-7I sh2/a×β=568.1N/m ∵三相铝排水平布置,∴截面系数W=bh2/6=85333mm3,根据铝排的最大应力可确定绝缘子间允许的最大跨距为: L MAX=√10*σal*W/ f ph=3.24m ∵胡店变主变母线桥绝缘子间最大跨距为2m,小于绝缘子间的最大允许跨距。

15个重要的均线形态

15个重要的均线形态: 1、银山谷 2、金山谷 3、死亡谷 4、首次粘合向上发散 5、首次粘合向下发散 6、首次交叉向上发散 7、首次交叉向下发散 8、再次粘合向上发散9、再次粘合向下发散 10、再次交叉向上发散11、首次交叉向下发散 12、烘云托月13、乌云密布14、蛟龙出海15、断头铡刀 一、银山谷1、出现在上涨初期; 2、由3根均线交叉组成; 3、形成一个尖头向上的不规则三角形。 为见底信号。 通常作为激进型的买点。 案例:002046轴研科技2015年7月28日大跌过后形成银山谷。 二、金山谷1、出现在银山谷之后; 2、构成方式与银山谷相同; 3、金山谷所处的位置必须等于或高于银山谷,否则将成为新的银山谷。 为重要的买进信号,为稳健型的重要买入入场信号。 大多会形成重要的底部形态,如双底、头肩底等。 案例,轴研科技2013年11月26日形成金山谷,量能放大,且伴有跳空,为一个很好的买点,随后股价大涨。 三、死亡谷1、出现在下跌初期; 2、有三根均线交叉组成,形成一个尖头向下的不规则三角形 见顶信号 在股价大幅上扬后,出现次信号要特别小心,可配合成交量加以判断。

案例:000877天山股份2017年4月12日大牛股天山股份形成死亡谷 四、首次粘合向上发散1、既可出现在下跌后横盘末期,又可出现在上涨后的横盘末期; 2、短、中、长均线同时以喷射状向上发散; 3、多根均线发散前形成粘合态。 为重要的买入信号。 向上发散时如果有成交量配合,可作为首次入场信号。 案例:天山股份2017年2月6日首次粘合发散,后面大幅度上涨。 五、首次粘合向下发散1、既可出现在下跌后横盘末期,又可出现在下跌后的横盘末期; 2、短、中、长均线同时以喷射状向下发散; 3、多根均线向下发散前粘合在一起。 这是一个极其重要的卖出信号。 如果再配合以向下跳空等重要K线语言,则更加要引起高度重视。 案例:601390中国中铁2015年6月12日构成首次粘合向下发散。 六、首次交叉向上发散1、出现在下跌后期; 2、短、中、长均线从向下发散不断收敛后再向上发散。 为激进型买进信号。该信号由于未进行有效的低位整理,所以准确率不高。 案例2016年铁龙物流构成首次交叉向上发散。 向上交叉是银山谷的一个极端形态,三线共点,但这种情况较少见,较小的银三角可以认为就是交叉向上发散。

母线电动力及动热稳定性计算

母线电动力及动热稳定性计算 1 目的和范围 本文档为电气产品的母线电动力、动稳定、热稳定计算指导文件,作为产品结构设计安全指导文件的方案设计阶段指导文件,用于母线电动力、动稳定性、热稳定性计算的选型指导。 2 参加文件 表1 3 术语和缩略语 表2 4 母线电动力、动稳定、热稳定计算 4.1 载流导体的电动力计算 4.1.1 同一平面内圆细导体上的电动力计算

? 当同一平面内导体1l 和2l 分别流过1I 和2I 电流时(见图1),导体1l 上的电动力计 算 h F K I I 4210 π μ= 式中 F ——导体1l 上的电动力(N ) 0μ——真空磁导率,m H 60104.0-?=πμ; 1I 、2I ——流过导体1l 和2l 的电流(A ); h K ——回路系数,见表1。 图1 圆细导体上的电动力 表1 回路系数h K 表 两导体相互位置及示意图 h K 平 行 21l l = ∞=1l 时,a l K h 2= ∞≠1l 时,?? ? ???-+=l a l a a l K h 2)(12 21l l ≠ 22 2) ()(1l a m l a l a K h ++-+= 22)()1(l a m +-- l a m =

? 当导体1l 和2l 分别流过1I 和2I 电流时,沿1l 导体任意单位长度上各点的电动力计 算 f 124K f I I d μ= π 式中 f ——1l 导体任意单位长度上的电动力(m N ); f K ——与同一平面内两导体的长度和相互位置有关的系数,见表2。 表2 f K 系数表

4.1.2 两平行矩形截面导体上的电动力计算 两矩形导体(母线)在b <<a ,且b >>h 的情况下,其单位长度上的电动力F 的 计算见表3。 当矩形导体的b 与a 和h 的尺寸相比不可忽略时,可按下式计算 712 210x L F I I K a -=? 式中 F -两导体相互作用的电动力,N ; L -母线支承点间的距离,m ; a -导体间距,m ; 1I 、2I -流过两个矩形母线的电流,A ; x K -导体截面形状系数; 表3 两矩形导体单位长度上的电动力 4.1.3 三相母线短路时的电动力计算

所有均线的用法

5均线、10均线、20均线、30均线、60均线、120均线,240均线操盘手对此有特定称谓. 一、攻击线 5均线 所谓攻击线就是我们日常所说的五日均线。有的朋友觉得很可笑,五日均线还用讲吗,这个傻瓜都知道。事实上问题就出在这里,越简单的你反而不会花大力气去学习深究其里。这里需要给大家强调一点,这些特定称谓一般指常用的日线系统,但攻击线也可用于分时、周线、月线甚至是年线,如果你是中线持股者五周线就是你的攻击线,其他依次类推。攻击线作用有三个,攻击线拐头向上表示其有助涨作用,攻击线走平意味着股票正在做平台整理,拐头向下代表其有助跌作用,读者朋友要注意,在大盘系统较稳定的情况下自己要选择攻击线陡峭向上的个股,斜率大上涨速度快,赚钱速度快。 5日均线:均线系统是最为基本、直观的技术分析工具。它简单、实用,也可以解决很多种复杂情况,因此为许多股民朋友们所喜爱。5日均线是均线中最常见的,也是最必不可少的,常常作为买入卖出的信号,作为一个波段结束反转形成的启动点。5日均线战法将详细介绍利用股价和5日均线配合来观察股市和操盘的方法,我们将十分详细地讲解5日均线在分析和实战中的运用,希望对于各位新手能有所帮助。 一、5日均线战法:概述 5日均线对于短线操盘和波段操作至关重要,甚至可以说,5日均线是其生命线。5日均线战法无非就是弄清楚5日均线的变化以及5日均线和股价、K线的关系。更加深入地来看,5日均线的使用高手最终会淡化5日均线的影响,因为5日均线最终还是由K线走出的收盘价决定的,并且5日均线稍稍滞后于K线的走势,5日均线战法某种程度上只是帮助我们理解市场的一个中间手段。 二、5日均线战法:用法 (1)股价高过5日均线过多,可以认为股价偏离5日均线过大,“乖离率”太大。这时候股价往往会有回调的风险,属于单边走势结束的时机,最好伺机卖出。至于“乖离率”,一般认为股价偏离5日均线7%到15%属于过高,可以适时进行短线轧平头寸。 一、攻击线即是5日均线。其主要作用是推动价格在短期内形成攻击态势,不断引导价格上涨或下跌。如果攻击线上涨角度陡峭有力(没有弯曲疲软的状态),则说明价格短线爆发力强。反之,则弱。同样,在价格进入下跌阶段时,攻击线也是重要的杀跌武器,如果向下角度陡峭,则杀跌力度极强。 在临盘实战中,当价格突破攻击线,攻击线呈陡峭向上的攻击状态时,则意味着短线行情已经启动,此时应短线积极做多。同理,当价格击穿攻击线,攻击线呈向下拐头状态时,则意味着调整或下跌行情已经展开,此时应短线做空。 5均线开平仓标准: 1.实体中阳上穿5均线回踩站稳做多。 2.实体中阴下穿5均线回测受阻做空。 3.K线拉大阴线超卖,5均线乖离率过大,短线轻仓做多。 4.K线拉大阳线超买,5均线乖离率过大,短线轻仓做空。 5.5均线走平时应观望,等待实体K线突破阻力或支撑回测确认在顺势跟进。

高压电缆热稳定校验计算书

筠连县分水岭煤业有限责任公司 井 下 高 压 电 缆 热 稳 定 性 校 验 计 算 书 巡司二煤矿 编制:机电科 筠连县分水岭煤业有限责任公司

井下高压电缆热稳定校验计算书 一、概述: 根据《煤矿安全规程》第453条及456条之规定,对我矿入井高压电缆进行热稳定校验。 二、确定供电方式 我矿高压供电采用分列运行供电方式,地面变电所、井下变电所均采用单母线分段分列供电方式运行,各种主要负荷分接于不同母线段。 三、井下高压电缆明细: 矿上有两趟主进线,引至巡司变电站不同母线段,一趟931线,另一趟925线。井下中央变电所由地面配电房10KV输入。 入井一回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 入井二回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 四、校验计算 1、井下入井回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为,MYJV22-8.7/10KV 3*50mm2 ,800m,电缆长度为800m=0.8km。 (1)计算电网阻抗 查附表一,短路电流的周期分量稳定性为 电抗:X=0.072*0.8=0.0576Ω; 电阻:R=0.407*0.8=0.3256 Ω; (2)三相短路电流的计算

A Z I 5.174693305 .0310000 3v 3=?== ∞ (3)电缆热稳定校验 由于断路器的燃弧时间及固有动作时间之和约为t=0.05S; 查附表二得热稳定计算系数取K=142; 故电缆最小热值稳定截面为 23mm 51.2705.0142/5.17469t )/(min ===∞)(K I S Smin<50mm 2 故选用 MYJV 22 -8.7/10KV 3*50 电缆热稳定校验合格,符合要求。 附表一:三相电缆在工作温度时的阻抗值(Ω/Km ) 电缆截面S (mm 2 ) 4 6 10 16 2 5 35 50 70 95 120 150 185 240 交联聚乙烯 R 4.988 3.325 2.035 1.272 0.814 0.581 0.407 0.291 0.214 0.169 0.136 0.11 0.085 X 0.093 0.093 0.087 0.082 0.075 0.072 0.072 0.069 0.069 0.069 0.07 0.07 0.07 附表二 不同绝缘导体的热稳定计算系数 绝缘材料 芯线起始温度(° C ) 芯线最高允许温度(°C ) 系数K 聚氯乙烯 70 160 115(114) 普通橡胶 75 200 131 乙丙橡胶 90 250 143(142) 油浸纸绝缘 80 160 107 交联聚乙烯 90 250 142

六大均线使用技巧

现货产品投资中,除了运用基本面分析外,技术分析其地位也是是相当重要的,很多投资者热衷于技术分析,可以根据技术分析判断现货产品价格走势。下面小编给大家介绍下六大均线使用技巧。 一、攻击线,即5日均线 攻击线的主要作用是推动价格在短期内形成攻击态势,不断引导价格上涨或下跌。如果攻击线上涨角度陡峭有力(没有弯曲疲软的状态),则说明价格短线爆发力强。反之,则弱。同样,在价格进入下跌阶段时,攻击线也是重要的杀跌武器,如果向下角度陡峭,则杀跌力度极强。 在临盘实战中,当价格突破攻击线,攻击线呈陡峭向上的攻击状态时,则意味着短线行情已经启动,此时应短线积极做多。同理,当价格击穿攻击线,攻击线呈向下拐头状态时,则意味着调整或下跌行情已经展开,此时应短线做空。 二、操盘线,即10日均线 此线也有行情线之称。操盘线的主要作用是推动价格在一轮中级波段行情中持续上涨或下跌。如果操盘线上涨角度陡峭有力,则说明价格中期上涨力度强。反之,则弱。同样,在价格进入下跌波段时,操盘线同样可促使价格反复盘跌。 在临盘实战中,当价格突破操盘线,操盘线呈持续向上的攻击状态时,则意味着波段性中线行情已经启动,此时应短线积极做多。同理,当价格击穿操盘线,

操盘线呈向下拐头状态时,则意味着上涨行情已经结束,大波段性调整或下跌行情已经展开,此时应中线做空。 三、辅助线,即22日均线 辅助线的主要作用是协助操盘线,推动并修正价格运行力度与趋势角度,稳定价格趋势运行方向。同时,也起到修正生命线反应迟缓的作用。在一轮波段性上涨行情中,如果辅助线上涨角度较大并陡峭有力,则说明价格中线波段上涨力度极强。反之,则弱。同样,价格在下跌阶段时,辅助线更是价格反弹时的强大阻力,并可修正价格下跌轨道,反复促使价格震荡盘跌。 在临盘实战中,当价格突破辅助线,辅助线呈持续向上的攻击状态时,则意味着波段性中线行情已经启动,此时应短线积极做多。同理,当价格击穿辅助线,辅助线呈向下拐头状态时,则意味着阶段性中线上涨行情已经结束,而阶段性调整或下跌行情已经展开,此时应中线做空。 四、生命线,即66日均线 生命线的主要作用是指明价格的中期运行趋势。在一个中期波段性上涨趋势中,生命线有极强的支撑和阻力作用。如果生命线上涨角度陡峭有力,则说明价格中期上涨趋势强烈,主力洗盘或调整至此位置可坚决狙击。反之,则趋势较弱,支撑力也将疲软。同样,在价格进入下跌趋势时,生命线同样可压制价格的反弹行为,促使价格持续走弱。

热稳定性校验(主焦

井下高压开关、供电电缆动热稳定性校验 一、-350中央变电所开关断路器开断能力及电缆热稳定性校验 1 23 G 35kV 2 Uz%=7.5△P N.T =12kW △P N.T =3.11kW S N.T =8MVA 6kV S1点三相短路电流计算: 35kV 变压器阻抗: 2 22.1. u %7.5 6.30.37()1001008z N T N T U Z S ?===Ω? 35kV 变压器电阻:2 22.1.22. 6.30.0120.007()8 N T N T N T U R P S =?=?=Ω 35kV 变压器电抗:10.37()X = ==Ω 电缆电抗:02(x )0.415000.08780 0.66()1000 1000i L X ??+?== =Ω∑ 电缆电阻:02(x )0.11815000.118780 0.27()1000 1000 i L R ??+?== =Ω∑ 总阻抗: 21.370.66) 1.06( Z ==Ω S1点三相短路电流:(3)1 3.43()d I KA === S2点三相短路电流计算: S2点所用电缆为MY-3×70+1×25,长400米,变压器容量为500KV A ,查表的:(2)2d I =2.5KA

S2点三相短路电流:32 d d =2.88I I KA = 1、架空线路、入井电缆的热稳定性校验。已知供电负荷为3128.02KV A ,电压为6KV ,需用系数0.62,功率因数cos 0.78φ=,架空线路长度1.5km ,电缆长度780m (1)按经济电流密度选择电缆,计算容量为 3128.020.62 2486.37cos 0.78 kp S KVA φ?= ==。 电缆的长时工作电流Ig 为239.25 Ig === A 按长时允许电流校验电缆截面查煤矿供电表5-15得MYJV42-3×185-6/6截面长时允许电流为479A/6kV 、大于239.25A 符合要求。 (2)按电压损失校验,配电线路允许电压损失5%得 60000.1300Uy V ?=?=,线路的实际电压损失 109.1L U COS DS φφ?====,U ?小于300V 电压损失满足要求 (3)热稳定性条件校验,短路电流的周期分量稳定性为 电缆最小允许热稳定截面积: 3 2min d =S I mm 其中:i t ----断路器分断时间,一般取0.25s ; C----电缆热稳定系数,一般取100,环境温度35℃,电缆温升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电

几种不同均线的设置.--转载新浪博客

几种不同均线的设置 (2008-10-08 23:17:37) 转载▼ 均线是研究大盘和股票最基本的要素,看均线也是股民的基本功,有的炒股高手就凭几条均线就能判断出大盘和股票的涨与跌,而且照样能赚到大钱。对于均线的设置各人都有不同的习惯,也都有各自的道理,关键是自己能够不能够把握,这一点十分重要。 均线的设置正常情况下,应当是5日、10日、20日、30日、60日、120日、250日、500日均线等,5日线实际上代表的是一周的价格水平,也可视为周线,以此类推,10日线是半月线,20日线是月线,30日线是1.5月线,60日线是三月线,120日线是半年线,250日线是年线,也是牛熊分界线,500日线是两年线。以此类推。 在益盟公司的几位老师中,在大盘上俞涌老师设一条38日均线和一条73 日均线,冯崎老师设一条18日均线。他们的设置都有各自的道理,38日线是差两天的两月线,也是差两天的8周线;73日线是比4月线早7天的一条均线。关于38日线,我经过验证,对于看大盘非常有价值,大盘在牛市时指数基本是不会破这条线的,而在这波熊市里,大盘的指数基本是在38日线以下运行,很难突破这条线,也可以说在这条均线下面买入股票,想赚钱是非常难的。而且,大盘每每反弹到 38日线这个阻力位时必定回调。现在大盘的指数正好是受阻于这条均线的,可见,用38日线看上证指数是有特别意义的。 冯崎老师设的18日线,是比月线早两天的一条线,冯崎老师把这条线称为大盘的生命线,也就是说指数在这条线以下不操作股票,在这条线以下买入股票不赚钱是正常的,赚了钱就是不正常的。在这次一年多的下跌行情中,大盘只有三次短暂地在18日均线上方运行,我们赚钱的时机也就这么三回,抓住了就可赚一笔,而在这条线以下想赚钱,都是侥幸的。 在个股上做短线和长线的人习惯设为3、5、18、30、62、133、250、500日线。做超短线的人习惯设为3、5、13、20、35、70、 120、250日线。做中线的习惯设为5、10、20、30、60、120、185日线。各有各的独到之处,这需要自己仔细体味和研究。一个比较正规的主力,一个老道的操盘手在拉升股价时,都可以会预设一条线,股价大多数时间是沿着这条线运行的,只要不破这条线,我们可以放心持有,破了这条线就要果断卖出。至于这条线是多少日线,需要自己去揣摩了。

上海理工大学高等传热学试题及答案

1.试求出圆柱坐标系的尺度系数,并由此导出圆柱坐标系中的导热微分方程。 2 .一无限大平板,初始温度为T 0;τ>0时,在x = 0表面处绝热;在x = L 表面以对流方式向温度为t f 的流体换热。试用分离变量法求出τ>0时平板的温度分布(常物性)。(需求出特征函数、超越方程的具体形式,范数(模)可用积分形式表示)。(15分) , 3.简述近似解析解——积分法中热层厚度δ的概念。 答:近似解析解:既有分析解的特征:得到的结果具有解析函数形式,又有近似解的特征:结果只能近似满足导热解问题。在有限的时间内,边界温度 的变化对于区域温度场的影响只是在某一有限的范围内,把这个有限的范围定义为热层厚度δ。 4.与单相固体导热相比,相变导热有什么特点 答:相变导热包含了相变和导热两种物理过程。相变导热的特点是 1.固、液两相之间存在着 移动的交界面。 2.两相交界面有潜热的释放(或吸收) | 对流部分(所需量和符号自己设定) 1 推导极坐标系下二维稳态导热微分方程。 2 已知绕流平板流动附面层微分方程为 y u y u V x u u 22??=??+??ν 取相似变量为: x u y νη∞ = x u f νψ∞= 写出问题的数学模型并求问题的相似解。 3 已知绕流平板流动换热的附面层能量积分方程为: ?=∞?? =-δ00)(y y t a dy t t u dx d 当Pr<<1时,写出问题的数学模型并求问题的近似积分解及平均Nu (取三次多项式)。 4 ] O x

5写出常热流圆管内热充分发展流动和换热问题的数学模型并求出速度和温度分布及Nu x.辐射 1.请推导出具有n个表面的净热流法壁面间辐射换热求解公式,并简要说明应用任一种数值方法的求解过程。 2.试推导介质辐射传递方程的微分形式和积分形式,要求表述出各个步骤和结果中各个相关量的含义。 3.根据光谱辐射强度表示下面各量:1)光谱定向辐射力;2)定向辐射力;3)光谱辐射力;4)辐射力;5)辐射热流量。要求写清各量的符号、单位。 4.说明下列术语(可用数学表达式)(每题4分) a)光学厚度 b)漫有色表面 c)? d)兰贝特余弦定律 e)光谱散射相函数 f)定向“灰”入射辐射

高压电缆热稳定校验计算书

*作品编号:DG13485201600078972981* 创作者:玫霸* 筠连县分水岭煤业有限责任公司 井 下 高 压 电 缆 热 稳 定 性 校 验 计 算 书 巡司二煤矿

编制:机电科 筠连县分水岭煤业有限责任公司 井下高压电缆热稳定校验计算书 一、概述: 根据《煤矿安全规程》第453条及456条之规定,对我矿入井高压电缆进行热稳定校验。 二、确定供电方式 我矿高压供电采用分列运行供电方式,地面变电所、井下变电所均采用单母线分段分列供电方式运行,各种主要负荷分接于不同母线段。 三、井下高压电缆明细: 矿上有两趟主进线,引至巡司变电站不同母线段,一趟931线,另一趟925线。井下中央变电所由地面配电房10KV输入。 入井一回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 入井二回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 四、校验计算 1、井下入井回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为,MYJV22-8.7/10KV 3*50mm2 ,800m,电缆长度为800m=0.8km。 (1)计算电网阻抗 查附表一,短路电流的周期分量稳定性为

电抗:X=0.072*0.8=0.0576Ω; 电阻:R=0.407*0.8=0.3256 Ω; (2)三相短路电流的计算 (3)电缆热稳定校验 由于断路器的燃弧时间及固有动作时间之和约为t=0.05S; 查附表二得热稳定计算系数取K=142; 故电缆最小热值稳定截面为 Smin<50mm2故选用 MYJV22 -8.7/10KV 3*50 电缆热稳定校验合格,符合要求。 附表一:三相电缆在工作温度时的阻抗值(Ω/Km)

高手的均线总结及使用心得

高手的均线总结及使用心得 https://www.wendangku.net/doc/782623957.html,/post_46_908231_1_d.aspx 一:对于均线的支撑作用的论证 截止到目前为止,人们通常对于均线是否具有真正有效的支撑作用抱有疑问,笔者的心得如下:对于 一只股票,只要主力尚在其中,根据主力的类型和目标的不同,主力不会允许股价有效击破某条重要均线 ,因为通常主力会顾及到主力的成本区域,大众的心理层面以及主力的目标和操作手法等,此时股价往往 在重要均线获得支撑,而当主力已经基本离场出局,均线的支撑作用就自然消失。所以均线的支撑作用在 个股的行情展开过程中才会发生作用,如果主力出逃则失效。如果由于主力出逃导致有效杀破某条均线, 由于缺乏主力关照,日后在反弹到此均线时由于散户的抛压就会再次下跌,看起来就好象均线产生了压制 作用。下面我们依据主力运作的周期和目标把主力分为短线主力,中线主力和长线主力,除了控盘程度极 高的庄股,通常一支股票中上述三种类型的主力是共存的。另外对于日线图,通常定义的有效击破的概念 是连续三日在某均线下方运行,幅度超过3%。 二:通用重要均线 通用短期均线:5日,10日均线

心得:对于走主升浪的强势股,5日均线是低吸的重要位置,强势股在拉升的过程中经常会技术性的 缩量回挡5日线之后立刻拉起,判断的重要依据是缩量,时机最好在一波拉升的初中期也就是幅度不大的 时候。对于由短线主力发动的行情来说,通常主力会在回档到5日或者10日线的时候出来护盘或者向上拉 起。此种类型个股的典型例子是华夏银行。 通用中期均线:20日,30日,60日均线 心得:中线主力必须维护的均线,一般逐浪上攻的慢牛型股票会在20日或者30均线获得支撑继续向上 ,如果30日线跟60日线相距不远的话瞬时打到60日线也有可能。通常来说,30日线是中线的生命线,30日 线走平或者向上,股价在30日线上方运行是中线看多做多的标志,30日线向下,股价在30线下方运行是中 线看空做空的标志,此方法如果结合个股的涨幅和基本面来配合使用成功率会更高。依托中期均线逐浪上 攻型的个股例子可以参考1月5日之前皖通高速的技术形态。 通用长期均线:120,240日线 心得:长线主力需要维护的均线,如果中短线主力出逃,股价往往在长期均线处获得支撑,经过连续 的下跌后,由于止跌回升导致长期均线走平或者拐头向上是中长线开始走好的标志。股价有效突破原本反

均线的设置和使用技巧详解

均线的设置和使用技巧详解 均线是最常用的分析指标之一,所反映的是过去一段时间内市场的平均成本变化情况。均线和多根均线形成的均线系统可以为判断市场趋势提供依据,同时也能起到支撑和阻力的作用。 一、均线的构成 均线,按照计算方式的不同,常见地可分为普通均线、指数均线、平滑均线和加权均线。这里主要介绍普通均线和指数均线。 普通均线:对过去某个时间段的收盘价进行普通平均。比如20日均线,是将过去20个交易日的收盘价相加然后除以20,就得到一个值;再以昨日向前倒推20个交易日,同样的方法计算出另外一个值,以此类推,将这些值连接起来,就形成一个普通均线。 指数均线:形成方式和普通均线完全一致,但在计算均线值的时候,计算方式不一样。比如20日均线,指数均线则采取指数加权平均的方法,越接近当天,所占的比重更大,而不是像普通均线中那样平均分配比重。所以指数均线大多数情况下能够更快地反映出最新的变化。 二者的优劣:没有绝对的优劣,在不同的运行阶段,二者可以体现出不同的效果,选取时的经验成分相对更大。个人更习惯于使用指数均线,用多根指数均线的结合来辅助判断市场趋势。 下图是欧元/美元日线图上所体现的两种不同均线的效果,这里的均线参数设置都是20,其中红色均线为普通20日均线,蓝色均线

为20日指数均线。从图片中可以看出,大多数情况下指数均线的拐头速度都相对早于普通均线,能相对更快地跟上市场的趋势。 说明:一般而言,均线的计算价格用收盘价,但也可根据需求的不同使用最低价、最高价或者开盘价。 二、均线系统的设置 如果将多根有规律的均线排列在一起,这是就可以形成一个对分析更有帮助的均线系统。一般来说,在用均线系统进行分析时,常见的参数排列方式为: A、5、10、20、30、40、50(等跨度排列方式) B、5、8、13、21、34、55(费波纳奇排列方式) 在这两种排列方式的基础上,增加125、200和250三个参数的均线三、利用均线系统排列状态判断市场节奏

传热学上海理工大学硕士研究生入学考试试题

2004年上海理工大学硕士研究生入学考试试题考试科目:传热学准考证号:得分: 一、问答题(每题5分) 1. 一无内热源平板沿厚度x方向发生一维稳态导热,其一侧表面上的温度梯度 =30 ℃/m,导热系数λ1=40W/(m.℃),如果其另一侧表面上的导热系数λ2=50W/(m.℃),问这一侧表面上的温度梯度是多少? 2. 解释毕渥准则数Bi的物理含义,并说明为什么用Bi判别非稳态导热问题能否采用集总参数法求解。 3. 图1.1示出了常物性、有均匀内热源、二维稳态导热问题局部边界区域的网格配置,试用元体平衡法建立节点0关于温度t的有限差分方程式(设 ,所需参数的符号自己设定)。 4. 当条件相同时,物体在空气中冷却快还是在水中冷却快?这一现象说明对流换热与什么因素相关? 5. 试用简图表示流体沿平板流动时速度边界层的发展并说明速度边界层内分成哪些区域? 6. 试解释普朗特数Pr的物理意义,并示意性的画出Pr>1时的速度边界层和热边界层厚度沿板长的变化(速度边界层和热边界层要画在同一图上以便比较)。 7. 说明温度附面层的概念及附面层能量微分方程在物理上忽略了哪部分换热。 8. 在应用管内旺盛紊流实验关联式时,当流体与换热壁面温差较大时需要对计算结果修正,为什么? 9. 试说明为什么一个细长圆柱水平放置时自然对流换热一般大于竖直放置时的自然对流换热? 10.在稳定膜态沸腾过程中,为什么换热系数随 增加而迅速上升?

11.试说明大气中CO2含量增高为什么会出现大气温室效应? 二、计算题 1. (10分)一直径为5cm的钢球,其初始温度为500℃,突然被置于温度为 30℃的空气中。设钢球表面与周围环境的对流换热系数为10 W/m2℃,试计算钢球非稳态导热的时间常数及其被冷却到300℃所需的时间。已知钢球的比热为c=0.48kJ/kg℃, ρ=7753kg/m3, λ=33W/m℃。 2. (20分)长10m、外径133mm的水平管道通过一大房间,房间壁面及其内 的空气温度均为30℃。若管道表面温度为90℃、黑度为0.9,求管道的散 热量(自然对流换热的努塞尔特数用下式计算)。3. (22分)如图2所示为一半径R=1m的半球,球冠3绝热。底面1和2的 温度分别为500℃和100℃,黑度都为0.9,求底面1和2间的辐射散热量。 4. (23分)温度为95℃的热空气流经一内径100mm、厚度6mm的圆管,管 壁导热系数为22 W/m℃。管外环境温度为30℃,管外壁与环境的总换热系数为10 W/m2℃。若管内空气质量流量为407kg/h,求管出口空气温度降低到65℃时的管长(不需考虑修正)。 三、理论题 1.(8分)一厚度为2δ的无内热源薄平板,其导热系数和初始温度分别为 λ和t0,突然被插在温度为t f的流体中。平板表面与流体的换热系数为h,给出问题的完整数学描述。 2. (12分)绕流平板换热的附面层积分方程为: 平板温度为t W,来流速度和温度分别为u∞和t∞,若Pr<<1,可以忽略速

案例--变电所母线桥的动稳定校验

案例--变电所母线桥的动稳定校验 朱时光修改 下面以35kV/10kv某变电所#2主变增容为例来谈谈如何进行主变母线桥的动稳定校验和校验中应注意的问题。 1短路电流计算 图1为某变电所的系统主接线图。(略) 已知#1主变容量为10000kVA,短路电压为7.42%,#2主变容量原为1000为kVA 增容为12500kVA,短路电压为7.48%。 取系统基准容量为100MVA,则#1主变短路电压标么值 X1=7.42/100×100×1000/10000=0.742, #2主变短路电压标么值 X2=7.48/100×100×1000/12500=0.5984 假定某变电所最大运行方式系统到35kV母线上的电抗标么值为0.2778。 ∴#1主变与#2主变的并联电抗为: X12=X1×X2/(X1+X2)=0.33125; 最大运行方式下系统到10kV母线上的组合电抗为: X=0.2778+0.33125=0.60875 ∴10kV母线上的三相短路电流为:Id=100000/0.60875*√3*10.5=9.04KA,冲击电流:I s h=2.55I d=23.05KA。 2动稳定校验

(1)10kV母线桥的动稳定校验: 进行母线桥动稳定校验应注意以下两点: ①电动力的计算,经过对外边相所受的力,中间相所受的力以及三相和二相电动力进行比较,三相短路时中间相所受的力最大,所以计算时必须以此为依据。 ②母线及其支架都具有弹性和质量,组成一弹性系统,所以应计算应力系数,计及共振的影响。 根据以上两点,校验过程如下: 已知母线桥为8×80mm2的铝排,相间中心线间距离A为210mm,先计算应力系数: 6Kg/Cm2, ∵频率系数N f=3.56,弹性模量E=0.71×10 -4kg.s2/cm2,绝缘子间跨距2m, 单位长度铝排质量M=0.176X10 截面惯性矩J=bh3/12=34.13c m4或取惯性半径(查表)与母线截面的积, ∵三相铝排水平布置,∴截面系数W=bh2/6=8.55Cm3, 则一阶固有频率: f0=(3.56/L2)*√(EJ/M)=104(Hz) 查表可得动态应力系数β=1.33。 ∴铝母排所受的最大机械应力为: σMAX=1.7248×10-3I s h2(L2/Aw)×β=270.35 kg/c m2<σ允许=500 根据铝排的最大应力可确定绝缘子间允许的最大跨距为:(简化公式可查表) L MAX=1838√a/ I s h=366(c m) ∵某变主变母线桥绝缘子间最大跨距为2m,小于绝缘子间的最大允许跨距。

2020年传热学考研大纲——上海理工大学材料科学与工程学院

2020年传热学考研大纲——上海理工大学材料科 学与工程学院 传热学A《传热学》杨世铭、陶文铨,高等教育出版社,2006年 二、基本要求 1.掌握热量传递的三种方式(导热、对流和辐射)的基本概念和基本定律; 2.能够对常见的导热、对流、辐射换热及传热过程进行定量的计算,并了解其物理机理和特点,进行定性分析; 3.对典型的传热现象能进行分析,建立合适的数学模型并求解; 4.能够用差分法建立导热问题的数值离散方程,并了解其计算机求解过程。 三、主要知识点 第一章绪论:热量传递的三种基本方式;导热、对流和热辐射的基本概念和初步计算公式;热阻;传热过程和传热系数。 第二章导热基本定律和稳态导热:温度场、温度梯度;傅里叶定律和导热系数;导热微分方程、初始条件与边界条件;单层及多层平壁的导热;单层及多层圆筒壁的导热;通过肋端绝热的等截面直肋的导热;肋效率;一维变截面导热;有内热源的一维稳态导热。 第三章非稳态导热:非稳态导热的基本概念;集总参数法;描述非稳态导热问题的数学模型(方程和定解条件); 第四章导热问题的数值解法:导热问题数值解法的基本思想;用差分法建立稳态导热问题的数值离散方程。 第五章对流换热:对流换热的主要影响因素和基本分类、牛顿冷却公式和对流换热系数的主要影响因素;速度边界层和热边界层的概念;横掠平板层流换热边界层的微分方程组;横掠平板层流换热边界

层积分方程组;动量传递和热量传递比拟的概念;相似的概念及相似 准则;管槽内强制对流换热特征及用实验关联式计算;绕流单管、管 束对流换热特征及用实验关联式计算;大空间自然对流换热特征及对流换热特征及用实验关联式计算。 第六章凝结与沸腾换热:凝结与沸腾换热的基本概念;珠状凝结与膜状凝结特点;膜状凝结换热计算;影响膜状凝结的因素;大容器饱和沸腾曲线;影响沸腾换热的因素。 第七章热辐射基本定律及物体的辐射特性:热辐射的基本概念;黑体、白体、透明体;辐射力与光谱辐射力;定向辐射强度;黑体辐射基本定律:普朗克定律,维恩定律,斯忒藩—玻尔兹曼定律,兰贝 特定律;实际固体和液体的辐射特性、黑度;灰体、基尔霍夫定律。 第八章辐射换热的计算:角系数的概念、性质、计算;两固体表面组成的封闭系统的辐射换热计算;表面热阻;空间热阻;多表面系统辐射换热的网络法计算;辐射换热的强化与削弱、遮热板;辐射换热 系数和复合换热表面传热系数;气体辐射特点。 第九章传热过程分析与换热器计算:传热过程及传热系数的计算;临界绝热直径;换热器型式及对数平均温差;用平均温差法进行换热 器的热计算;换热器效能ε的概念和定义;强化传热。

铜排动热稳定校验

都是需要考虑的,特别是母桥距离比较长的时候。需要计算出现短路故障时的电动力,绝缘子类固定件的安装距离、绝缘子安装件的抗屈服力等。不很少有人会特别计算,我感觉是大家都自觉不自觉的把母线规格放大了,所以基本上不用计算。 4 母线的热效应和电动力效应 4.1母线的热效应 4.1.1母线的热效应是指母线在规定的条件下能够承载的因电流流过而产生的热效应。在开关设备和控制设备中指在规定的使用和性能条件下,在规定的时间内,母线承载的额定短时耐受电流(IK)。 4.1.2根据额定短时耐受电流来确定母线最小截面 根据GB3906-1991《3.6-40.5kV交流金属封闭开关设备和控制设备》[附录F]中公式:S=(I/a)(t/△θ)1/2来确定母线的最小截面。 式中: S—母线最小截面,mm2; I--额定短时耐受电流,A; a—材质系数,铜为13,铝为8.5; t--额定短路持续时间,s; △θ—温升(K),对于裸导体一般取180K,对于4s持续时间取215K。 如对于31.5kA/4S系统,选用铜母线最小截面积为: S=(31500/13)×(4/215)1/2=330 mm2 铝母线最小截面积与铜母线最小截面积关系为: SAl=1.62SCu 式中, SAl为铝母线的最小截面积;SCu为铜母线的最小截面积。 如对于31.5kA/4S系统,铝母线最小截面积为: SAl=1.62×330 =540 mm2 根据DL404-1997《户内交流高压开关柜订货技术条件》中7.4.3条规定,接地汇流排以及与之连接的导体截面,应能通过铭牌额定短路开断电流的87%,可以计算出各种系统短路容量下(短路时间按4S)的接地母线最小截面积。 如对于31.5kA/4S系统,接地铜母线最小截面积为: S=330×86.7% =287mm2 根据以上公式计算,对应各种额定短时耐受电流时,开关设备和控制设备中对应几种常用的额定短时耐受电流,母线最小截面及所用铜母线和铝母线的最小规格见表1: 表1 母线kA/4s 25 31.5 40 63 80 设备中铜母线规格50×6 60×6 80×6或60×8 80×10 100×10 接地铜母线规格50×5 50×6 50×8 80×8 80×10 设备中铝母线规格80×6或60×8 80×8 100×8或80×10 设备中铜母线 最小截面(mm2)260 330 420 660 840 设备中铝母线 最小截面(mm2)425 540 685 1075 1365 4.2 母线的电动力效应 母线是承载电流的导体,当有电流流过时势必在母线上产生作用力。母线受电流的作用力与

股票均线的设置和使用技巧

股票均线的设置和使用技巧 2010-10-26 12:51:04| 分类:股票| 标签:买卖股票 macd 股价平均|举报|字号大中小订阅股票均线的设置和使用技巧(2010-09-21 23:00:28) 内容:均线是最常用的分析指标之一,所反映的是过去一段时间内市场的平均成本变化情况。均线和多根均线形成的均线系统可以为判断市场趋势提供依据,同时也能起到支撑和阻力作用 < XMLNAMESPACE PREFIX ="O" /> 一般来说,在用均线系统进行分析时,常见的参数排列方式为: A、5、10、20、30、40、50(等跨度排列方式) B、5、8、13、21、34、55(费波纳奇排列方式) 在这两种排列方式的基础上,增加120、200两个参数的均线 一、利用均线系统排列状态判断市场节奏 均线系统的排列状态,一般可分为股聚、发散、平行三种状态。其中股聚状态表明的是市场经历过一段单边走势后出现的对原有动能消化或积蓄新运行动能的过程,股聚的时间越长,产生的动能越大;发散状态则是股聚之后产生的爆发动能的前奏;平行状态则表明市场运行动能已经单方向爆发,引发了新的单边运行趋势。在单边市运行节奏当中,这三种状态的循环为:股聚-〉发散-〉平行-〉股聚而在盘整市中,则体现为股聚-〉发散-〉股聚的循直到突破的发生。 二、均线常规用法均线的两个基本功能;

1、“金叉”和“死叉”指示的基本信号 2、均线对股价的支撑和阻力作用当股价运行在均线系统的下方时,此时均线系统将起到明显的阻力作用,阻碍股价的反弹;同样地,当股价站稳于均线系统之上后,均线系统又将起到明显的支撑作用,这个作用的产生原因就在于均线计算方式所体现的市场成本变化,这种支撑和阻力效果也被称为“均线的斥力”。当然,均线也有吸引力,当股价单边运行过程中较远地离开了均线系统后,均线也会发出“引力”作用,均线本身跟随股价运行方向前进的同时,也会拉 动股价出现回调。 五、特殊均线的用法所谓特殊均线是指在特定阶段能起到明显多空分水岭的均线,一般来说我们将其运用于单边市的主趋势中。其中30周指数均线就体现出特殊的多空分水岭效果。 股票均线简单看 年线下变平,准备捕老熊。年线往上拐,回踩坚决买! 年线往下行,一定要搞清,如等半年线,暂做壁上观。 深跌破年线,老熊活年半。价稳年线上,千里马亮相。 要问为什么?牛熊一线亡!半年线下穿,千万不要沾。 半年线上拐,坚决果断买!季线如下穿,后市不乐观! 季线往上走,长期做多头!月线不下穿,光明就在前! 股价踩季线,入市做波段。季线如被破,眼前就有祸,长期往上翘,短期呈缠绕,平台一做成,股价往上跃

2004年上理传热学研究生考试

2004年上海理工大学硕士研究生入学考试试题 考试科目:传热学准考证号:得分: 一、问答题(每题5分) 1. 一无内热源平板沿厚度x方向发生一维稳态导热,其一侧表面上的温度梯度=30 ℃/m,导热系数λ1=40W/(m.℃),如果其另一侧表面上的导热系数λ2=50W/(m.℃),问这一侧表面上的温度梯度是多少? 2. 解释毕渥准则数Bi的物理含义,并说明为什么用Bi判别非稳态导热问题能否采用集总参数法求解。 3. 图1.1示出了常物性、有均匀内热源、二维稳态导热问题局部边界区域的网格配置,试用元体平衡法建立节点0关于温度t的有限差分方程式(设,所需参数的符号自己设定)。 4. 当条件相同时,物体在空气中冷却快还是在水中冷却快?这一现象说明对流换热与什么因素相关? 5. 试用简图表示流体沿平板流动时速度边界层的发展并说明速度边界层内分成哪些区域? 6. 试解释普朗特数Pr的物理意义,并示意性的画出Pr>1时的速度边界层和热边界层厚度沿板长的变化(速度边界层和热边界层要画在同一图上以便比较)。 7. 说明温度附面层的概念及附面层能量微分方程在物理上忽略了哪部分换热。

8. 在应用管内旺盛紊流实验关联式时,当流体与换热壁面温差较大时需要对计算结果修正,为什么? 9. 试说明为什么一个细长圆柱水平放置时自然对流换热一般大于竖直放置时的自然对流换热? 10.在稳定膜态沸腾过程中,为什么换热系数随增加而迅速上升? 11.试说明大气中CO2含量增高为什么会出现大气温室效应? 二、计算题 1. (10分)一直径为5cm的钢球,其初始温度为500℃,突然被置于温度为30℃的空 气中。设钢球表面与周围环境的对流换热系数为10 W/m2℃,试计算钢球非稳态导热 的时间常数及其被冷却到300℃所需的时间。已知钢球的比热为c=0.48kJ/kg℃, ρ =7753kg/m3, λ=33W/m℃。 2. (20分)长10m、外径133mm的水平管道通过一大房间,房间壁面及其内的空气温 度均为30℃。若管道表面温度为90℃、黑度为0.9,求管道的散热量(自然对流换 热的努塞尔特数用下式计算)。 3. (22分)如图2所示为一半径R=1m的半球,球冠3绝热。底面1和2的温度分别为 500℃和100℃,黑度都为0.9,求底面1和2间的辐射散热量。 4. (23分)温度为95℃的热空气流经一内径100mm、厚度6mm的圆管,管壁导热系数 为22 W/m℃。管外环境温度为30℃,管外壁与环境的总换热系数为10 W/m2℃。若

相关文档
相关文档 最新文档