文档库 最新最全的文档下载
当前位置:文档库 › iw3688规格书(完整版 )

iw3688规格书(完整版 )

iw3688规格书(完整版 )
iw3688规格书(完整版 )

Single-Stage Dimmable LED Drivers

1.0 Features

●Isolated/non-isolated off-line 120V AC/230V AC LED driver

up to 20W output power

●Wide line frequency range (from 45Hz to 66Hz)

●Meets IEC61000-3-2 current harmonic requirement

●Total harmonic distortion < 20% with PF > 0.92

●Excellent dimmer compatibility

x Leading-edge dimmer

x Trailing-edge dimmer

x Digital smart dimmer

●Wide dimming range of 1% to 100%

●Intelligent digital control integrating current sink function

into power switching circuit

●Advanced IC power management and voltage sensing

enables the use of off-the-shelf inductor

●Resonant control to achieve high efficiency (typical > 85%

without dimmer)

●Excellent AC line distortion immunity ensures quality of

product under real-life circumstances

●Over-temperature LED current foldback and shutdown ●Tight LED current regulation (±5%)

●Fast start-up (< 0.5s without dimmer)

●Multiple protection features that include:

x LED open-circuit and short-circuit protection

x Current sensing resistor open circuit and short-circuit protection

x AC line over-voltage protection

x Over-current protection 2.0 Description

The iW3688 is a single-stage, high-performance AC/DC off-line power supply controller for dimmable LED luminaires. It applies advanced digital control technology to detect the dimmer type, enabling it to provide dynamic impedance to interface with the dimmer and to control the LED brightness at the same time. With advanced dimmer detection technology, the iW3688 can operate with most wall dimmers including leading- edge dimmers (R-type or R-L type), trailing-edge dimmers (R-C type), and smart dimmers. In addition, the iW3688’s cycle-by-cycle waveform analysis technology allows for fast dimmer transient response.

In no-dimmer mode, the iW3688 operates the main power converter that delivers current to the LED load in quasi- resonant mode to provide high power efficiency and low electro-magnetic interference (EMI). When there is no dimmer on the line, the iW3688 optimizes the power factor and minimizes the current harmonic distortion to the AC line. The commonly utilized converter topologies for iW3688 are buck-boost and flyback.

The iW3688 uses patented PrimAccurate? primary-side sensing technology to achieve excellent LED current regulation under different AC line and LED load voltages, without using a secondary-side feedback circuit and thus eliminating the need for an opto-coupler.

The iW3688 minimizes the external components count by simplifying the EMI filter with Dialog’s EZ-EMI? technology, and by integrating current sink, switching, and V CC charging circuit. Additionally, the iW3688 does not require an auxiliary winding, which eliminates the need for a custom inductor. The digital control loop of the iW3688 maintains stability over all operating conditions without the need for loop compensation components.

The iW3688 maintains high performance wide-range dimming and achieves excellent dimmer compatibility with a simple application circuit.

3.0 Applications

●Dimmable LED retrofit lamps up to 20W

Dimmable LED luminaires up to 20W

Single-Stage Dimmable LED Drivers

L

Figure 3.1: iW3688 Simplified Application Circuit

Single-Stage Dimmable LED Drivers

4.0 Pinout Description

Figure 4.1: 14-Lead SOIC-14 Package

Single-Stage Dimmable LED Drivers

5.0 Absolute Maximum Ratings

Absolute maximum ratings are the parameter values or ranges which can cause permanent damage if exceeded. For maximum safe operating conditions, refer to Section 6.0 Electrical Characteristics.

Single-Stage Dimmable LED Drivers

6.0 Electrical Characteristics

V CC = 5V, -40°C ≤ T A ≤ 85°C, unless otherwise specified (Note 1)

Single-Stage Dimmable LED Drivers

6.0 Electrical Characteristics (cont.)

V = 5V, -40°C ≤ T ≤ 85°C, unless otherwise specified (Note 1)

Notes:

Note 1. Adjust V CC above the start-up threshold before setting at 5V.

Note 2. Refer to the voltage level at the V IN_A point in Figure 8.1. The typical impedance between the V IN pin and V IN_A point is 500W.

Note 3. Refer to Z VIN in Figure 8.1.

Note 4. Operating frequency varies based on the line and load conditions. See the Theory of Operation section (Section

9.0) for more details.

Single-Stage Dimmable LED Drivers

7.0 Typical Performance Characteristics

Figure 7.1 : V CC vs. V CC

Supply Start-up Current Figure 7.2 : V CC

Start-Up Threshold vs. Temperature

Figure 7.3 : % Deviation of Switching Frequency to

Ideal Switching Frequency vs. Temperature

Figure 7.4 :

Internal Reference vs. Temperature

Single-Stage Dimmable LED Drivers 8.0 Functional Block Diagram

The Digital Core (shown in figure 8.1) analyzes the rectified AC waveform and determines whether a dimmer is connected on the line. There are three dimmer modes in the iW3688: no-dimmer, leading-edge dimmer, and trailing-edge dimmer. Based on the detected dimmer type and input voltage waveform, the iW3688 determines whether the iW3688 is operating in current sink mode or switching mode. During switching mode, the output current regulation is determined by inductor peak current (I SENSE pin), the magnetic flux status of the inductor (V D and V CB pins), and the input voltage waveform (V IN pin) (refer to section 9.4 for more information).

If no dimmer is detected on the AC line, the iW3688 operates in no-dimmer mode where only the switching circuit is enabled. In this mode, the average output current

is regulated to the nominal value and is immune to input voltage variation.

If a dimmer (either leading-edge or trailing-edge) is detected on the AC line, the iW3688 operates in dimmer mode. In dimmer mode, MOSFET (Q1 in Figure 11.1) operates in both switching mode and current sink mode based on the timing control of iW3688. During the switching mode, the output current is adjusted based on the detected phase conduction angle. During current sink mode, the switching circuit is disabled and the current sink circuit is enabled. The main MOSFET is forced to operate in linear mode, where the current through MOSFET is regulated by the Digital Core. As shown in Figure 8.1, V CC can be charged during both current sink mode and switching mode.

.Figure 8.1 : iW3688 Functional Block Diagram

V IN

V cc

V CB

I SENSE

PGND

CFG1CFG2AGND CFG3CFG4

V D V S

Single-Stage Dimmable LED Drivers

AC line before wall -dimmer

AC line after wall -dimmer

Figure 9.2 : Leading-Edge Wall Dimmer Waveforms

AC line before AC line after wall-dimmer

Figure 9.3 : Trailing-Edge Wall Dimmer Waveforms

The dimmer detection stage occurs in the iW3688 immediately after IC starts up. During this stage, the iW3688 stays in current sink mode to place a low impedance load on the AC line, where the current through MOSFET is regulated by the Digital Core. As a result, the dimmer type (no-dimmer, leading-edge, or trailing-edge) can be accurately detected. The dimmer type is determined by sensing the slope of the input AC voltage and the dimming phase angle. A fast rising edge of the input AC voltage indicates a leading-edge dimmer. A large dimming phase angle indicates no dimmer is on the line. Otherwise, a trailing-edge dimmer is detected.When the V IN_A signal is above V IN(ST) for 500μs and the AC line frequency is within the range, the AC input signal is qualified for startup. If V CC drops below V CC(UVL), the iW3688 resets and the startup sequence is initiated.9.1.3 LED Current Soft-Start

After the iW3688 qualifies the AC input signal, the buck- boost or flyback converter immediately starts to deliver

9.0 Theory of Operation

9.1 System Startup

This section provides information about iW3688 system start up, which includes the IC startup, wall dimmer detection, and the LED current soft start.9.1.1 IC Startup

When AC voltage is applied, the gate voltage of MOSFET, V G is charged up through RC circuit (R6, and C5 in Figure 11.1). When V GS > V GS(TH), the MOSFET starts to turn on and charge the V CC capacitors (C7 and C8 in Figure 11.1). When V CC voltage reaches V CC start-up threshold V CC(ST), the iW3688’s control logic is activated and the IC starts up.

V CC

ENABLE

Start-up Sequence

Figure 9.1 : Start-up Sequence Diagram

9.1.2 Wall Dimmer Detection

There are two basic categories of phase-cut wall dimmers: leading-edge dimmers and trailing-edge dimmers. If the AC voltage rises at the phase-cut edge, the dimmer is called leading-edge dimmer (shown in Figure 9.2). Otherwise it is called trailing-edge dimmer (shown in Figure 9.3). Normally, a leading-edge dimmer is either an R-type or RL-type; a trailing-edge dimmer is an RC-type.

Single-Stage Dimmable LED Drivers

current to the LED load. A soft-start algorithm is applied to the buck-boost or flyback converter to gradually ramp up the LED current.

If a dimmer is connected, the driver starts immediately into leading-edge or trailing-edge mode operation (refer to section 9.3.1 and 9.3.2 for details) to interface with the dimmer. If no dimmer is connected, the driver starts no-dimmer mode operation (refer to section 9.3.3 for details). 9.2 Dimming Curve

When a leading-edge or a trailing-edge dimmer is detected, the iW3688 adjusts the output current to a certain ratio of the nominal output current, based on the dimming phase angle detected. This ratio between the desired output current to the nominal output current is called the dimming percentage.

A typical mapping between the dimming phase angle and the dimming percentage is shown in Figure 10.6. All the dimming curves of the iW3688 fall within the limits of the NEMA SSL6 and SSL7 standard (shown in Figure 10.6). The iW3688 updates the dimming percentage every half-AC-cycle based on the detected dimming phase angle to ensure fast dimming response.

9.3 Current Sink and Switching Circuit

Control

This section provides information about how the iW3688 controls the current sink circuit and the switching circuit during leading-edge dimmer mode, trailing-edge dimmer mode, and no-dimmer mode.

9.3.1 Leading-Edge Dimmer Mode

If a leading-edge dimmer is detected, the iW3688 enters into leading-edge dimmer mode. The current sink circuit and switching circuit inside iW3688 turn on alternatively.

The current sink circuit and switching circuit control during leading-edge dimmer mode can be split into six operating sections, as shown in Figure 9.4.

During section 1, the TRIAC in the leading-edge dimmer is turned off and the dimmer requires a low impedance load to charge its internal timing circuit. The regulated current of the current sink circuit is set to a high limit while the switching circuit is disabled. When V IN_A exceeds 0.228V for more than 40μs, the iW3688 enters into section 2. In section 2, the regulated current of section 1 is gradually transitioned to match the average switching current of section 3. When the transition is over, the iW3688 enters section 3, where the current sink circuit is disabled and the switching circuit begins its operation. The duration of section 3 is determined by the desired output current to be delivered to the LEDs. Once the energy required to obtain the desired output current is delivered to the LEDs, the iW3688 disables the switching circuit and enters section 4. In section 4, the current sink circuit is enabled, which provides a gradual transition of MOSFET source current. During this transition, the averaged MOSFET source current is decreased to zero from the averaged switching current in section 3. When the MOSFET source current reaches zero, the iW3688 enters section 5, which is called the blanking period. During this period, no switching or current sink is present to minimize power loss and ensure the TRIAC in the dimmer is turned off. When V IN_A falls below 0.184V, the iW3688 enters section 6. In section 6, the current sink circuit is enabled and the sinking current is transitioned from zero to the regulated current level in section 1. At the time when the sinking current reaches the regulated current in section 1, the iW3688 enters section 1. This provides a low impedance load to quickly discharge the capacitance of the driver board. The sinking current naturally goes to zero when the input and RC snubber capacitors (C1, C2, and C3 in Figure 11.1) have been fully discharged.

V IN

I SOURCE

1234561

Figure 9.4 : Leading Edge Dimmer Mode Operation

9.3.2 Trailing-Edge Dimmer Mode

If a trailing-edge dimmer is detected, the iW3688 enters into trailing-edge dimmer mode. The current sink circuit and switching circuit inside iW3688 turn on alternatively.

The current sink circuit and switching circuit control during trailing-edge dimmer mode can be split into four operating sections, as shown in Figure 9.5.

During section 1, the trailing-edge dimmer requires a low impedance load to charge its internal supply voltage and detect the next zero-crossing. The regulated current of the current sink circuit is set to a high limit while the switching circuit is disabled. When V IN_A exceeds 0.228V, the iW3688 enters into section 2. During section 2, the sinking current is gradually reduced from the regulated current of section 1 to zero. When the sinking current reaches zero, the iW3688

Single-Stage Dimmable LED Drivers

enters section 3. During section 3, both the current sink circuit and the switching circuit are disabled. In section 4, the iW3688 begins to deliver energy to output of the LED driver until the trailing-edge dimmer turns off. After section 4, the iW3688 disables the switching circuit and enters section 1. This provides a low impedance load to quickly discharge the capacitors of the dimmer and driver board.

V IN

I SOURCE

1

2

3

4

1

Figure 9.5 : Trailing Edge Dimmer Mode Operation

9.3.3 No-dimmer Mode

If there is no dimmer on the line, the iW3688 operates in

no-dimmer mode to optimize power factor and to minimize

harmonic distortion. The current sink circuit is disabled in

this mode and only the switching circuit is used.

9.3.4 Controller Power Management

Unlike most off-line LED controllers, the iW3688 does not rely on auxiliary winding of the main power inductor/transformer to supply the operating current. Instead, it uses Dialog’s

proprietary multi-path charging technology to sustain the V CC voltage. Also, a lower nominal V CC level is made possible

with source switching structure, which reduces the IC power consumption and enables the use of a smaller size V CC

capacitor.

Figure 9.6 : V CC Charging Circuit

The iW3688’s operating current is supplied by two paths (shown in Figure 9.6). The first path, called switching charge, re-directs the switching current into the V CC capacitor when MOSFET is turned on. The second path, called sinking charge, re-directs the sinking current into V CC capacitor. When there is no dimmer on the line, only the switching charge is used to achieve high efficiency. When there is a dimmer on the line, both switching and sinking charge are used to ensure V CC is sustained across the entire dimming range.

The iW3688 regulates the V CC voltage by adjusting the

duration of the charging time. V CC voltage is smoothly

regulated to the nominal level when the iW3688 operates

in no-dimmer mode. When the iW3688 operates in dimmer

mode, the window for V CC charging is limited. Therefore, the iW3688 charges the V CC voltage to V CC(HIGH) in the charging window. Although V CC voltage droops before next charging

window, the iW3688 guarantees V CC

level is always above

V

CC(UVL) when a proper sized V CC capacitor is used.

9.4 Output Current Regulation This section provides information about iW3688 output current regulation, which incorporates the Dialog-patented

PrimAccurate TM technology.

Single-Stage Dimmable LED Drivers

Figure 9.7 : Inductor Current Flow in Switching Mode

I P

I S

I SEC T ON T OFF

T R

T P

I PK

I PK

Figure 9.8 : Cycle-to-Cycle Peak Current Regulation

In iW3688, output current regulation is implemented through peak current control in switching mode. Figure 9.7 and 9.8 show the basic principle of this peak current regulation during the switching mode. During T ON, the main switch Q1 (shown in Figure 9.7) is turned on and the current, I P, flows through the primary side of the buck-boost converter and Q1. I P ramps up linearly and causes energy to build up in the power inductor L1 (shown in Figure 9.7). The iW3688 continuously monitors I SENSE pin voltage, when it reaches V PK (shown in Figure 8.1), it turns off the switching circuit. At this time, I P reaches peak current regulation level I PK (shown in Figure 9.7 and 9.8). After Q1 is turned off, the current in L1 ramps down linearly through D1 (shown in Figure 9.7), until the energy stored in the power inductor is discharged. During this period, the current through L1 flows to the secondary side of the buck-boost/flyback converter, which is called I S.9.4.1 Output Current Regulation in No-dimmer Mode

In no-dimmer mode, V PK is designed to be proportional to the input voltage shape with a lower limit (shown in Figure 9.9). The buck-boost or flyback converter operates in critical discontinuous conduction mode (CDCM) if the switching frequency

of main MOSFET does not exceed the f SW(MAX). Otherwise, if the switching frequency reaches the f SW(MAX), the power converter operates in discontinuous conduction mode (DCM).

Input Voltage

SOURCE

Figure 9.9 : Peak Current Regulation in No-dimmer Mode

As shown in Figure 9.8, the average current of I S in one switching cycle can be expressed by I SEC, where

SEC

I= 0.5×PK I×R

T

P

T(9.1)

where I PK is the peak value of the L1 current, T R is the L1 current ramp-down time, and T P is the entire switching period.

The I PK is determined by the voltage generated on the current sense resistor R19 (shown in Figure 11.1): I PK = V PK /R19. Therefore, the equation can be written as

SEC

I= 0.5×PK

V

×R

T

P

T

R19

(9.2) In steady state, the average output current is equal to the average I SEC over one half-AC-cycle. Therefore, the average output current can be obtained by averaging equation 9.2 over one half-AC-cycle.

The iW3688 regulates the averaged V PK * (Tr/Tp) to be a constant over one AC half cycle. Therefore, the nominal output current I OUT(NOM) can be determined by equation 9.3.

Single-Stage Dimmable LED Drivers

OUT(NOM)

I = 0.5

××R 19

0.35V ?

(9.3)

? is the converter efficiency.

9.4.2 Output Current Regulation in Dimmer Mode

In dimmer mode, V PK is a fixed value determined by resistor configuration. The switching frequency (f SW ) is also a fixed value based on resistor configuration (see Section 9.5 for details). If the buck-boost or flyback is operating in DCM, a fixed V PK and f SW control can achieve stable I SEC regulation because the energy delivered to the LED is fixed regardless

of input voltage variation. If the buck-boost or flyback is operating in CCM, this stable I SEC regulation cannot be guaranteed. Therefore, the preset V PK and f SW values need to ensure the buck-boost or flyback is operating in DCM. When V IN is low, the iW3688 drops the V PK level to ensure DCM operation (see Figure 9.10). V PK

I SENSE V IN

pin voltage

Figure 9.10 : Peak Current Regulation in Dimmer Mode During dimmer mode operation, the output current is regulated with a closed loop control. The reference output current,

I OUT(DIM), is calculated by equation 9.4. The instantaneous

I SEC current delivered to the output side is accumulated

every switching cycle when switching is enabled. I OUT(DIM) = I OUT(NOM) × dimming percentage (9.4)When the accumulated instantaneous I SEC current in one half-AC-cycle reaches I OUT(DIM), the iW3688 disables the switching circuit.

9.5 Configuration Function

At start-up, a current source in the iW3688 drives the

configuration current I CFG (100μA) into CFG1–CFG4 pin alternatively (shown in Figure 8.1). The iW3688 reads their pin

CFG1 pin configuration selects the temperature de-rating start point. CFG2 optimizes the control algorithm for power and NV O *, and CFG2 selects the output current percentage at 70% dimming phase. CFG3 pin configuration selects V PK high limit value at dimmer mode. CFG4 pin configuration selects switching frequency at dimmer mode.

By choosing different resistor values for R17, R18, R21, and

R22 (shown in Figure 11.1), different configuration values are selected (illustrated in T able 9.1 - 9.4). CFG1 Option Pin3 CFG CFG1 Pin Resistor

(R18 in Fig. 11.1)

Temperature

Derating Starting

Point (°C) (Internal Sensor) (Fig. 9-11)Typical Value (k W) Min Value (k W)Max Value (k W)

00.400.69disable temperature derating

1 1.65 1.39 1.91100

2 3.00 2.78 3.22105

3 4.45 4.28 4.621104

6.05 5.88 6.221155

7.857.70

8.001206

9.889.7410.01125712.1812.0412.311308

14.85

14.67

15.03

135

Table 9.1 CFG1 Pin Configuration Resistor Values

CFG2

Option

Pin2 VPP

CFG2 Pin Resistor (R17 in Fig. 11.1)

Power Level/NV O *

/I OUT at 70% Dimming Phase

Typical

Value (k W) Min Value (k W) Max Value (k W)

00.400.69> 6W/60V-120V/92%1 1.65 1.39 1.91> 6W/60V-120V/87%2 3.00 2.78 3.22> 6W/30V-60V/92%3 4.45 4.28 4.62> 6W/30V-60V/87%4 6.05 5.88 6.22< 6W/60V-120V/92%57.857.708.00< 6W/60V-120V/87%69.889.7410.01< 6W/30V-60V/92%7

12.18

12.04

12.31

< 6W/30V-60V/87%

*: NV O is the product of the turns ratio and output voltage.

Table 9.2 CFG2 Pin Configuration Resistor Values

Single-Stage Dimmable LED Drivers

CFG3 Option Pin10 SDA

CFG3 Pin Resistor

(R21 in Fig. 11.1)

(±10%)

V PK at Dimmer Mode

(V) Typical

Value

(k W)

Min

Value

(k W)

Max

Value

(k W)

00.400.690.75

1 1.65 1.39 1.910.8

2 3.00 2.78 3.220.85

3 4.45 4.28 4.620.9

4 6.0

5 5.88 6.220.95 57.857.708.001 69.889.7410.01 1.05 712.1812.0412.31 1.1 814.8514.6715.03 1.15

Table 9.3 CFG3 Pin Configuration Resistor Values

CFG4 Option Pin11 SCL

CFG4 Pin Resistor

(R22 in Fig. 11.1)Switching

Frequency at

Dimmer Mode

(kHz) Typical

Value

(k W)

Min

Value

(k W)

Max

Value

(k W)

00.400.6940

1 1.65 1.39 1.9145

2 3.00 2.78 3.2250

3 4.45 4.28 4.6255

4 6.0

5 5.88 6.2260 57.857.708.0065 69.889.7410.0170 712.1812.0412.3175 814.8514.6715.0380

Table 9.4 CFG4 Pin Configuration Resistor Values 9.6 V SENSE Direct Sensing

R VSENSE

Figure 9.11 : V SENSE Circuit Inside iW3688

In conventional LED driver solutions, there is an auxiliary winding in the main inductor/transformer. Three main functions of this auxiliary winding are: 1. To supply V CC for controller IC; 2. To provide output voltage information;

3. To provide magnetic flux information of the inductor. As mentioned in 9.3.

4. the iW3688 does not rely on auxiliary winding to charge V CC. In addition, Dialog’s proprietary V SENSE Direct Sensing technology allows the iW3688 to obtain LED output voltage and magnetic flux information without an auxiliary winding.

Inside the iW3688, there is a high performance differential current sensing circuit between V D and V CB pin (shown in Figure 9.11). This circuit generates a differential current that is equal to the current flow into V D pin subtracted by the current flow into V CB pin. This differential current is directed to an internal precise resistor, R VSENSE, to generate a voltage called V SENSE. V SENSE is essentially a scaled-down version of V DRAIN minus V CIN, which is the same as the auxiliary winding generated signal.

The resistances of R CB and R D are determined by the nominal output voltage, V OUT. In Figure 11.1 R CB refers to R13, and R D refers to R15.

)

(VSENSE

R

D

SENSE

V= DRAIN

V

×

CIN

V

CB

R

R (9.5)

Single-Stage Dimmable LED Drivers

During the period of T R (shown in Figure 9.8), V DRAIN minus V CIN is approximately equal to V OUT . By making R CB and R D the same, their values can be determined by

= D R VSENSE R CB R = ×OUT

V SENSE

V (9.6)9.7 Protection Features

This section provides information about iW3688 protection features.

9.7.1 Output Over-Voltage/LED Open Protection

The iW3688 includes a function that protects against an

output over-voltage.

The output voltage is monitored by the V SENSE voltage (refer to Section 9.6). If the V SENSE voltage exceeds V SENSE(OVP), the iW3688 shuts down the switching circuit and current sink circuit (shown in Figure 8.1) immediately. As a result, MOSFET is turned off. After the shutdown of current sink and switching circuits, the iW3688 remains powered, while V CC continues to discharge. In order to avoid over-charging of the output voltage, the iW3688 employs an extended discharge time as described below if V CC does not drop below V CC(UVL). Otherwise, when V CC drops below V CC(UVL), the iW3688 resets itself and then initiates a new soft-start cycle.

Under the fault condition, the iW3688 tries to start up for

three consecutive times. If all three start-up attempts fail, the

iW3688 enters an inactive mode, during which the iW3688 does not respond to the V CC power-on requests. The iW3688 is activated again after it sees 29 start-up attempts. Typically, this extended discharge time is around three to five seconds.9.7.2 Output Short Protection

The iW3688 includes a function that protects against an output short-circuit fault.

When output is shorted, V SENSE is below V SENSE(UVP). As a

result, an output short fault is detected. The iW3688 shuts down the switching circuit and current sink circuit (shown in Figure 8.1) immediately. As a result, MOSFET is turned off. After the turn-off of MOSFET, the iW3688 remains powered while V CC continues to discharge. In order to avoid excessive power stress due to auto-restart, the iW3688 employs an extended discharge time as described in section 9.7.1 if V CC

does not drop below V CC(UVL). Otherwise, when V CC drops

below V CC(UVL), the iW3688 resets itself and then initiates a new soft-start cycle.

To support applications with high output capacitance, output short protection is not activated during the initial LED current

soft start period. This allows the voltage to build up in the output capacitor without triggering the protection.

9.7.3 Temperature De-Rating and Over-Temperature Protection The iW3688 can detect and protect against over-temperature

event. The iW3688 utilizes an internal sensor for temperature

measurement.When the monitored temperature reaches T DERATE(ST), the maximum output current limit begins to reduce linearly from 100% to 70% of the nominal value until the temperature

reaches T DERATE(FINISH) threshold as shown in Figure 9.12,

where T DERATE(FINISH) = T DERATE(ST) + 20°C. At T DERATE(FINISH),

the maximum output current limit is clamped to 70%. If the temperature further increases to T OTP(START), the iW3688 shuts down.

The iW3688 remains in shutdown mode as long as the monitored temperature is above T OTP(START). If the detected temperature falls below T OTP(START) at anytime, the iW3688 starts up. From T DERATE(FINISH) to T DERATE(ST), the maximum output current limit increases linearly from 70% to 100% as shown in Figure 9.12. The device goes back to normal operation if the sensed temperature falls below T DERATE(ST). This bi-directional operation enables the LED current thermal fold-back instead of an abrupt shut-down of the LED current.

The values of T DERATE(ST) and T DERATE(FINISH) can be adjusted

through the CFG1 pin resistor (refer to Section 9.5).

I OUT /I OUT(NOM)

%T DERATE(ST)

T DERATE(FINISH)

T OTP(START)

Figure 9.12 : Temperature DeRating and OTP

9.7.4 Over-Current Protection Over-current protection (OCP) is a feature that is built into the iW3688.

Single-Stage Dimmable LED Drivers

With the I SENSE pin, the iW3688 is able to monitor the primary peak current of the buck-boost or flyback converter during switching mode. This allows for cycle-by-cycle peak current control and limit. When the primary peak current multiplied by the I SENSE pin sensing resistor (R19 in Figure 11.1) is greater than V OCP, over-current is detected and the iW3688 immediately shuts down the switching circuit until the next switching cycle. The switching circuit sends out switching pulse in the next switching cycle, and the switching pulse continues if V OCP is not reached; or, if V OCP is reached, the switching pulse turns off again.

9.7.5 Current Sensing Resistor Short Protection The iW3688 uses a MOSFET as its main switch for the buck- boost or flyback converter. If the I SENSE pin sensing resistor (R19 in Figure 11.1) is shorted, there is a potential danger of the over-current condition not being detected. Thus the iW3688 is designed to detect this sensing-resistor short fault. When the sensing resistor short fault is detected, the iW3688 shuts down the switching circuit and current sink circuit (shown in Figure 8.1) immediately. As a result, MOSFET is turned off. After the turn-off of MOSFET, the iW3688 remains powered while V CC continues to discharge. In order to prevent over-stress of power circuit components, the iW3688 employs an extended discharge time as described in section 9.7.1 if V CC does not drop below V CC(UVL). Otherwise, when V CC drops below V CC(UVL), the iW3688 resets itself and then initiates a new soft-start cycle.9.7.6 Current Sense Resistor Open Protection

If the I SENSE pin sensing resistor (R19 in Figure 11.1) is open and not being detected, it may cause potential damage to the internal circuit during the switching mode. Thus, the iW3688 is designed to detect I SENSE pin open fault. When the I SENSE pin open fault is detected, the iW3688 shuts down the switching circuit and current sink circuit (shown in Figure 8.1) immediately. As a result, MOSFET is turned off. After the turn-off of MOSFET, the iW3688 remains powered while V CC continues to discharge. In order to prevent over-stress of power circuit components, the iW3688 employs an extended discharge time as described in section 9.7.1 if V CC does not drop below V CC(UVL). Otherwise, when V CC drops below V CC(UVL), the iW3688 resets itself and then initiates a new soft-start cycle.

9.7.7 AC Input Over-Voltage Protection

The iW3688 supports the over-voltage protection of AC input.

If the V IN_A is higher than V IN(OVP) continuously for 2ms within every 16ms period, and this condition lasts for eight consecutive half AC cycles, the iW3688 shuts down the switching circuit and current sink circuit (shown in Figure 8.1) immediately. As a result, MOSFET is turned off. After the turn-off of MOSFET, the iW3688 remains powered while V CC continues to discharge. The iW3688 employs an extended discharge time (as described in section 9.7.1) before restart if V CC does not drop below V CC(UVL). Otherwise, when V CC drops below V CC(UVL), the iW3688 resets itself and then initiates a new soft-start cycle.

Single-Stage Dimmable LED Drivers 10.0 Performance Characteristics

Figure 10.1 :

Trailing-Edge Dimmer Figure 10.2 :

Trailing-Edge Dimmer 2 Figure 10.3 : Leading-Edge Dimmer Figure 10.4 : Leading-Edge Dimmer 2 Figure 10.5 : No Dimmer Figure 10.6 :

Dimming Curve

Single-Stage Dimmable LED Drivers

For 20W or higher power applications, visit the products below:

11.0 Typical Application Schematic

Figure 11.1 : Typical Application Circuit

12.0 Product Navigation

N

L

Single-Stage Dimmable LED Drivers 13.0 Physical Dimensions

14.0 Ordering Information

Compliant to JEDEC Standard MS12F

Controlling dimensions are in inches; millimeter dimensions are for reference only This product is RoHS compliant and Halide free.

Soldering Temperature Resistance: [a] Package is IPC/JEDEC Std 020D Moisture Sensitivity Level 1 [b] Package exceeds JEDEC Std No. 22-A111 for Solder Immersion Resistance; package can withstand 10 s immersion < 260?C Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per end. Dimension E does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 mm per side.

The package top may be smaller than the package bottom. Dimensions D and E are determined at the

outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interlead flash, but including any mismatch between the top and bottom of the plastic body.

14-Lead SOIC Package

0.10 (0.004)

PLANE

C

L

TOP VIEW

SIDE VIEWS

Note 1: Tape & Reel packing quantity is 2,500/reel. Minimum ordering quantity is 2,500.Note 2: Contact Dialog Marketing for availability.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard Terms and Conditions of Sale, unless otherwise stated.

? Dialog Semiconductor GmbH. All rights reserved.

RoHS compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2).

Dialog Semiconductor’s statement on RoHS can be found on the customer portal https://https://www.wendangku.net/doc/7c2647794.html,/. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom

Dialog Semiconductor (UK) Ltd Phone: +44 1793 757700 Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 88 22 Email

info_pcbg@https://www.wendangku.net/doc/7c2647794.html, North America

Dialog Semiconductor Inc.

Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K.

Phone: +81 3 5425 4567

Taiwan

Dialog Semiconductor Taiwan

Phone: +886 8178 6222

Web site:

https://www.wendangku.net/doc/7c2647794.html,

Singapore

Dialog Semiconductor Singapore

Phone: +65 64849929

Hong Kong

Dialog Semiconductor Hong Kong

Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea

Phone: +82 2 3469 8200

China

Dialog Semiconductor

(Shenzhen)

Phone: +86 755 2981 3669

Dialog Semiconductor

(Shanghai)

Phone: +86 21 5178 2561

AC/DC Digital Power Controller for

Single-Stage High Power Factor Dimmable LED Drivers

天猫店铺创业计划书范文(标准版)【电子商务 创业计划书】

天猫店铺创业计划书范文(标准版) 策划公司:电子商务有限公司 目录 一. 淘宝的基本服务模式 二. 河南商都电子商务有限公司的概述 三. 服务介绍 四. 发展构架图 五. 服务实施步骤和目标及收费标准 六. 项目托管服务表 七. 人员配置图及岗位职责 五附录 1《商家必读规则》 2《开店30日开店倒计时》 3女性消费者数据 4 淘宝服饰价格数据 1

5 淘宝营销服务列表 6 淘宝女装服务协议 一.淘宝的基本模式 B2C(天猫):企业与终端客户(消费者)间的交易模式(商城) C2C:消费者与消费者间的交易模式(集市) 二.商都电子商务 使命: 让河南企业进入电商之路更快一步; 价值观:创新、分享、共赢; 服务内容:店铺申请,网店托管,客服外包,优化推广,直通车优化,团队培训,店铺装修,店铺运营,活动策划,宝贝优化等方面; 我们的优势:专业团队**、**运营经验*、广泛的**、**优势、平台**优势 三.服务内容 专业的托管服务: 产品分类.产品定位; 装修、上下架; 订单处理、销前服务、售后服务; 2

网店维护、网店优化、日常经营管理、报名各种活动,为客户提供淘店运营的全面解决方案 专业商品管理: 产品分类.产品定位; 宝贝描述设计; 商品上架规划,标题优化 专业客服管理: 托管时间:15小时/天7X15小时服务(每天的在线时间为9:00至24:00) 专业在线沟通、满足客户咨询销售的服务需求; 专业营销管理: 设定产品组合与套餐优惠服务; 设计店内促销活动及特惠套餐; 专业店铺优化,与顾客沟通参与付费推广活动(付费推广活动包括:直通车淘宝客推广、钻石展信淘宝客推广、超级卖霸淘宝客推广、淘宝客推广)。 淘宝活动管理: 淘宝工具使用: 四.店铺发展思路 3

商业计划书word版本的参考模板

商业计划书模板声明 (诚信承诺、所有权、保密权声明) 概要 300—500字说清楚公司从事业务及前景。 第1章公司基本概况 1.公司基本情况 工商、税务、组织机构代码证扫面件。 200-300字公司简介。

2.股权结构 截至XXX年X月,公司股权结构如下: 3.公司治理及组织架构 简要说明公司目前治理结构、配组织架构图。 4.主要团队 董事长、总经理 XXX 男,XX岁,XX大学XX专业本科。 主要工作经历: 主要社会荣誉: 。。。。。。。 5.人力资源状况 说明公司现有人员数,按学历、工种做统计。配合饼图效果好。 6.公司知识产权、荣誉情况 (1)知识产权 XX公司高度重视原创性创新和自主开发,20XX年被认定为“国家高新技术企业”。截至目前,公司取得实用新型专利X项,发明专利X项。 表专利情况列表

(2)其他 除专利外公司拥有其他资质及荣誉情况如下: 表资质及荣誉 7.关联企业情况 公司公司主要股东参股企业情况如下: 表1-6 公司股东参股企业情况汇总 第2章业务及市场 1.公司主营业务与产品 公司从事业务及产品情况。侧重于产品、技术的领先性、先进性,与市场现有产品、技术的比较和价值所在。 2.市场规模及前景 2.1市场容量 就所从事细分行业市场容量做出合理判断及估计。(配合柱状图效果好)2.2行业前景 (柱状图+曲线图)侧重于项目在行业的发展趋势、市场前景、发展潜力。

3.主要竞争对手 表主要厂商竞争优劣势对比 4.公司竞争优势 (1)技术实力 (2)团队 (3)渠道 (4)良好客户关系 (5)产品优势 (6)良好的客户服务

商业计划书范文 完整版

云南联华咨询有限公司 北虫草子实体量产 暨 通路销售 商 业 计 划 书

目录 1.产品背景 2. 产品基本概述 2.1 虫草概述 2.2 北冬虫夏草 2.3 人工培育北冬虫夏草的成分 3. 产品竞争优势 3.1 药效成分 3.2 工厂化生产 3.3 成本低廉、供货稳定 3.4 自有知识产权保护 4. 投资环境背景 4.1 西部大开发政策 4.2 中国云南概况 4.3 云南投资环境概述 5. 投资建厂计划 5.1 基本的股份组成筐架 5.2 董监事会的人员组合 5.3 经营团队

5.4 建厂规模及预算 5.5 销售通路 6. 营收预估 6.1 营业目标 6.2 营业收益 6.3 财务预估 7 结论 1. 背景 冬虫夏草俗称虫草,为中国名贵中药材,据《本草纲目》、《本草从新》、《本草纲目 拾遗》等记载,冬虫夏草具有“保肺益肾,秘精益气,止血化痰,能治诸虚百损,专补 命门”之功效。几千年来虫草一直被列为滋补药物之首,并有“东方传奇式珍宝”之美 誉,但由于虫草在自然界天然生长所需条件极高导致其产量极少,货源奇缺。因此其价格始终居高不下,也由此限制了其应用与推广的范围。

随着上一世纪末海内外华人经济条件的普遍好转,以及对生存质量的逐步升级,造成了全球对天然虫草“掠夺性”的开发,加之自然生态环境的日益破坏,从尔导致天然虫草资源的日益枯竭。 据权威部门统计,目前全球天然虫草的年产量已不足10吨,且还在逐年减少。而 每年的市场需求远远大于其产量,需求矛盾使得虫草价格节节攀高,流通领域的假冒伪 劣品充斥市场。 2. 产品基本概述 2.1 虫草概述: 目前世界上已发现同属“虫草属”的虫草已有三百五十种之多,其中在中国已发 现过六十余种,包含冬虫夏草(C. sinensis)、北冬虫夏草(C. militaris)、大团 虫草(C.ophioglossoides)、亚香棒虫草(C.hawkesii)、古尼虫草(C.gunnii)、珊 瑚虫草(martialis)、镰刀状虫草(C.falcata)、泰山虫草 (C.taishanensis)、山西虫 草(C.shanxiensis)、凉山虫草(C.liangshanensis)、新疆虫草 (C.gracilis)、香棒 虫草(C.barnesii)、蝉花(C.sobolifera)等等。

商业计划书完整版

商业计划书完整版 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

好油乡里来 农村茶籽油、菜籽油土榨坊改良与推广产业化发展项目融资计划书(草案) 湖南xxx粮油实业有限公司 2015 年 10月15 日

一、项目概况 项目名称:农村茶籽油、菜籽油土榨坊改良与推广产业化发展项目 启动时间:2014年10月 准备注册资本:注册资金2100万元,拟增资注册5000万元 项目进展:己在湘潭市茶油、菜籽油主产区改良推广了20多家土榨坊 主要股东: 主要业务: 粮食及食用植物油油料收购、加工、销售、仓储、物流配送、电子商务,粮油进出口贸易。 盈利模式: ①推广“xxx小榨坊”安全生产加工技术 公司采用国际先进的油脂加工技术和装备,运用公司具有自主产权的加工技术--“xxx小榨加工技术”和专利,通过GPRS系统,规范土榨坊的“检、收、加、

储”,达到“生产原料、过程、产品安全”的要求。设备由公司负责选型,无论从规模上还是产能上都能达到湖南领先水平,同时能降低综合生产成本,为市场提供标 准、高质量的健康食用油。 ②打创“公司+小榨坊(合作社)+基地+农户”的模式进行资源整合。 公司以“投资、合作、加盟”的方式进行资源整合,采用“公司+小榨坊(合作社)+基地+农户”的模式,进行“土榨坊”的升级提质示范改造。即“土榨坊”利用现有场地、设施,与公司签约加盟。公司投资更新设备,统一生产技术、统一品牌、 统一产品收购与销售。公司的投资逐年在“土榨坊”生产的产品收购中扣回。原料基 地建设采用“土榨坊(合作社)”辐射带动作用,运用把“支部建在连队上”的方法, 开展订单农业,与农民签订油籽收购合同,引导农民种植优质油茶林和油菜籽。构建食用油生产资源高效整合利用、产业规范发展、互补互惠多赢的可持续发展的道路,带 领周边农民致富。 ③用品牌带动产品的市场拓展 在茶油产品的营销中,公司始终以打造湘潭市茶油品牌为重心,来制定相应的营 销政策与宣传口径,运用传统批销与现代电子商务相结合的形式,应用网上商城 B2C、B2B、APP及二维码等电子商务应用技术与平台,实现企业的品牌宣传、产品的溯源、营销活动的推广、消费者的在线购买与产品咨询、经销商线上下单采购、区 域市场管理、防伪等营销运营管理的各个环节,构建超市、网购、礼品、外贸多层营 销渠道,形成“xxx”“老头锅”品牌效应,提升了“公司+土榨坊”的竞争力,引领与拓展市场。 ④主打绿色生态产业链,创建“互联网+小榨坊”服务平台。 在农村建设“土榨坊”农产品加工业,不是遍地开花,而是采取有山保山有水保 水山水,充分发挥当地生态优势,通过“互联网+小榨坊”,适当建立小规模的农副产品加工链条,链条可多,但每个连接不可太大,即在环境的承受范围内,不破坏当地 的绿色生态环境,因地制宜的发展油茶、油菜生产,从生产源头上控制原料的污染, 实现“从农田到餐桌”的全过程质量追溯体系;开展订单农业,大力打造现代电子商 务平台,推出“厨房妈妈”电子商务,并通过移动互联微信平台,传递出“好油乡里来”的信息,产品销售上实现传统渠道与现代电子商务相结合,逐步提高农村小村的 生态农业化,达到各个土榨坊加工链条有机结合,达到长远发展,使农村逐步走向小康,促进湘潭市现代茶油产业链的建设。

第一部分通信 第三篇 技术规格书汇总

第三篇 通信光电缆线路维护作业指导书 1 适用范围及内容概述 (1)本作业指导书结合中南项目经理部长期路外工程维护经验以及目前路外通信光电缆线路维护要求编制,适应路外线路工程维护。 (2)本作业指导书与建设单位要求不一致时,按其要求执行。 (3)内容概述 基于公司目前通信线路维护主要以架空光缆线路为主,管道、直埋光缆为辅,而电缆线路维护 则较少的情况,以架空光缆线路维护为重点编制本作业指导书。 2 架空光缆线路维护 2.1 维护作业内容 主要包括架空光缆线路日常维护、技术维护、障碍处理、大修等。 2.2 维护作业准备 2.2.1维护现场准备 施工的现场准备工作,主要是为了给施工项目创造有利的施工条件和物资保证。 (1)光缆线路维护工程 A 现场考察:熟悉现场情况、考察实施项目所在位置及影响项目实施环境因素;确定临时设施建立地点,电力、水源给取地,材料、设备临时存储地;了解地理和人文情况对施工影响因素。 B 建立临时设施:包括项目经理部办公场地、财务办公场地、材料、设备存放地、宿舍、食堂设施的建立,安全设施、防水、防火设施的设置,保安防护设施的设立。 建立临时设施的原则是:距离施工现场就近;运输材料、设备、机具便利;通信、信息传递方便;人身及物资安全。 C 建立分屯点:在施工前应对主要材料和设备进行分屯,建立分屯点的目的是便于施工、便于运输,还应建立必要的安全防护设施。 D 材料与设备进场检测:按照质量标准和设计要求(没有质量标准的按出厂检验标准),对所有进场的材料和设备进行检验。 材料与设备进场检验应有业主和监理在场,并由业主和监理确认。将测试记录备案。 E 安装、调试施工机具:做好施工机具和施工设备的安装、调试工作,避免施工时设备和机具发生故障,造成窝工,影响施工进度。 F 做好冬雨期施工准备工作:施工人员的防范措施;施工设备运输及搬运的防护措施;施工机具、仪表安全使用措施。 G 特殊地区施工准备:高原、高寒地区、沼泽地区等地区的特殊准备工作。 2.2.2维护技术准备 ·167·

创业者商业计划书模板标准版

创业者商业计划书模板标准版Entrepreneur business plan template standard 汇报人:JinTai College

创业者商业计划书模板标准版 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 创业商业计划书是一定要写的,但具体该如何写呢? 1.辨认和明确你的主意和目标 明确并能阐述清楚你的创业项目以及发展目标。伟大的 企业都是一步一步脚踏实地走出来的。 2.团队比任何主意和计划更重要 团队的重要性显而易见,这也是你获得投资融资的.关键。创业需要做好的前三件事儿是人、人、还是人! 3.大思考,小开始然后或者急剧扩张或者失败 大处着眼、小处着手,这是创业者必须延徇的路线,仰 望星空同时也要脚踏实地。每一件小事儿都可以成为你发展的里程碑,它通常可以涉及人们对你的购买意愿,至少是有人尝试了你的产品,所以不要忽视点点滴滴的成长。 4.注重己经十分明确的市场,分市场和市场间隙

专注你所在的创业领域,争取成为细分市场的领头羊。 这种战略几乎是每一个成功大企业所采取的。 5.了解你的商业模式 清楚的知道你的商业模式。没有人会关心没有商业价值 的项目。实际的赚钱能力将比在excel中的财务预估重要的多。明确你赚钱的途径,广告、交易还是订阅,这将促进你的发展。 人们在完成一份创业项目的商业计划书之后,总是会有 一种成就感。但是,到底什么才是真正的商业计划,却没有让创业者们清楚的认识到。没有领会商业计划书真正内涵的商业计划不会有很高的价值,你只是为了完成它而完成它(商业计划书)! -------- Designed By JinTai College ---------

商业计划书完整版

商业计划书完整版 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

云南联华咨询有限公司 北虫草子实体量产 暨 通路销售 商 业 计 划 书

目录 1. 产品背景 2. 产品基本概述 虫草概述 北冬虫夏草 人工培育北冬虫夏草的成分 3. 产品竞争优势 药效成分 工厂化生产 成本低廉、供货稳定 自有知识产权保护 4. 投资环境背景 西部大开发政策 中国云南概况 云南投资环境概述 5. 投资建厂计划 基本的股份组成筐架 董监事会的人员组合 经营团队 建厂规模及预算 销售通路 6. 营收预估 营业目标 营业收益 财务预估 7 结论

1. 背景 冬虫夏草俗称虫草,为中国名贵中药材,据《本草纲目》、《本草从新》、《本草纲目 拾遗》等记载,冬虫夏草具有“保肺益肾,秘精益气,止血化痰,能治诸虚百损,专补 命门”之功效。几千年来虫草一直被列为滋补药物之首,并有“东方传奇式珍宝”之美 誉,但由于虫草在自然界天然生长所需条件极高导致其产量极少,货源奇缺。因此其价格始终居高不下,也由此限制了其应用与推广的范围。 随着上一世纪末海内外华人经济条件的普遍好转,以及对生存质量的逐步升级,造成了全球对天然虫草“掠夺性”的开发,加之自然生态环境的日益破坏,从尔导致天然虫草资源的日益枯竭。 据权威部门统计,目前全球天然虫草的年产量已不足10吨,且还在逐年减少。而 每年的市场需求远远大于其产量,需求矛盾使得虫草价格节节攀高,流通领域的假冒伪 劣品充斥市场。 2. 产品基本概述 虫草概述: 目前世界上已发现同属“虫草属”的虫草已有三百五十种之多,其中在中国已发 现过六十余种,包含冬虫夏草(C. sinensis)、北冬虫夏草(C. militaris)、大团 虫草()、亚香棒虫草、古尼虫草、珊 瑚虫草(martialis)、镰刀状虫草、泰山虫草、山西虫 草、凉山虫草、新疆虫草、香棒 虫草、蝉花等等。

电力通信光缆工程施工规范

电力通信光缆工程施工规范

目录 1 总则 (1) 2 引用标准 (1) 3 定义 (2) 4 光缆的出厂检验 (2) 5 光缆材料的运输和仓储 (3) 6 光缆的到货检查和验收 (4) 7 线路复测 (6) 8 光缆配盘 (6) 9 光缆敷设 (6) 10 光缆接续 (19) 11 光缆成端 (21) 12 竣工验收 (21) 附录1 光缆开盘测试报告 (26) 附录2 直埋光缆底宽和顶宽及埋深要求 (28) 附录3 架空光缆的净距、挂勾程式和敷设工艺 (29) 附录4 光纤接头、光纤编号及光纤色谱表 (33) 附录5 光缆全程损耗测试记录 (35)

电力通信光缆工程施工规范 一总则 本规范规定了电力通信用光缆运输和仓储、到货开盘检验、安装和施工、竣工和验收要求,是电力光缆线路工程施工质量检验、随工检验和竣工验收的依据。适用于本系统新建、扩建和改建的电力光缆线路工程。 各种光缆线路工程所用器材的规格、质量等均应符合本规范和设计文件要求,工程中不准使用未经鉴定合格的器材。 施工单位制定的施工操作规程应贯彻本规范的要求。 本规范适用于电力光缆通信线路,包括光纤复合架空地线(OPGW)、全介质自承式光缆(ADSS)和普通光缆。 本规范未包含的内容按设计文件办理。 二引用标准 下列标准所包含的条文,通过在本规范中引用而构成本规范的条文。本规范实施时,所示版本均为有效。所有标准都会被修订,使用本规范的各方应探讨使用下列标准最新版本的可能性。 GB/T12357 通信用多模光纤系列 GB/T 9771-2000(所有部分)通信用单模光纤系列 GB/T15972-1998(所有部分)光纤总规范(eqv IEC 60793-1-1995) GB/T 7424.1-1998 光缆第1部分总规范(eqv IEC794-1-1-1996) GB/T 7424.4-2003 光缆-第4部分:分规范光纤复合架空地线 GB/T 12507.1-2000 光纤光缆连结器第1部分:总规范 DL/T 832-2003 光纤复合架空地线 DL/T 788-2001 全介质自承式光缆 DL/T 767-2003 全介质自承式光缆(ADSS)用预绞丝金具技术条件和试验方法 DL/T 766-2003 光纤复合架空地线(OPGW)用预绞丝金具技术条件和试验方法 YD 5102-2005 长途通信干线光缆传输系统线路工程设计规范 YD 5137-2005本地通信线路工程设计规范 YD 5138-2005本地通信线路工程验收规范 YD 5148-2007 架空光(电)缆通信杆路工程设计规范 YD/T 908-2000 光缆型号命名方法 YDJ 44-89 电信网光纤数字传输系统工程施工及验收暂行技术规定

商业计划书的10个章节(完整版,超级实用)

首先普及一下,近年来很多融资活动都会提到“BP”两个英文单词,以前我们叫商业计划书,现在叫BP,其实就是商业计划书英文“Business Plan”的首字母简写。同时在融资的时候,还会出现一个必不可少的PPT,也就是展示商业计划书核心内容的幻灯片。 那么,一个好的BP应该由哪些部分组成呢?今天就给大家分享完整、通用的商业计划书模版。 第一章公司介绍 第一章一般讲的是公司的基本情况,包括成立的时间、原因、研发技术、产品是什么,以及公司的愿景、核心文化是什么。 第二章技术与服务 一、技术描述及技术持有 主要描述你所做项目的要用到的核心技术,如果是服务业,那就大致讲一下你的服务流程,或。 二、服务介绍 此处讲你的产品到底是什么,能够解决什么问题或者提供怎样的服务,以及达到的效果。 三、服务的保障 这个部分一般人不会注意,但如果做好了这一点,投资人就会对你的项目更有信心,因为这个其实就已经涉及到风险管控的问题了。 第三章市场分析 一、市场发展趋势及总量 针对你的产品或服务,科学地分析对应市场发展现状以及发展趋势,并做出项目的市场价值评估预测。 二、目前公司产品市场状况 用数据说明你的产品已经在市场投放的情况以及效果。 三、行业政策 这个行业,是否属于国家鼓励类行业,此处可简要带过。 第四章管理团队 一、人员构成 你的团队,也就是你的创始团队,是由哪些具体的人组成的,包括他们是自然人还是公司、年龄结构、从业经验、擅长领域等信心。可以用头像+表格的形式进行体现,这样会更加直观。 二、组织结构 涉及到公司的内部运营,组织架构是必须要设立的,结构必须完整,也同时必须与自身项目紧密相连,不能把别的公司组织机构照搬过来。当然,由于项目创始团队一般在3人左右,所以不可能每一个部门都有专人负责,就会出现成员一人身兼多职,这个也是属于正常情况。 第五章竞争分析 一、竞争对手分析 在制作项目计划书之前,需要全方位了解目前在提供同类产品的企业到底有哪些,以及这些企业的生存现状,产品销售情况,产品在市场的接纳程度等。 二、竞品分析 分析自家产品与市场上同类产品的相同点和区别。包括:质量、价格、功能、便携程度、上手难度等。可用表格进行对比分析。 三、优势分析 在第二条已经对产品做了对比分析,此处可以再详细描述产品的核心优势,比如技术、某一个细节的提升等。 第六章运营模式 其实,说的简单点,这一章节,就是讲你的商业模式。(这也是现在很多投资人最感兴趣的)

商业计划书(完整版)

商业计划书 公司执行总结------------------------------------------------------2 第一章公司概况 1、1公司性质-------------------------------------------------------3 1、2公司任务-------------------------------------------------------3 1、3组织结构-------------------------------------------------------3 1、4机构设置及其职责------------------------------------------4 1、5人力资源管理------------------------------------------------5 第二章市场分析 2、1市场需求预测------------------------------------------------7 2、2市场价格预测------------------------------------------------9 第三章公司战略 3、1战略目标-------------------------------------------------------12 3、2战略定位-------------------------------------------------------12 3、3发展战略-------------------------------------------------------12 3、4战略途径-------------------------------------------------------12 第四章营销策略 4、1产品策略-------------------------------------------------------14 4、2广告策略-------------------------------------------------------14 4、3预测订单-------------------------------------------------------16 第五章生产管理 5、1生产工艺流程-------------------------------------------------19 5、2生产计划-------------------------------------------------------19 第六章财务分析 6、1各年财务报表-------------------------------------------------21

标准版商业策划书

标准版商业策划书 导读:本文标准版商业策划书,仅供参考,如果能帮助到您,欢迎点评和分享。 报告目录 第一部分摘要(整个计划的概括) (文字在2页~3页以内) 一、公司简单描述 二、公司的宗旨和目标(市场目标和财务目标) 三、公司目前股权结构 四、已投入的资金及用途 五、公司目前主要产品或服务介绍 六、市场概况和营销策略 七、主要业务部门及业绩简介 八、核心经营团队 九、公司优势说明 十、目前公司为实现目标的增资需求:原因、数量、方式、用途、偿还 十一、融资方案(资金筹措及投资方式) 十二、财务分析 1.财务历史数据(前3年~5年销售汇总、利润、成长) 2.财务预计(后3年~5年)

3.资产负债情况 第二部分综述 第一章公司介绍 一、公司的宗旨(公司使命的表述) 二、公司简介资料 三、各部门职能和经营目标 四、公司管理 1.董事会 2.经营团队 3.外部支持(外聘人士/会计师事务所/律师事务所/顾问公司/技术支持/行业协 会等) 第二章技术与产品 一、技术描述及技术持有 二、产品状况 1.主要产品目录(分类、名称、规格、型号、价格等) 2.产品特性 3.正在开发/待开发产品简介 4.研发计划及时间表 5.知识产权策略 6.无形资产(商标/知识产权/专利等) 三、产品生产

1.资源及原材料供应 2.现有生产条件和生产能力 3.扩建设施、要求及成本,扩建后生产能力 4.原有主要设备及添置设备 5.产品标准、质检和生产成本控制 6.包装与储运 第三章市场分析 一、市场规模、市场结构与划分 二、目标市场的设定 三、产品消费群体、消费方式、消费习惯及影响市场的主要因素分析 四、目前公司产品市场状况,产品所处市场发展阶段(空白/新开发/高成长/成 熟/饱和),产品排名及品牌状况 五、市场趋势预测和市场机会 六、行业政策 第四章竞争分析 一、无行业垄断 二、从市场细分看竞争者市场份额 三、主要竞争对手情况:公司实力、产品情况(种类、价位、特点、包装、营销、市 场占有率等)

KAB商业计划书 完整版

创业计划书 项目名称: 花好月圆网上鲜花礼品店 项目组负责人及成员: 储志锦(组长)计算机科学与软件学院软件工程0911班董礼凯(成员)工商学院会计 081班 王萍(成员)计算机科学与软件学院百度 094班 吴少锋(成员)工商学院人力 1002班张之涛(成员)工商学院会计 085班

日期:

目录 一、企业概况……………………………………………… 二、商业构想和市场分析………………………………… 三、主营产品……………………………………………… 四、定价计划……………………………………………… 五、选址计划……………………………………………… 六、促销计划……………………………………………… 七、法律形式……………………………………………… 八、启动资金……………………………………………… 九、启动资金来源………………………………………… 十、组织结构与员工………………………………………十一、企业运营与成本预测………………………………十二、现金流计划…………………………………………十三、盈利情况预测………………………………………十四.资产负债表…………………………………………

一、企业概况 企业名称:花好月圆网上鲜花礼品店 法律模式:有限责任公司 联系地址:天津市和平区河北路与赤峰道交叉路口 电话:022 - E_mail 经营范围: []制造业[√]服务业[]批发商[]零售商 商业计划简述 产品或服务: ①网上鲜花订购及外送 ②礼品订购 ③礼品创意设计DIY ④婚庆等庆祝活动用花、商场用花 市场对象描述: 本店产品是鲜花和礼品,它们都可以作为一件礼物经过精美包装后送给亲朋好友。这些礼品的受众面很广,不受年龄、性别、阶层的影响。可以送老人、送父母、送朋友、也可以送小孩。因此可以说每一个人都有可能成为我们的顾客。而在各个年龄段中,最主要的目标市场还是喜欢浪漫的年轻人尤其是大学生。

第二课通信电缆的结构、类型以及参数

第二课通信电缆的结构、类型以及参数 2.1 通信电缆分类以及用途 从事通信电缆工程设计、施工和维护,首先对通信电缆产品要有清晰、准确的认识。 2.1.1全塑电缆的分类 1.按电缆结构类型分——非填充型和填充型。 2.按导线材料分——铜导线和铝导线; 3.按芯线绝缘结构分——实心绝缘、泡沫绝缘、泡沫/实心皮绝缘; 4.按线对绞合方式分——对绞式和星绞式; 5.按芯线绝缘颜色分——全色谱和普通色谱; 6.按缆芯结构分——同心式(层绞式)、单位式、束绞式、SZ绞; 7.按屏蔽方式分——单层涂塑铝带屏蔽、多层铝及钢金属带复合屏蔽,而屏蔽带又分绕包和纵包; 8.按护套分——单层塑料护套、双层塑料护套、综合护套、粘接护套、密封金属/塑料护套和特种护套;

9.按外护层分——单层、双层钢带铠装和钢丝铠装塑料护层; 10.按用途分——传输模拟信号和传输数字信号; 11.按敷设方式分——架空、管道、直埋、水底电缆等。 2.1.2全塑电缆的型号 电缆型号是识别电缆规格程式和用途的代号。按照用途、芯线结构、导线材料、绝缘材料、护层材料、外护层材料等,分别用不同的汉语拼音字母和数字来表示,称为电缆型号。按照原邮电部行业标准(YD2001—92),全塑电缆型号的表示方法和意义为: 1.类别 2.绝缘 3.屏蔽护套 4.特征(派生) 5.外护层 [示例] HYA—100×2×0.5 HYA—100×2×0.5表示铜芯、实心聚烯烃绝缘、涂塑铝带粘接屏蔽、容量100对、对绞式、线径为0.5mm的市内通信全塑电缆。 2.2 全色谱全塑双绞通信电缆的结构与类型 2.2.1 电缆结构 全塑市内通信电缆的缆芯主要由芯线、芯线绝缘、缆芯绝缘、缆芯扎带及包带层等组成。 1.芯线 芯线由金属导线和绝缘层组成。导线是用来传输电信号的,要求具有良好的导电性能、足够的柔软性和机械强度,同时还要求便于加工、敷设和使用。导线的线质为电解软铜,铜线的线径主要有0.32、0.4、0.5、0.6、0.8mm等五种。2.绝缘材料与绝缘结构 全塑市内通信电缆的芯线绝缘主要采用高密度的聚乙烯、聚丙烯或乙烯一丙烯共聚物等高分子聚合物,称为聚烯烃塑料。 3.芯线扭绞:有对绞和星绞两种,芯线扭绞常用对绞方式。如下图所示。 4.缆芯色谱 电缆的缆芯色谱可分为普通色谱和全色谱两大类。 (1)普通色谱通信电缆 普通色谱对绞同心式通信电缆已经很少采用。 (2)全色谱通信电缆 全色谱的含义是指电缆中的任何一对芯线,都可以通过各级单位的扎带颜色以及线对的颜色来识别,换句话说给出线号就可以找出线对,拿出线对就可以说出线号。 (1)全色谱对绞同心式缆芯(很少用) (2)全色谱对绞单位式缆芯 ①全色谱对绞单位式缆芯色谱在全塑市话电缆中使用最多。它是由白(代号W)、红(R)、黑(B)、黄(Y)、紫(V)作为领示色(代表a线),蓝(Bl)、桔(O)、绿(G)、棕(Br)、灰(S)作为循环色(代表b线)十种颜色组成25对全色谱线对,称25对基本U单位。 25对基本单位线对色谱如下图所示。

信号电缆技术规格书

综合护套铁路信号电缆 一、技术要求 总体原则:产品需经省部级鉴定或技术审查,符合TB/T2473·3-93和TB/T2476·3-93的有关规定。 (一)电缆应用范围 适用于额定电压交流500V或直流1000V以下传输铁路信号、音频信号或自动信号装置的控制电路。 (二)电缆名称 聚乙烯绝缘综合护套钢带铠装聚乙烯外护套铁路信号电缆。 (三)电缆型号 PTYA23 (四)技术规范 1.电缆的规格及参考外径表: 2.工作条件 2.1电缆的使用环境温度为-40℃~+60℃; 2.2电缆导体长期工作温度不超过70℃; 2.3电缆具有良好的屏蔽性能,适用于需要设置屏蔽电缆的电

气化区段; 2.4电缆允许弯曲半径应不小于电缆外径的15倍。 (五)技术要求与试验方法 1.导体: 采用软圆铜线 2.绝缘 2.1绝缘应采用聚乙烯塑料,并制成红、绿、白、兰四种颜色; 2.2绝缘标称厚度为0.6mm,允许偏差为0.1mm。 3.线组 3.1对线组由两根不同颜色的绝缘单线绞合而成; 3.2星形四线组由四根不同颜色的绝缘线芯绞合而成,不同绞合节距的星形四线组应疏绕不同颜色的非吸湿性丝或带; 3.3对线组和星形四线组均为左向绞合,其绞合节距应不大于300mm; 4.缆芯 4.1除四芯电缆外,其它规格缆芯外层绞合方向均为右向,相邻层绞合方向相反; 4.2缆芯外绕包一层合适的包带,绕包重叠率为带宽的10~20%; 5.综合护套 5.1复合带的纵包与挤包聚乙烯层一次完成,统称为综合护套; 5.2复合带纵包重叠部分应不小于6mm,9芯以下电缆的纵包重叠部分宽度应不小于带宽的20%,接缝处圆整。

商业计划书委托撰写合同(标准版)

编号:_________________ 商业计划书委托撰写合同 甲方:________________________________________________ 乙方:________________________________________________ 签订日期:_________年______月______日

商业计划书委托撰写合同合同编号:_________ 委托人:___________ 受托人:___________ 签订方式:_________ 经双方友好协商,达成如下委托合作协议: 第一条委托标的:委托人委托受托人撰写_________项目(以下简称拟上项目)的商业计划书。该商业计划书主要用作_________融资。 第二条委托人需提供或明确如下具体资料或事项: 1.项目承担单位概况,拥有哪些特定资源,如政府关系、市场渠道、特定客户等; 2.项目承担单位资产负债情况、前三年经营业绩; 3.项目承担单位现有主要产品的经营情况;

4.项目承担单位在拟上项目上有何独特资源,项目本身专利等技术壁垒详细说明; 5.项目的工艺流程; 6.拟上项目的经济技术指标,包括目标产量/价格/收入/成本(分类细化)/利润/投资概算等,估算10年,受托方会根据项目测算情况及行业调研事实调整相关数据; 7.拟上项目的行业市场分析; 8.拟上项目的各种政府批文及其它证明文件; 9.对该新项目拟采取哪种融资方式,若是股权融资,项目承担单位以什么入资,希望新的投资者投入什么,投入多少,可占多少股权; 10.资金使用计划; 11.公司管理团队介绍,主要管理人员简历(总经理,营销副总,总工等); 12.及时提供其它受托方认为非常重要的相关资料。委托方应于本协

商业计划书书完整版

商业计划书书完整版集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

云南联华咨询有限公司北虫草子实体量产 暨 通路销售 商 业 计 划 书 目录

1. 产品背景 2. 产品基本概述 虫草概述 北冬虫夏草 人工培育北冬虫夏草的成分 3. 产品竞争优势 药效成分 工厂化生产 成本低廉、供货稳定 自有知识产权保护 4. 投资环境背景 西部大开发政策 中国云南概况 云南投资环境概述 5. 投资建厂计划 基本的股份组成筐架 董监事会的人员组合 经营团队 建厂规模及预算 销售通路 6. 营收预估 营业目标 营业收益 财务预估 7 结论 1. 背景 冬虫夏草俗称虫草,为中国名贵中药材,据《本草纲目》、《本草从新》、《本草纲目 拾遗》等记载,冬虫夏草具有“保肺益肾,秘精益气,止血化痰,能治诸虚百损,专补 命门”之功效。几千年来虫草一直被列为滋补药物之首,并有“东方传奇式珍宝”之美 誉,但由于虫草在自然界天然生长所需条件极高导致其产量极少,货源奇缺。因此其价格始终居高不下,也由此限制了其应用与推广的范围。 随着上一世纪末海内外华人经济条件的普遍好转,以及对生存质量的逐步升级,造成了全球对天然虫草“掠夺性”的开发,加之自然生态环境的日益破坏,从尔导致天然虫草资源的日益枯竭。 据权威部门统计,目前全球天然虫草的年产量已不足10吨,且还在逐年减少。而 每年的市场需求远远大于其产量,需求矛盾使得虫草价格节节攀高,流通领域的假冒伪 劣品充斥市场。

2. 产品基本概述 虫草概述: 目前世界上已发现同属“虫草属”的虫草已有三百五十种之多,其中在中国已发 现过六十余种,包含冬虫夏草(C. sinensis)、北冬虫夏草(C. militaris)、大团 虫草()、亚香棒虫草、古尼虫草、珊 瑚虫草(martialis)、镰刀状虫草、泰山虫草、山西虫 草、凉山虫草、新疆虫草、香棒 虫草、蝉花等等。 虽然已发现的品种繁多,但其中具有药用价值的品种却并不多,比较具有代表性 的两个品种是北冬虫夏草(C. militaris)与冬虫夏草(Cordyceps sinensis (Berks.) Sacc.)。 北冬虫夏草 蛹虫草(Cordyceps. Militaris()Link) 又称北冬虫夏草,简称北虫草, 为子囊菌亚门(Ascomycotina)麦角菌科(Clavicipitaceae)虫草属(Cordyceps),蛹 虫草种真菌,是虫草属的模式种,在中国、美国、加拿大、意大利、日本、德国、前 苏联均有分布,但在自然界的产量远比冬虫夏草(C. sinensis)稀少,由于产量太 低,在过去是难以开发利用的。 人工培育 经过多年的努力,对北虫草子实体的人工培育和工厂化生产技术已经成熟,并且 透过稳定而良好的技术大大的提高了药用成分的含量,为这种珍贵的天然中药的低价

标准完整版商业计划书

完整版商业计划书

保密承诺 本商业计划书内容涉及商业秘密,仅供内部成员和有资助意向的单位或个人审阅,请收到本商业计划书的人做出以下承诺: 妥善保管本商业计划书,未经策划本团体同意,不得向第三人公开本商业计划书涉及的商业秘密。 承诺人签字: 年月日

目录 概要 (1) 第一部分企业基本情况 (2) 第二部分企业管理层 (4) 第三部分市场分析 (7) 第四部分产品或服务 (10) 第五部分营销策划 (12) 第六部分财务计划 (14) 第七部分融资及退出 (17) 第八部分风险及控制 (18) 第九部分项目实施进度 (19) 第十部分附件 (20)

概要 _________________ ___________________________ ___ ______________________ ____________ ____________________ _______________________ ________________ _______________ _________________________________ ___ __________________ ________________________ ___ __________________________ _________________________ _ ____________________________ _______________________ __ _____________________________ _____________________ _____ ____________________________ _________________ _________ ____________ ____________ _____________ _____________ ____________________________ _____________________ ______ ___________________________ ________________________ ___ ___________________________ __________________________ _ ___________________________ ________________________ ___ ___________________________ ______________________ _____ ___________________________ ___________________ _________ __________________________ ____________________ ________ __________________________ _____________________ _______ _________________________ ______________________ _______ _________________________ ____________________ _ ________ _________ ______

通信系统技术规格书.

第1章通信系统 10.1 概述 1)对于本技术规格书要求,承包人应逐项做出实质性响应,对于功能要求条款,应给出简要的实现方式或解决方案,对于技术规格条款,应给出实际具体指标。如有与标书指标不同之处要做出详细说明。 2)无论本技术要求书有无明确规定,承包人都有责任使本工程的系统功能与管理能力最大限度满足发包人对通信系统使用功能的需要,符合现行ITU标准。 3)承包人所推荐的各系统设备的性能及特性应符合信息产业部及国家无线电委员会的现行及最新标准及GMDSS及ITU-R标准。 4)承包人应分别列出各系统设备的主要项目清单,包括主设备、辅助设备、安装材料等。 5)承包人提供的各系统设备应该是一个完整的系统,即除了必要的主设备外,必须的辅助设备,包括各种相关的接口、各种软件、直流电源设备、配线设备、内部连接线缆及插接头单元、安装工具也应提供。 6)承包人所提供的主设备的处理能力计算应满足最终容量需求,将来扩容时可以不增加处理器的硬件。 7)承包人的责任:承包人应负责系统设备的供货、安装指导、测试、开通、并负责机房及接地等辅助设施的施工,对发包人技术人员的培训。 8)承包人的技术建议书应包括下列内容(各单项设备分别单列) (1)对技术规格书内容的逐项答复。 (2)各单项系统设备的详细介绍。 (3)设备计算及设备数量表。 (4)硬件描述,包括:功能、指标、系统原理,系统结构、电路连接图、错误的判断和恢复等。 (5)软件描述,包括:功能、开发工具、运行方法等。 (6)接口描述,包括:接口类型、电气特性、信令、数据格式等。 (7)完整的系统装配图,包括设备尺寸、设备重量、相关接口、安装位置及空间、线缆走向等。 (8)机房设备布置图及联网方式图。 (9)辅助设备的介绍。 (10)其它技术资料。 (11)系统设备介绍和其它技术资料中至少应包括。 a.系统主体结构。 b.系统设备性能。 c.信号及信令方式。 d.软件系统。 e.操作与维护。

商业计划书完整版

Store咖啡厅项目商业计划书 团队名称:五人行团队

目录 1项目概述 (3) 1.1项目实施背景 (3) 1.2产品服务简介 (3) 2市场分析及定位 (4) 2.1市场背景 (4) 2.2同类产品比较 (5) 3产品介绍 (7) 4商业模式 (9) 4.1 商业模式概述 (9) 4.2盈利方案 (9) 4.3未来发展规划 (10) 5.营销策略 (10) 5.1 主要销售手段 (10) 5.2营销策略 (11) 6财务分析 (11) 6.1公司财务基本情况与会计政策 (11) 6.2销售预计 (12) 6.3成本费用核算 (12) 6.4利润及利润分配 (13) 7团队介绍 (14) 7.1团队简介 (14) 7.2团队核心成员介绍 (14) 7.3组织架构 (14)

1.项目概述 1.1项目实施背景 在大压力的都市生活下,人们总是在为着这样或那样的原因而奔波,总是无止尽的忙碌着。似乎在城市中,无尽的喧嚣与繁华让人不由自主的陷入其中,不能找到出路,让人不停的奔跑一般。而总会有人感觉到疲惫,总会有人稍微停一下。但这热闹的城市总是让人无法安心的休息,无法真正的放松心灵。 因此,store咖啡厅在这个背景下应运而生。当每天马不停蹄在大都市工作生活的人们,想稍微歇息一会儿,坐下来静静的看一本书,细细的品一杯咖啡。找回曾经在有着温暖阳光的下午,拿着一本自己心仪已久的书,一页一页的细细品读,闻着沁人的书籍芳香。体会书中每一个角色的喜怒哀乐,品味每个故事背后的哲学,让自己在午后阳光中慢慢沉睡。或者,重新感受当初第一次品尝咖啡时,心中的那一份激动与喜悦,温暖肺腑的那一股热流,找回生活中失去已久的那些感动。 远离都市的热闹,找回曾经的那份安静祥和。让自己快节奏的生活稍微慢下那么一点点,让自己不再那么的疲惫。让自己身心都歇息,再更好的回到工作生活中。那么,strore咖啡厅,就是你最好的选择。 1.2产品服务简介 Store咖啡厅提供一个安静的休息场所,独特的饮品制作,以及心旅历程的分享,志同道合朋友的结交等等。 安静优雅的环境,让人置身于书香气之中,大量高质量的书籍,每一页都用精美的纸张,每一个黑字都散发着清香的墨水香气。通过阅读我们书店的书,完全能够体会到每一本书中每一个故事都仿佛如亲身经历一般,每一个角色都仿佛如在身旁一般,每一句话都仿佛在耳畔对你述说一般。 在木香四溢的咖啡厅中,配上淡淡又浓郁的咖啡香,不同的口味,不同的配方,却都不断的冲击着你的肺腑,让你不由自主的想要点上一杯美味的咖啡。并且每一口都是那么的有诱惑,都是那么的让你感动,让你体会到安静祥和,远离都市的喧嚣。 Store咖啡厅还提供完善的隔音服务,彻底隔绝都市的热闹,真正的静静体

相关文档
相关文档 最新文档