文档库 最新最全的文档下载
当前位置:文档库 › 分式方程(二)

分式方程(二)

分式方程(二)
分式方程(二)

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

分式方程解法的标准

分式方程解法的标准 一,内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即 分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根. 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: 将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等. 为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去. 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公 分母为0. 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数 式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊

第2课时 分式方程的实际应用

第2课时 分式方程的实际应用 01 基础题 知识点1 列分式方程解决工程问题 1 . ( 龙 岩 中 考 )甲、乙二人做某种零件 , 已知甲每小时比乙多做6个 , 甲做90个所用的时间与乙做60个所用的时间相等.若设乙每小时做x 个,则可列方程(C ) A .90x =60x -6 B .90x -6=60x C .90x +6=60x D .90x =60x +6 2.(深圳中考)施工队要铺设一段全长2 000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米 , 才能按时完成任务 , 求原计划每天施工多少米.设原计划每天施工x 米,则根据题意所列方程正确的是(A ) A .2 000x -2 000x +50=2 B .2 000x +50-2 000x =2 C .2 000x -2 000x -50=2 D .2 000x -50-2 000x =2 3.甲、乙承包一项任务,若甲、乙合作,5天能完成,若单独做,甲比乙少用4天,设甲单独做x 天能完成此项任务,则可列出方程1x +1x +4=1 5 . 4.(大庆中考)某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务.求原计划每天加工多少个零件? 解:设原计划每天加工x 个零件,依题意,得 360x -360x (1+20%) =10,解得x =6. 经检验,x =6是原方程的解. 答:原计划每天加工6个零件. 知识点2 列分式方程解决行程问题 5 . (百色 中考 )A 、B 两地相距160千米 , 甲车和乙车的平均速度之比为4∶5,两车同时从A 地出发到B 地 , 乙车比甲车早到30分钟 ,

分式方程知识点归纳总结(整理)

重庆渝昂教育个性化辅导中心 重庆市渝北区两路步行街金易都会八楼809 电话:67836768 邮箱:youngedu@https://www.wendangku.net/doc/7a2631296.html, 第 1 页 共 1 页 分式方程知识点归纳总结 1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子 B A 叫做分式。 1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。 2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。 3) 分式的值为零的条件:分子为零且分母不为零 2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。 (2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。 (3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分 母乘除的不是同一个整式的错误。 3. 分式的通分和约分:关键先是分解因式 1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。 2) 最简分式:分子与分母没有公因式的分式 3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母 的分式化成分母相同的分式。 4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。 4. 分式的符号法则 分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。用式子表示为 注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。 5. 条件分式求值 1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式 子,从而可避免局部运算的麻烦和困难。 例:已知 ,则求 2)参数法:当出现连比式或连等式时,常用参数法。 例:若 ,则求 6. 分式的运算: 1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 3)分式乘方法则: 分式乘方要把分子、分母分别乘方。 4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算 5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。 异分母的分式相加减,先通分,变为同分母分式,然后再加减 ,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±=±=±= bc ad c d b a d c b a bd ac d c b a =?=÷=?;n n n b a b a =)(C B C A B A ??=C B C A B A ÷÷= 41 1=+b a b b a b ab a a 7223-++-4 32c b a == c b a c b a +++-523

【精品】分式方程的几种特殊解法

【关键字】精品 分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程;(2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式,则可以通过在方程两边都加上分式,就将原方程化简成,从而轻松获解。 解:原方程两边都加上,则可得: 去分母,得: 解得: 经检验,是原分式方程的解。 二、巧用合比性质法。 例2:解方程:。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得: 去分母并化简得:,即 解得: 经检验,是原分式方程的解。 三、巧用等比性质法。 例3、解方程:。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原

方程化简后再求解。 解:由等比性质可得:。 化简得: 经检验,是原分式方程的解。 四、分组化简法。 例4、解方程:。 分析:此方程若直接通分将会出现高次方程,并且运算过程十分复杂,做法不可取。此题可采用分组组合后各自通分的方法来求解。 解:原方程可化为: 分别通分并化简,得: 解得: 经检验,是原分式方程的解。 五、倒数法。 例5、解方程:。 分析:本题若按常规方法去做,需通分和去分母,然后再求解,过程较复杂。但如果采用倒数法,则可以简化解题过程。 解:原方程两边取倒数,得: 移项化简,得: 方程两边取倒数,得: 解得: 经检验,是原分式方程的解。 六、列项变形法。 例6、解方程:。 分析:将该方程直接去分母,方程两边的运算十分繁杂。若注意到方程的分母特点是两个连续因式的积,它们的差为1。凡是这样的分式或分数都能拆开成两个分式或分数的差,使得除首、末两项之外的中间项可以相互抵消,从而达到化繁为简。。

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧 【典型例题】 1. 局部通分法: 例1. 解方程:x x x x x x x x -----=-----34456778 分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。 解:方程两边分别通分并化简,得: 145178()()()() x x x x --=-- 去分母得:()()()()x x x x --=--4578 解之得:x =6 经检验:x =6是原分式方程的根。 点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。 但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。 2. 换元法: 例2. 解方程: 7643165469222x x x x x x ----+=--+ 分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。 解:设,则原方程可化为:k x x =-+265 793144k k k --=-+ 去分母化简得:20147111602k k --= ∴()()k k -+=1220930 ∴,k k ==-129320 当时,k x x =--=126702 ()()x x -+=710 解之得:,x x 1217=-=

当时,k x x =--+=-93206593202 2012019302x x -+= 解此方程此方程无解。 经检验:,是原分式方程的根。x x 1217=-= 点拨:换元法解分式方程,是针对方程实际,正确而巧妙地设元,达到降次,化简的目的,它是解分式方程的又一重要的方法,本题还有其它的设法,同学们可自己去完成。 3. 拆项裂项法: 例3. 解方程: 12442212x x x x ++-+-= 分析:这道题虽然可用通分去分母的常规解法,但若将第二项拆项、裂项,则更简捷。 解:原方程拆项,变形为: ()()()()12222222221x x x x x x ++++-+---= 裂项为: 122222221x x x x ++-++--= 化简得:321x += 解之得:x =1 经检验:x =1是原分式方程的解。 4. 凑合法: 例4. 解方程:x x x x 4143412 +-=--- 分析:观察此方程的两个分式的分母是互为相反数,考虑移项后易于运算合并,能使运算过程简化。 解:部分移项得: x x x x 4143412=--+--- ∴x x x x 4143412=------ ∴x 412= ∴x =2 经检验:x =2是原分式方程的根。

分式方程与实际问题

分式方程与实际问题 ——工程问题 一、教学目标 1.通过对工程问题的逐步探究,明确工程问题中三个量之间的基本关系,同时让学生学会从实际问题中寻找与这个量有关的等量关系. 2.经历从实际问题到建立分式方程的过程,体会建立分式方程模型解决实际问题的作用. 3.类比整式方程模型解决实际问题和分式方程模型解决实际问题的基本思路,突出分式方程模型解决实际问题的双检验特点. 二、学情分析 1.通过对工程问题的逐步探究,明确工程问题中三个量之间的基本关系,同时让学生学会从实际问题中寻找与这个量有关的等量关系. 2.经历从实际问题到建立分式方程的过程,体会建立分式方程模型解决实际问题的作用. 3.类比整式方程模型解决实际问题和分式方程模型解决实际问题的基本思路,突出分式方程模型解决实际问题的双检验特点. 三、重点难点 教学重点:工程问题中数量相等关系的探究. 教学难点:工程问题中分式方程模型的建立. 四、教学过程 (一)复习旧知,知识铺垫 有一项工程,甲单独完成需x天,乙单独完成比甲单独完成多用4天,那么乙单独完成这项工程需_____天, 则甲的工作效率是____,乙的工作效率是___ . 若这项工程甲先单独做3天,然后甲乙合作做2天, 则甲完成的工作量是____,乙完成的工作量是_____. 设计意图:通过简单的工程问题,让学生回顾工程问题中的基本关系式:工作总量=工作效率×工作时间,并且让学生回顾工程问题中当工作总量没有具体值时通常设工作总量为“1”。 (二)创设情境,提出问题 甲乙两个清洁队共同参与了城中垃圾的清运工作,甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成。哪个队的施工速度快? 设计意图:引导学生从问题出发,分析题中的已知量和未知量,通过设未知数来表示未知量,找出题中等量关系,利用分式方程解决问题。在这个问题中让

.分式方程

5.分式方程 一.选择题 1. (2009襄樊市)分式方程 1 31 x x x x += --的解为( ) A .1 B .-1 C .-2 D .-3 【关键词】分式方程 【答案】方程两边同乘()()31x x --,得()()()113x x x x -=+-,解得3x =-,经检验3x =-是原分式方程的解,故选D 。 2.(2009年上海市)用换元法解分式方程 13101x x x x --+=-时,如果设1 x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .2 30y y +-= B .2 310y y -+= C .2310y y -+= D .2 310y y --= 【关键词】换元法 【答案】A 3.(2009年广东佛山)6.方程 12 1x x =-的解是( ) A .0 B .1 C .2 D .3 【关键词】分式方程的解法 【答案】C 4.(2009年山西省)解分式方程 11 222x x x -+= --,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解 【关键词】分式方程及增根;用去分母法或换元法求分式方程的解 【答案】D 5.(2009年安徽)4.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】 A .8 B.7 C .6 D .5 【关键词】分式方程 【答案】B 6.(2009年怀化)分式方程 21 31 =-x 的解是( ) A .21=x B .2=x C .31-=x D . 3 1 =x 【关键词】用去分母法或换元法求分式方程的解 【答案】A 7. (2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三的工日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ). A .8 B .7 C .6 D .5

中考数学分式方程与二次根式方程

中考数学分式方程与二次根式方程 〖知识点〗 分式方程、二次根式的概念、解法思路、解法、增根 〖大纲要求〗 了解分式方程、二次根式方程的概念。把握把简单的分式方程、二次根式方程转化为一元一次方程、一元二次方程的一样方法,会用换元法解方程,会检验。 内容分析 1.分式方程的解法 (1)去分母法 用去分母法解分式方程的一样步骤是: (i)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (ii)解那个整式方程; (iii)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去. 在上述步骤中,去分母是关键,验根只需代入员简公分母. (2)换元法 用换元法解分式方程,也确实是把适当的分式换成新的未知数,求出新的未知数后求出原先的未知数. 2.二次根式方程的解法 (1)两边平方法 用两边平方法解无理方程的—般步骤是: (i)方程两边都平方,去掉根号,化成有理方程; (ii)解那个有理方程; (iii)把有理方程的根代入原方程进行检验,假如适合,确实是原方程的根,假如不适合,确实是增根,必须舍去. 在上述步骤中,两边平方是关键,验根必须代入原方程进行. (2)换元法 用换元法解无理方程,确实是把适当的根号下台有未知数的式子换成新的未知数,求出新的未知数后再求原先的未知数. 〖考查重点与常见题型〗 考查换元法解分式方程和二次根式方程,有一部分只考查换元的能力,常显现在选择题中另一部分习题考查完整的解题能力,习题显现在中档解答题中。 考题类型 1.(1)用换元法解分式方程 3x x2-1 + x2-1 3x =3时,设 3x x2-1 =y,原方程变形为() (A)y2-3y+1=0(B)y2+3y+1=0(C)y2+3y-1=0(D)y2-y+3=0 2.用换元法解方程x2+8x+x2+8x-11 =23,若设y=x2+8x-11 ,则原方程可化为() (A)y2+y+12=0(B)y2+y-23=0(C)y2+y-12=0(D)y2+y-34=0

特殊分式方程的几种特殊解法

特殊分式方程的几种特殊解法 解分式方程最常用的方法是去分母法,把分式方程化为整式方程,以之求解的过程, 但在一些具体方程中,若用去分母的方法,其未知数的次数会增大,运算复杂,计算量加 大,易出现错误,因此要善于观察具体方程的特点,对一些特殊分式方程,采用特殊方法, 会简化解题过程。 一 ?比例法 x 1 a b 例1.解方程 (b 0) x 1 a b A D 分式:观察方程,形如: 的形式,可根据比例"两外项之积等于两内项之积” B C 而直接求解。 解:原方程化为 (x 1)(a b) (a b)(x 1) 2a a x b 2 3x 3 2x 3x 1 2x 2 解:原方程化为 (2 3x)(2x 2) (3 2x)(3x 整理得13x 7, 7 x 13 经检验x —是原方程的根。 13 二.换元法 y 3 4y 8 例3.解方程 y 2 y 3 分析:本题若移项,形如— D ,如果用比例法则去分母后方程变为 B C 2 3y 24y 7 0,对一元二次方程我们还不能求解。因此,经观察发现 8 4 匚2,其中匚2与丄虫互为倒数关系,可利用换元法简便求解。 y 3 y 3 y 3 y 2 解:设'一3 A ,则原方程变形为 y 2 整理得2bx b 0, 例2.解方程: 1)

4 A 0 A 整理得A 2 4 A 2 y 3 当A 2时, 2,解得y i 7 ; y 2 当A 2时,乂卫 2,解得y y 3 3 1 、 经检验,y 1 7, y 2 都是原方程的解。 3 例4.解方程组 3 2 5 (1) x y x y 1 4 4 ⑵ y x x y 分析:方程(1),( 2)中都含有 --------------- x y 1 i 设 a , b x y x y 则方程组变形为 3b 2a 5 b 4a 4 解这个二元一次方程组, 1 1 求出a 、b 的值,代入 禾口 中,即可解出x , y 的值。 x y x y 三.倒数法 关系,可有下面解法。 解: x - 2,或x 1 4 4 因此可运用换元法, 例5.已知:x - x 分析:已知条件中, 1 ~2 x , 1 —互为倒数2- 2 21,求 x 2 2 1 ......... x , x 2 -,其中 2 2, 1 —互为倒数关系,利用此 2 1 ~~2 x 例6. 解方程: 2x 3x 2 17 分析: 3x 2 方程的左边两项为倒数之和, 2x 1 4 因此可用倒数法简化求解,

分式方程的特殊解法

分式方程的特殊解法 分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。 一、 分组通分法: 例1、 解方程 3 2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。观察方程中分母的特点可联想分组通分求解。 略解:方程两边分别通分,相减得 ) 3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2 51= x 当05=-x 时,解得52=x 经检验,2 51= x 52=x 都是原方程的解 二、 分离分式法: 例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解 略解:原方程可变形为 4 11311511211+-++-=+-++-x x x x 整理得 )4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2 7- =x 当072≠+x 时,方程无解 经检验2 7- =x 是原方程的解 练习:② 6 5327621+++++=+++++x x x x x x x x 解:29-=x 三、 巧添常数 例3、解方程 33224411+-++-=+-++-x x x x x x x x 解析:同样若整体通分,次数增高,运算复杂,求解困难,而方程中每个分式的分子和分母都是相同两数的差与和,可在每个分式中添加常数“1”,会使问题柳暗花明,迅捷可解,可谓别有洞天. )133()122()144()111(++-+++-=++-+++-x x x x x x x x ,即:3 2224212+++=+++x x x x x x x x

用分式方程解决实际问题

数学学科导学案(第—次课)教师:_ 学生:—年级:八日期: ___________ 星期: _____ 时段: ____

乙型拖拉机单独耕这块地需要几天? 2、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%结果提前30天完成了任务,实际每天铺设多长管道?

例:某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付 乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的2 ,厂家需付甲、丙两队共5500 3 元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天? ⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由. 分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量?对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为X天,y天,Z天,可列出分式方程组. 练习1:某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程. (1)求甲、乙两工程队单独完成此项工程各需要多少天? (2)若甲工程队独做a天后,再由甲、乙两工程队合作 ___________ 天(用含a的代数式表示)可完成此项工程; (3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费 2.5万元,甲工程队至少要单独施工 多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超 过64万元? 练习2:某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款 1.5万元, 乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成; 方案二:乙队单独完成这项工程要比规定日期多用5天;

分式及分式方程知识点总结

分式及分式方程 聚焦考点☆温习理解 一、分式 1、分式的概念 一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。其中,A 叫做分式的分子,B 叫做分式的分母。分式和整式通称为有理式。 2、分式的性质 (1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 (2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算法则 ;;bc ad c d b a d c b a bd ac d c b a =?=÷=? );()(为整数n b a b a n n n = ;c b a c b c a ±=± bd bc ad d c b a ±=± 二、分式方程 1、分式方程 分母里含有未知数的方程叫做分式方程。 2、分式方程的一般方法 解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程 (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程

的根。 3、分式方程的特殊解法 换元法: 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 名师点睛☆典例分类 考点典例一、分式的值 【例1】(2015·黑龙江绥化)若代数式6 265x 2-+-x x 的值等于0 ,则x=_________. 【点睛】分式6 265x 2-+-x x 的值为零则有x 2-5x+6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】 1.要使分式x 1x 2 +-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=- 2.(2015·湖南常德)若分式211 x x -+的值为0,则x = 考点典例二、分式的化简 【例2】化简:2x x x 1x 1 ---=( ) A 、0 B 、1 C 、x D 、 1 x x - 【点睛】观察所给式子,能够发现是同分母的分式减法。利用同分母分式的减法法则计算即可得到结果. 【举一反三】 1.化简22 a b ab b a --结果正确的是【 】

分式方程的概念及解法

分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和 都是分式方程,而关于的方程和都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。 规律方法指导 1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 1、下列各式中,是分式方程的是() A.B.C.D. 举一反三:

分式方程的几种特殊解法

分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程; (2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:2017 2018112017201811222++-=++-+x x x x x 。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式 2017 201812++x x ,则可以通过在方程两边都加上分式2017201812++x x ,就将原方程化简成112=+x ,从而轻松获解。 解:原方程两边都加上2017201812++x x ,则可得:11 2=+x 去分母,得:12+=x 解得:1=x 经检验,1=x 是原分式方程的解。 二、巧用合比性质法。

例2:解方程:7 81222++=++x x x x 。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得:7 7-811-2222+++=+++x x x x x x )()()()( ∴ 7 1112+=+x x 去分母并化简得:062=--x x ,即0)2)(3=+-x x ( 解得:23-==x x 或 经检验,23-==x x 或是原分式方程的解。 三、巧用等比性质法。 例3、解方程:1 3242344++=++x x x x 。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原方程化简后再求解。 解:由等比性质可得: 1324)13()23(2444++=+-++-+x x x x x x )()(。 ∴ 13242++= x x 化简得: 02=x ∴ 0=x 经检验,0=x 是原分式方程的解。

分式方程及实际应用

详解点一 、分式方程的概念 分母里含有未知数的方程叫做分式方程。 分式方程的重要特征是:①含分母;②分母里含未知数。 分式方程和整式方程的区别就在于分母中是否含有未知数。例如:011=+x ;3 432=++x x 是分式方程; 5 3422x x =++是整式方程,不是分式方程。 详解点二 、分式方程的解法 1、解分式方程的思想和方法 2、解分式方程的一般步骤: (1)去分母,在分式方程的两边都乘以最简公分母,约去分母,化成整式方程; (2)解这个整式方程,得出整式方程的根; (3)验根,把整式方程的根代入最简公分母(或原方程)检验,看结果是不是零,使最简分母为零的根是原方程的增根,必须舍去。 (4)写出分式方程的根。 详解点三、分式方程的增根 1、分式方程的增根是适合去分母后的整式方程但不适合原方程的根; 2、增根产生的原因:分式方程本身隐含着分母不为0的条件,我们在解分式方程时,为去分母,要在方程两边同时乘以各分母的最简公分母,当最简公分母为0时,就产生了增根。 3、排除增根的方法

由于产生增根的原因是在方程的两边同时乘以了“隐形”的零——最简公分母,因此,判断是否是增根,应将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原方程的解;否则,这个解不是原分式方程的根。 详解点四、列分式方程解应用题 1、分式方程是描述实际问题的一种模型 2、列分式方程解应用题的步骤: (1)审:审清题意,找出相等关系和数量关系 (2)设:根据所找的数量关系设出未知数 (3)列:根据所找的相等关系和数量关系列出方程 (4)解:解这个分式方程 (5)检:对所解的分式方程进行检验,包括两层,不仅要对实际问题有意义,还要对分式方程有意义 注:分式方程的应用与一元一次方程应用题类似,不同的是要注意检验; (6)答:写出分式方程的解 例题1、下列关于x 的方程21=+ x x ,300015009000+=x x ,42480-300=x x ,x-2=0,21-3x x =,x x 3 1-2=,4x-5=0,哪些是整式方程,哪些是分式方程? 分析:利用整式方程与分式方程的定义解答即可 解:方程21=+ x x ,300015009000+=x x ,42480-300=x x ,x x 3 1-2=,是分式方程 x -2=0,2 1 -3x x = ,4x -5=0是整式方程。 例题2、解分式方程:(1) 42480-300=x x ;(2)2--31 3-x -2x x =; 分析:先找出各分母的最简公分母,然后同时乘以最简公分母,去掉分母,化成整式方程。(1)中根 据方程的特点可有两种解法。 解:(1)解法1 42480 -300=x x ,方程两边都乘以2x ,得600-480=4×2x ,解这个方程,得x =15, 检验:将x =15代入原方程,左边=4=右边,所以x =15是原方程的解。

分式方程(一)

第五章分式与分式方程 分式方程(一) 总体说明 本节共三个课时,它分为分式方程的认知,分式方程的解答,以及分式方程在实际问 题中的应用。彼此之间由浅入深。是“实际问题——分式方程建模——求解——解释解 的合理性”过程。本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节 解分式方程打下了扎实的基础。同时应注意对学生进行过程性评价,要延迟评价学生运 算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算 理的理解上。 教学目标 (一)教学知识点 1.通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义. 2.通过观察,归纳分式方程的概念. (二)能力训练要求 1.体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义. (三)情感与价值观要求 在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力. 教学重点 能根据实际问题的数量关系列出分式方程,归纳出分式方程的定义. 教学难点 能根据实际问题中的等量关系列出分式方程. 教学方法 尝试——归纳相结合 教科书中提供了多个实际问题,教师鼓励学生尝试,利用具体情境中的数量关系列出分式方程,归纳分式方程的定义. 教学过程 本节课设计了5个教学环节:引入新课——探索新知——感悟升华——课堂反馈 ——自我小结

一、引入新课 活动内容: 在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题。面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成计划任务。原计划每月固沙造林多少公顷? 分析:这一问题中有哪些已知量和未知量? 已知量:造林总面积2400公顷实际每月造林面积比原计划多30公顷提前4个月完成原任务 未知量:原计划每月固沙造林多少公顷 这一问题中有哪些等量关系? 实际每月固沙造林的面积=计划每月固沙造林的面积+30公顷 原计划完成的时间—完成实际的时间=4个月 我们设原计划每月固沙造林x公顷,那么原计划完成一期工程需要___个月,实际完成一期工程用了____个月,根据题意,可得方程__________。 活动目的:为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,利用第一节《分式》中一个熟悉的问题,引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。 注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况教师可以给予适当的提示和引导. 二、探究新知 活动内容: 甲、乙两地相距 1400 km,乘高铁列车从甲地到乙地比乘特快列车少用 9 h,已 知高铁列车的平均行驶速度是特快列车的 2.8 倍. (1)你能找出这一问题中的所有等量关系吗? (2)如果设特快列车的平均行驶速度为x km/h,那么x满足怎样的方程? (3)如果设小明乘高铁列车从甲地到乙地需y h,那么y满足怎样的方程? 活动目的:再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。

分式方程的特殊解法

分式方程的特殊解法 四川省攀枝花市第二中学 617000 王琨 分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。 一、 分组通分法: 例1、 解方程 3 2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。观察方程中分母的特点可联想分组通分求解。 略解:方程两边分别通分,相减得 ) 3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2 51= x 当05=-x 时,解得52=x 经检验,2 51= x 52=x 都是原方程的解 二、 分离分式法: 例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解 略解:原方程可变形为 4 11311511211+-++-=+-++-x x x x 整理得 )4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2 7- =x 当072≠+x 时,方程无解 经检验27-=x 是原方程的解 三、 韦达定理法: 例3、解方程71 )1(31)1(222=+++++x x x x 分析:该方程的常规解法是换元法,但通过进一步观察会发现含有未知数的两个代数式的和或积都等于常数,故联想韦达定理求解。 略解:设 1)1(22++=x x u 1 )1(32++=x x v 则易知u ,v 是方程0672=+-y y 的两个解,

解这个方程得1=u 6=v 或1 6==v u ???????=++=++∴ (2) 61 )1(3)1( 11)1(2 22x x x x 或???????=++=++(4) 11)13((3) 61)1(222x x x x 由(2) 1)(得 方程无解 由(4) (3)得 2 1732 1±=x 经检验,它们满足原方程。故原方程的解是 2173 1+=x 2 1732-=x 四、 配方法: 例4、解方程 )32(49422x x x x -=+ 分析:观察发现方程左边恰好是 2x 与x 3的平方和,而右边又含有式子x x 32-,故可通过配方的方法把左边写成2x 与x 3差的完全平方的形式,进而把原方程看作是以x x 32-为未知数的一元二次方程去求解。 略解:原方程可变形为 03)32(4)32(2=+---x x x x 解之得132=-x x 或 332=-x x 当132=-x x 时,解之得712 1±=x 当332=-x x 时,解之得1534 3±=x 经检验,它们都满足原方程。故原方程的解是 71 1+=x 712-=x 1533+=x 1534-=x 五、 运用方程c b c x b x +=+ 的解求解 方程c b c x b x +=+的解不难通过去分母法求得为c x =1,c b x =2运用这一结论可以使具备此方程特征的这类方程的解法简捷。 例5、解方程 25991=+++ x x x

相关文档