文档库 最新最全的文档下载
当前位置:文档库 › 原子结构与元素周期律 习题及全解答

原子结构与元素周期律 习题及全解答

原子结构与元素周期律 习题及全解答
原子结构与元素周期律 习题及全解答

第9章原子结构与元素周期律

1.根据玻尔理论,计算氢原子第五个玻尔轨道半径(nm)及电子在此轨道上的能量。

解:(1)根据rn=a0n2

r5=53pm×25= 53×10-3nm×25= nm

(2) 根据En=-B/2n

E5= -52=-25=-

答: 第五个玻尔轨道半径为 nm,此轨道上的能量为-。

2.计算氢原子电子由n=4能级跃迁到n=3能级时发射光的频率和波长。

解:(1)根据 E(辐射)=ΔE=E4-E3 =×10-18 J((1/3)2-(1/4)2)= ×10-18 J(1/9-1/16)=×10-18 J×=

根据E(辐射)=hν

ν= E(辐射)/h= ×10-19J /6.626X10–34 = s-1

(2)法1:根据E(辐射)=hν= hC/λ

λ= hC/ E(辐射)= 6.626X10 –34×3×108×10-19J=×10-6m。

法2:根据ν= C/λ,λ= C/ν=3×108 s-1=×10-6m。

答:频率为 s-1,波长为×10-6m。

3.将锂在火焰上燃烧放出红光,波长 =,这是Li原子由电子组态1s22p1→1s22s1跃迁时产生的。试计算该红光的频率、波数以及以KJ·mol-1为单位符号的能量。解:(1)频率ν= C/λ=3×108×10-9 m/nm=×1014 s-1;

(2)波数ν=1/λ=1/×10-9 m/nm=×106 m-1

(3) 能量E(辐射)=hν=6.626X10 –34××1014 s-1=×10-19 J

×10-19 J××1023mol-1×10-3KJ/J= KJ mol-1

答: 频率为×1014 s-1,波数为×106 m-1,能量为 KJ mol-1。

4.计算下列粒子的德布罗意波的波长:(已知电子的速度为v=×106m.s-1)(1)质量为10-10kg,运动速度为·s-1的尘埃;

(2)动能为的自由电子;

(3)动能为300eV的自由电子。

解:λ= h/ m v=6.626X10–34 10-10kg×·s-1=×10-22 m

(单位运算:λ= h/ m v = =

=(). = m)

(2)动能单位换算:

已知 = ×10-18 J, 1eV = ×10-18 / J=×10-19J

= ××10-19J/ev = ×10-20J

动能(E K)与动量(P)换算: E K=(1/2)mv2=(1/2) mvv=(1/2)Pv

P=2 E K/v

已知电子的速度为v=×-1

P=2 E K/v=2××10-20J/×106m.s-1=×-26 kg单位运算;J/ ms-1 = = m s-1= h/P=×10–34×10-26 m

或者:E k=(1/2)mv2=(1/2)(P2/m)===××10-19J

26

=?

p-

3.210

λ=h/P==×10–34/×10-26=×10-8 m

(3) 动能单位换算: 100ev = 100ev××10-19J/ ev = ×10-17J

动能(E K)与动量(P)换算: P=2 E K/v

已知电子的速度为v=×-1

P=2 E K/v=2××10-17J /×106m.s-1=×-23 kg单位运算:J/ ms-1 = = m s-1= h/P=6.626X10 –34×10-23m

(说明:电子的速度取值不同,计算结果有较大的差别)

5.如果一束电子的德布罗意波长为1nm,其速度为多少?

解:已知德布罗依波波长λ= h/ m v ,

1nm=1×10-9m,

电子质量m= ×10 -31kg

电子速度v = h/ mλ= 6.626X10 –34×10 -31kg×1×10-9m= ×-1

(单位运算v = h/ mλ= = ().= -1)

答: 电子速度为×-1

6.子弹(质量 0.01kg,速度1000m·s-1)、尘埃(质量为10 -9kg,速度为10m·s-1),原子中的电子(质量为×10 -31kg,速度为×106m.s-1)等,若速度的不确定均为速度的10%,判断在确定这些质点的位置时,测不准关系是否有实际意义。

解:根据:△X△PX≥ h/4π

△X≥ h/4π△PX= h/4π△(mV)= h/4πm△V

(1)对子弹:质量m= ,速度V= 1000m·s-1,△V=×1000m·s-1=100 m·s-1

△X≥h/4πm△V=6.626X10 –34 4×××100 m·s-1= ×10-35 m

讨论:子弹的射程可以达到1×103 m,而其位置的不确定量为×10-35 m, 测不准关系对子弹的运动没有实际意义。

(2)对尘埃:质量m= 10 -9kg,速度V= 10m·s-1,△V=×10m·s-1=1 m·s-1

△X≥h/4πm△V=6.626X10–34 4××1×10 -9kg×1 m·s-1 = ×10-26 m

讨论: 尘埃的运动范围约为1m,而其位置的不确定量为×10-26 m,所以测不准关系对尘埃的运动没有实际意义。

(3)对电子:质量m= ×10 -31kg,速度V=×-1,

△V=××106m·s-1=×105m·s-1

△X≥h/4πm△V=6.626X10 –4×××10 -31kg××105m·s-1= ×10-10 m

讨论:原子核外电子的运动范围(原子半径)为1×10-10 m,可是电子运动位置的不确定量为×10-10 m大于原子的半径,所以测不准关系对电子的运动有实际意义。

7.下列各组量子数,不正确的是(B)

(A)n=2,l=1,m=0,m s=-1/2(B)n=3,l=0,m=1,m s=1/2

(C)n=2,l=1,m=-1,m s=1/2 (D)n=3,l=2,m=-2,m s=-1/2

8.角量子数l=2的某一电子,其磁量子数m (C)

(A)只有一个数值(B)可以是三个数值中的任一个

(C)可以是五个数值中的任一个(D)可以有无限多少数值

9.决定原子等价轨道数目的量子数是(m),决定多电子原子的原子轨道能量的量子数是(n、l)。

10.决定多电子原子中等价轨道数目的是哪个量子数(m),原子轨道能量是由什么量子数决定的?(n、l)

11.指出下列各组量子数中,哪几组不可能存在

(1),3,2,2,1/2;

(2)3,0,-1,1/2;

(3)2,2,2,2;

(4)1,0,0,0

答:(2)、(3)、(4)组不可能存在,原因是:

(2)l=0时,m-1;(3)n=2时,l≠2,m s≠2;(4)m s≠0。

12.分别用4个量子数表示P原子的5个电子的运动状态:3s23p3

13.下列说法中符合泡里原理的是(A )

(A)在同一原子中,不可能有四个量子数完全相同的电子

(B)在原子中,具有一组相同量子数的电子不能多于两个

(C)原子处于稳定的基态时,其电子尽先占据最低的能级

(D)在同一电子亚层上各个轨道上的电子分布应尽先占据不同的轨道,且自旋平行。

14.在下列氧原子的电子排布中,处于激发态的是(C )

15.下列基态离子中,具有3d7电子构型的是(C)

(A)Mn2+(B)Fe2+(C)Co2+(D)Ni2+

16.基态原子的第六电子层只有2个电子,第五电子层上电子数目为(C)

(A)8 (B)18 (C)8-18 (D)8-32

17.和Ar具有相同电子构型的原子或离子是(D)

(A)Ne (B)Na+(C)F (D)S2-

18.基态时,4d和5s均为半充满的原子是(C)

(A)Cr (B)Mn(C)Mo(D)Tc

19.在下列离子的基态电子构型中,未成对电子数为5的离子是(B)

(A)Cr3+(B)Fe3+(C)Ni2+(D)Mn3+

20.基态原子有6个电子处于n=3, l=2的能级,其未成对的电数为(A)

(A)4(B)5(C)3 (D)

21.位于第四周期的A、B、C、D四种元素,其价电子数依次为1,2,2,7,其原子序数按A、B、C、D的顺序增大。已知A和B的次外层电子数为8,C和D的次外层电子数为18,由此可以推断四种元素的符号是(K、Ca、Zn、Br)。其中C和D所形成的化合物的化学式应为(ZnBr2)。

22.已知某元素的四个价电子的四个量子数分别为(4,0,0,+1/2),(4,0,0,-1/2),(3,2,0, +1/2),(3,2,1,+1/2),则该元素原子的价电子排布为(3d24S2),此元素是(Ti)。

23.下列元素的符号是

(1)属零族,但没有p电子(He);

(2)在4p能级上有1个电子(Ga);

(3)开始填充4d能级(Y);

(4)价电子构型为3d104s1(Cu)

24.第五周期有(18)种元素,因为第(5)能级组最多可容纳(18)个电子,该能级组的电子填充顺序是(5S24d105P6)。

25.如(1)所示,填充下列各题的空白

(1)Na(Z=11),1s22s22p63s1;

(2)(P)(Z=15)1s22s22p63s23p3;

(3)Zr(Z=40),[Kr]4d(2)5s2;

(4)Te(Z=52),[Kr]4d(10)5s25p4; ;

(5)Bi(Z=83),[Xe]4f(14)5d(10)6s(2)6p(3)。

26.用s,p,d,f等符号表示下列元素的原子电子层结构,判断它们所在的周期和族:

(1)13Al;(2)24Cr;(3)26Fe;(4)33As;(5)47Ag ;(6)82Pb

答:(1)13Al: 1s22s22p63s23p1,第三周期IIIA族;

(2)24Cr: 1s22s22p63s23p63d54s1,第四周期VIB族;

(3)26Fe: 1s22s22p63s23p63d64s2,第四周期VIII族;

(4)33As: 1s22s22p63s23p63d104s24p3,第四周期VA族;

(5)47Ag: 1s22s22p63s23p63d104s24p64d105s1,第五周期IB族;

(6)82Pb: 1s22s22p63s23p63d104s24p64d105s25p64f145d106s26p2,第六周期IVA族。

27.已知元素在周期表中的位置,写出它们的外围电子构型和元素符号:

(1)第四周期第ⅣB族;

答:Ti,3d24s2

(2)第四周期第ⅦB族;

答:Mn,3d54s2

(3)第五周期第ⅦA族;

答:I,5s25p5

(4)第六周期第ⅢA族;

答: Tl,6s26p1

28.以下各“亚层”哪些可能存在,包含多少轨道?

(1)2s(2) 3f(3)4p(4)2d(5)5d

答:(1)1个2s轨道(2)不存在3f轨道(3)3个4p轨道(4)不存在2d轨道

(5)5个5d轨道。

29.画出下列原子的价电子的轨道图:V,Si,Fe,这些原子各有几个未成对电子?

答:未成对电子数: V 3,Si 4,Fe 2。

30.外围电子构型满足下列条件之一是哪一类或哪一个元素?

(1)具有2个p电子:

答:ns2np2,IVA族元素

(2)有2个n=4,l=0的电子,6个n=3和l=2的电子:

答:3d64s2,Fe元素;

(3)3d全充满,4s只有1个电子的元素:

答:3d104s1,Cu元素。

31.某元素A能直接与VⅡA族中某元素B反应时生成A的最高氧化值的化合物ABX,在此化合物中B的含量为%,而在相应的氧化物中,氧的质量占%。ABX为无色透明液体,沸点为 57.6℃,对空气的相对密度约为。试回答:

(1)元素A、B的名称;

答:A为Si元素,B为Cl元素;

(2)元素A属第几周期、第几族;

答:元素A属第三周期、第IVA族;

(3)最高价氧化物的化学式。

答:SiO2

32.(1)某元素+2价离子和Ar的电子构型相同;(Ca)

(2)某元素的+3价离子和F-的电子构型相同;(Al)

(3)某元素的+2价离子的3d电子数为7个;(Co)

33.已知某元素的最外层有4个价电子,它们的4个量子数(n、l、m、m s)分别是:(4,0,0,+1/2),(4,0,0,-1/2),(3,2,0,+1/2),(3,2,1,+1/2),则元素原子的价电子组态是什么?是什么元素?

答:[Ar]3d24s2,Ti

34.说明下列等电子离子的半径值在数值上为什么有差别:

(1)F-(133pm)与O2-(136pm)

(2).Na+(98pm)、Mg2+(74pm)与Al3+(57pm)

答:(1)O 与F同属二周期的元素,n相同,核电荷Z依次增大,有效核电荷Z*也依次增大,故r(O)大于r(F);又中性原子得电子变成负离子,半径增大,且负电核越高半径越大,故进一步使r(O)大于r(F)。

(2)Na、Mg 与Al 同属二周期的元素,n相同,核电荷Z依次增大,有效核电荷Z*也依次增

大,故r(Na)大于r(Mg)大于r(Al),又中性原子失电子变成正离子,半径减小,且正电核越高半径越,故进一步使r(Na)大于r(Mg)大于r(Al)。

35.第一电离能最大的原子的电子构型是(C)

(A)3s23p1(B)3s23p2 C)3s23p3(D)3s23p4

36.解释下列现象

(1)Na的I1小于Mg的,但Na的I2却大大超过Mg的;

答:比较价层电子结构,Na:1s22s22p63s1 Mg:1s22s22p63s2,Na原子失去第一个电子可以形成稳定结构I1小,而在此基础上失去第2个电子将破坏稳定结构I2大,而Mg原子恰好相反,故Na的I1小于Mg的I1,I2远远大于Mg的I2。

(2)Be原子的I1-I4各级电离能分别为:

899KJ·mol-1、1757 KJ·mol-1、×104KJ·mol-1、×104KJ·mol-1、

解释各级电离能逐渐增大并有突跃的原因。

答:价Be原子的层电子结构为:1s22s2,失去电子之后形成带正电荷的阳离子,对带负电

荷的电子吸引力增强,故有I1<I2<I3<I4的基本规律。但是I2<<I3,出现突跃,这是因

为I1、I2属于同一个电子层,I2、I3属于不同的电子层,内层电子受到核的引力更大。

37.给出价电子结构为(A)3s23p1(B)3s23p2(C)3s23p3和(D)3s23p4原子的第一电离能的大小顺序,并说明原因。

答:C>D>B>A,原因是(C)电离的结果将破坏“半充满”的稳定结构,比较困难;(A)电离的结果将达到全充满的稳定结构,比较容易。

原子结构与元素周期律习题及全解答

第9章原子结构与元素周期律 1.根据玻尔理论,计算氢原子第五个玻尔轨道半径(nm)及电子在此轨道上的能量。 解:(1)根据rn=a0n2 r5=53pm×25= 53×10-3nm×25= nm (2) 根据En=-B/2n E5= -52=-25=- 答: 第五个玻尔轨道半径为 nm,此轨道上的能量为-。 2.计算氢原子电子由n=4能级跃迁到n=3能级时发射光的频率和波长。 解:(1)根据 E(辐射)=ΔE=E4-E3 =×10-18 J((1/3)2-(1/4)2)= ×10-18 J(1/9-1/16)=×10-18 J×= 根据E(辐射)=hν ν= E(辐射)/h= ×10-19J /6.626X10–34 = s-1 (2)法1:根据E(辐射)=hν= hC/λ λ= hC/ E(辐射)= 6.626X10 –34×3×108×10-19J=×10-6m。 法2:根据ν= C/λ,λ= C/ν=3×108 s-1=×10-6m。 答:频率为 s-1,波长为×10-6m。 3.将锂在火焰上燃烧放出红光,波长 =,这是Li原子由电子组态1s22p1→1s22s1跃迁时产生的。试计算该红光的频率、波数以及以KJ·mol-1为单位符号的能量。解:(1)频率ν= C/λ=3×108×10-9 m/nm=×1014 s-1; (2)波数ν=1/λ=1/×10-9 m/nm=×106 m-1 (3) 能量E(辐射)=hν=6.626X10 –34××1014 s-1=×10-19 J ×10-19 J××1023mol-1×10-3KJ/J= KJ mol-1 答: 频率为×1014 s-1,波数为×106 m-1,能量为 KJ mol-1。 4.计算下列粒子的德布罗意波的波长:(已知电子的速度为v=×106m.s-1)(1)质量为10-10kg,运动速度为·s-1的尘埃; (2)动能为的自由电子; (3)动能为300eV的自由电子。 解:λ= h/ m v=6.626X10–34 10-10kg×·s-1=×10-22 m (单位运算:λ= h/ m v = =

第一章 原子结构与元素周期律知识点复习

第一章物质结构元素周期律 一、原子结构 1、原子组成微粒 2、基本关系 数量关系:质子数=核电荷数=核外电子数(原子) 质量关系:质量数=质子数+中子数 2.原子核外电子的排布规律:①电子总是尽先排布在能量最低的电子层里;②各电子层最多容纳的电子数是2n2;③最外层电子数不超过8个(K层为最外层不超过2个),次外层不超过18个,倒数第三层电子数不超过32个。 电子层:一(能量最低)二三四五六七对应表示符号: K L M N O P Q ★熟背前20号元素,熟悉1~20号元素原子核外电子的排布: H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca 3.元素、核素、同位素 元素:具有相同核电荷数的同一类原子的总称。 核素:具有一定数目的质子和一定数目的中子的一种原子。 同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素。(对于原子来说) 4、微粒半径大小的比较 一看层二看核三看价 二、元素周期表

1.编排原则: ①按原子序数递增的顺序从左到右排列 ②将电子层数相同......的各元素从左到右排成一横行..。(周期序数=原子的电子层数) ③把最外层电子数相同........的元素按电子层数递增的顺序从上到下排成一纵行..。 主族序数=原子最外层电子数 2.结构特点: 核外电子层数 元素种类 第一周期 1 2种元素 短周期 第二周期 2 8种元素 周期 第三周期 3 8种元素 元 (7个横行) 第四周期 4 18种元素 素 (7个周期) 第五周期 5 18种元素 周 长周期 第六周期 6 32种元素 期 第七周期 7 未填满(已有26种元素) 表 主族:ⅠA ~ⅦA 共7个主族 族 副族:ⅢB ~ⅦB 、ⅠB ~ⅡB ,共7个副族 (18个纵行) 第Ⅷ族:三个纵行,位于ⅦB 和ⅠB 之间 (16个族) 零族:稀有气体 三、元素周期律 1.元素周期律:元素的性质(核外电子排布、原子半径、主要化合价、金属性、非金属性)随着核电荷数的递增而呈周期性变化的规律。元素性质的周期性变化实质是元素原子核外电子排布的..............周期性变化..... 的必然结果。 2.同周期元素性质递变规律

原子结构与元素周期律知识点

第一章:原子结构与元素周期律 教案编写日期:2012-2-16 课程授课日期: 应到人数: 实到人数: 教学目标: 过程与方法: 通过亲自编排元素周期表培养学生的抽象思维能力和逻辑思维能力;通过对元素原子结构、位置间的关系的推导,培养学生的分析和推理能力。 通过对元素周期律和元素周期表的关系的认识,渗透运用辩证唯物主义观点分析现象和本质的关系。 情感态度价值观: 通过学生亲自编排元素周期表培养学生的求实、严谨和创新的优良品质;提高学生的学习兴趣 教学方法:通过元素周期表是元素周期律的具体表现形式的教学,进行“抽象和具体”这一科学方法的指导。 教学重难点:同周期、同主族性质的递变规律;元素原子的结构、性质、位置之间的关系。 教学过程: 中子N (核素) 原子核 质子Z → 元素符号 原子结构 : 决定原子呈电中性 电子数(Z 个): 化学性质及最高正价和族序数 体积小,运动速率高(近光速),无固定轨道 核外电子 运动特征 电子云(比喻) 小黑点的意义、小黑点密度的意义。 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化: ①、原子最外层电子数呈周期性变化 元素周期律 ②、原子半径呈周期性变化 ③、元素主要化合价呈周期性变化 ④、元素的金属性与非金属性呈周期性变化 ①、按原子序数递增的顺序从左到右排列; 元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。 ①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ③、不完全周期(第七周期) A ~ⅦA 共7个) 元素周期表 族(18个纵行) ②、副族(ⅠB ~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行) ④、零族(稀有气体) 同周期同主族元素性质的递变规律 ①、核电荷数,电子层结构,最外层电子数 ②、原子半径 决定 编排依据 具 体 表 现 形式 X) (A Z 七 主 七 副零和八 三长三短一不全

原子结构和元素周期律(精)

第九章
首 页 基本要求
原子结构和元素周期律
重点难点 讲授学时 内容提要
1
基本要求
[TOP]
1.1 了解原子结构的有核模型和 Bohr 模型;电子的波粒二象性、测不准原理;了解了解元素和健康的 关系。 1.2 熟悉原子轨道和概率密度的观念;熟悉原子轨道的角度分布图、径向分布函数图的意义和特征;熟 悉电子组态与元素周期表的关系,有效核电荷、原子半径及电负性变化规律。 1.3 掌握 n、l、m、s 4 个量子数的意义、取值规律及其与电子运动状态的关系;掌握基态原子电子组态 书写的三条原则,正确书写基态原子电子组态和价层电子组态。
2
重点难点
[TOP]
2.1 重点 2.1.1 原子轨道、概率密度的观念;n、l、m、s 4 个量子数;电子组态和价层电子组态。熟悉的意义和 特征;熟悉电子组态与元素周期表的关系,有效核电荷、原子半径及电负性变化规律。 2.1.2 原子轨道的角度分布图和径向分布函数图;了解原子结构的有核模型和 Bohr 模型;了解了解元 素和健康的关系。 2.1.3 电子组态的书写、与元素周期表的关系;元素性质的变化规律。 2.2 难点 2.2.1 电子的波粒二象性、测不准原理;波函数和原子轨道。 2.2.2 原子轨道的角度分布图和径向分布函数图。 2.2.3 熟悉电子组态与元素周期表的关系。
3
讲授学时
[TOP]
建议 4~6 学时
1

4
内容提要
[TOP]
第一节
第二节
第三节
第四节
第五节
4.1 第一节 氢原子的结构 4.1.1 氢光谱和氢原子的玻尔模型 α 粒子散射实验提供了原子结构的有核模型,但卢瑟福模型没有解决原子核外的空间如何被电子所 占有问题。 量子力学基于两点认识原子结构:一是量子化现象,二是测不准原理。 普朗克提出,热物体吸收或释放能量不连续,称量子化的。 氢原子的线状光谱也表现了原子辐射能量的量子化。 玻尔假定: 电子沿着固定轨道绕核旋转; 当电子在这些轨道上跃迁时就吸收或辐射一定能量的光子。 轨道能量为
E??
4.1.2 电子的波粒二象性
RH , n=1,2,3,4,… n2
波粒二象性是指物质既有波动性又有粒子性的特性。光子的波粒二象性关系式 λ=h/mc= h/p 德布罗意的微观粒子波粒二象性关系式
??
h h ? p mv
微观粒子的波动性和粒子性通过普朗克常量 h 联系和统一起来。 微观粒子的波动性被电子衍射实验证实。电子束的衍射现象必须用统计性来理解。衍射中电子穿越 晶体投射到照相底片上, 图像上亮斑强度大的地方电子出现的概率大; 电子出现少的地方亮斑强度就弱。 所以,电子波是概率波,反映电子在空间某区域出现的概率。 4.1.3 测不准原理 海森堡指出,无法同时确定微观粒子的位置和动量,它的位置越准确,动量(或速度)就越不准确; 反之,它的动量越准确,位置就越不准确: △x· △px≥h/4π 式中△x 为坐标上粒子在 x 方向的位置误差,△px 为动量在 x 方向的误差。 测不准原理表明微观粒子不存在确定的运动轨迹,可以用量子力学来描述它在空间出现的概率及其 它全部特征。
2

原子结构与元素周期律(精)

第10章原子结构与元素周期律 思考题 1.量子力学原子模型是如何描述核外电子运动状态的? 解:用四个量子数:主量子数——描述原子轨道的能级; 角量子数——描述原子轨道的形状, 并与主量子数共同决定原子轨道的能级; 磁量子数——描述原子轨道的伸展方向; 自旋量子数——描述电子的自旋方向。 2.区别下列概念:(1)Ψ与∣Ψ∣2,(2)电子云和原子轨道,(3)几率和几率密度。解:(1)Ψ是量子力学中用来描述原子中电子运动状态的波函数,是薛定谔方程的解; ∣Ψ∣2反映了电子在核外空间出现的几率密度。 (2)∣Ψ∣2 在空间分布的形象化描述叫电子云,而原子轨道与波函数Ψ为同义词。 (3)∣Ψ∣2表示原子核外空间某点附近单位体积内电子出现的几率,即称几率密度,而某一微小体积dV内电子出现的几率为∣Ψ∣2·dV。 3.比较波函数角度分布图与电子云角度分布图,它们有哪些不同之处? 解:不同之处为 (1)原子轨道的角度分布一般都有正负号之分,而电子云角度分布图均为正值,因为Y 平方后便无正负号了。 (2)除s轨道的电子云以外,电子云角度分布图比原子轨道的角度分布图要稍“瘦”一些,这是因为︱Y︱≤ 1,除1不变外,其平方后Y2的其他值更小。 4.科顿原子轨道能级图与鲍林近似能级图的主要区别是什么? 解:Pauling近似能级图是按能级高低顺序排列的,把能量相近的能级组成能级组,依1、2、3…能级组的顺序,能量依次增高。按照科顿能级图中各轨道能量高低的顺序来填充电子,所得结果与光谱实验得到的各元素原子中电子排布情况大致相符合。 科顿的原子轨道能级图指出了原子轨道能量与原子序数的关系,定性地表明了原子序数改变时,原子轨道能量的相对变化。从科顿原子轨道能级图中可看出:原子轨道的能量随原子序数的增大而降低,不同原子轨道能量下降的幅度不同,因而产生能级交错现象。但氢原子轨道是简并的,即氢原子轨道的能量只与主量子数n有关,与角量子数l无关。 5.判断题: (1)当原子中电子从高能级跃迁至低能级时,两能级间的能量相差越大,则辐射出的电磁波波长越大。

原子结构,元素周期律

原子结构元素周期律(高考题汇编) 1.HBr分子的电子式为() 2.下列化合物,按其品体的熔点由高到低排列正确的是() A.SiO2CaCl CBr4 CF2B.SiO2 CsCl CF4 CBr4 C.CsCl SiO2CBr4 CF4 D.CF4 CBr4 CsCl SiO2 3.下列各组给定原子序数的元素,不能 ..形成原子数之比为1∶1稳定化合物的是()A.3和17 B.1和8 C.1和6 D.7和12 4.下列叙述中正确的是() A.NH3、CO、CO2都是极性分子 B.CH4、CCl4都是含有极性键的非极性分子 C.HF、HCl、HBr、Hl的稳定性依次增强 D.CS2、H2O、C2H2都是直线型分子 5.2007年诺贝尔化学奖得主Gerhard Ertl对金属Pt表面催化CO氧化反应的模型进行了 深入研究。下列关于202 78 Pt的说法正确的是() A.202 78Pt和198 78 Pt的质子数相同,互称为同位素 B.202 78Pt和198 78 Pt的中子数相同,互称为同位素 C.202 78Pt和198 78 Pt的核外电子数相同,是同一种核素 D.202 78Pt和198 78 Pt的质量数不同,不能互称为同位素 6.元素X、Y和Z可结合形成化合物XYZ3;X、Y和Z的原子序数之和为26;Y和Z在同 一周期。下列有关推测正确的是() A.XYZ3是一种可溶于水的酸,且X与Y可形成共价化合物XY B.XYZ3是一种微溶于水的盐,且X与Z可形成离子化合物XZ C.XYZ3是一种易溶于水的盐,且Y与Z可形成离子化合物YZ D.XYZ3是一种离子化合物,且Y与Z可形成离子化合物YZ3 7.根据元素周期表1—20号元素的性质和递变规律,回答下列问题。 (1)属于金属元素的有________种,金属性最强的元素与氧反应生成的化合物有 ___________(填两种化合物的化学式)。 (2)属于稀有气体的是___________(填元素符号,下同); (3)形成化合物种类最多的两种元素是____________________; (4)第三周期中,原子半径最大的是(稀有气体除外)______________; (5)推测Si、N最简单氢化物的稳定性_________大于_________(填化学式)。 8.下列排列顺序正确的是() ①热稳定性:H2O>HF>H2S ②原子半径:Na>Mg>O ③酸性:H3PO4>H2SO4>HClO4④结合质子能力:OH->CH3COO->Cl- A.①③B.②④C.①④D.②③ 9.下列说法正确的是()

物质结构与元素周期律专题复习教案

物质结构与元素周期律 一、原子的构成 1、原子: 2、两个关系式: (1)核电荷数=核内质子数=原子核外电子数=原子序数。 (2)质量数(A)=质子数(Z)+中子数(N)。 【例 1】某元素的一种核素X的原子质量数为A,含N个中子,它与1H原子组成H m X分子,在a g H m X分子中含质子的物质的量是() 二、核外电子排布 1、电子运动特点:①较小空间;②高速;③无确定轨道。 2、电子云:表示电子在核外单位体积内出现几率的大小,而非表示核外电子的多少。 3、电子层:根据电子能量高低及其运动区域不同,将核外空间分成个电子层。 表示:层数 1 2 3 4 5 6 7 符号K L M N O P Q n值越大,电子运动离核越远,电子能量越高。电子层实际上并不存在。 4、能量最低原理:电子一般总是尽先排布在能量最低的电子层里,然后排布在能量稍 高的电子层,即电子由内而外逐层排布。 5、排布规律:①各电子层最多容纳的电子数目是个。 ②最外层电子数不超过个。(K层为最外层时不超过2个) ③次外层电子数不超过个,倒数第三层电子数不超过32个。 6、表示方法: ①原子、离子结构示意图。 ②原子、离子的电子式。

三、电子式的书写 【例 2】下列化学用语中,书写错误的是( )

根据元素周期律,把相同的各种元素,按原子序数递增的顺序从左到右排成横行,再把不同横行中相同的元素,按电子层数递增的顺序由上而下排成纵行, 这样得到的表就叫做元素周期表。 1、编排依据 (1)按原子序数递增的顺序从左到右排列。 (2)将电子层数相同的元素排成一个横行,得到。 (3)把最外层电子数相同的元素排成一个纵行,得到。 2、结构 短周期:1、2、3 周期(7个横行)长周期:4、5、6 不完全周期:7 7个主族:ⅠA~ⅦA 族(18个纵行)7个副族:ⅠB~ⅦB 16个族第Ⅷ族 零族(稀有气体) 【例 3】甲、乙是周期表中同一主族的两种元素,若甲的原子序数为x,则乙的原子序数不可能是() A.x+2B.x+4 C.x+8 D.x+18 【例 4】若甲、乙分别是同一周期的ⅡA和ⅢA元素,原子序数分别为m和n,则下列关于m 和n的关系不正确的是 ( ) A.n=m+1 B.n=m+18 C.n=m+25 D.n=m+11 【例 5】下列叙述中正确的是() A.除零族元素外,短周期元素的最高化合价在数值上都等于该元素所属的族序数 B.除短周期外,其他周期均有18种元素 C.副族元素中没有非金属元素 D.碱金属元素是指第ⅠA族的所有元素

原子结构与元素周期律 练习-学生版

第1节原子结构与性质 考点2 原子结构与元素性质 [课标要求]考察高中生物质结构与性质的必备知识,分析与推测的关键能力,宏观辨识与微观探析的核心素养。 1.认识元素周期表与原子结构之间的关系,原子结构与元素性质,如原子半径、金属性与非金属性、第一电离能、电负性随元素周期表的周期性变化。 2.了解电离能、电负性的含义,并能用以用规范语言解释电离能大小原因。 3.了解电负性的概念,并能用以说明元素的某些性质。 [命题预测]高考中对本部分知识点的考查为:对元素性质的考查,通常是比较元素金属性、非金属性、第一电离能、电负性的大小,并从原子结构角度解释原因。 高考真题: (2)Li及其周期表中相邻元素的第一电离能(I1)如表所示。I1(Li)> I1(Na),原因是_________。I1(Be)> I1(B)> I1(Li),原因是________。【2020 ?全国卷Ⅰ?35(2)】 (3)CaTiO3的晶胞如图(a)所示,其组成元素的电负性大小顺序是__________;【2020 ?全国卷Ⅱ?35(3)】 13.W、X、Y、Z为原子序数依次增大的短周期元素,四种元素的核外电子总数满足X+Y=W+Z;化合物XW3与WZ相遇会产生白烟。下列叙述正确的是 A.非金属性:W> X>Y> Z B.原子半径:Z>Y>X>W C.元素X的含氧酸均为强酸D.Y的氧化物水化物为强碱 【2020 ?全国卷Ⅲ?13】 H、B、N中,原子半径最大的是______。根据对角线规则,B的一些化学性质与元素______的相似。【2020 ?全国卷Ⅲ?35(1)】 知识梳理 1、原子结构与周期表的关系 用实线画出元素周期表的基本框架,并标明周期数与族序数,金属与非金属的交界线,镧系与锕系的位置。

2014原子结构与元素周期律单元测试含答案

原子结构与元素周期律单元测试 (时间:60分钟满分:100分) 可能用到的相对原子质量:H-1 C-12 N-14 O-16 S-32 Cl-35.5 Ca-40 Mn-55 Fe-56 Cu-64 Ba-137 一、选择题(本题包括10小题,每小题5分,共50分。每小题只有一个选项符合题意)1.下列说法正确的是() A.所含质子数和电子数相等的微粒一定是原子 B.两种微粒如果核外电子排布相同,化学性质就一定相同 C.质量数相同的原子其化学性质一定相同 D.具有相同核电荷数的原子或单核离子一定是同种元素 2. 下列结构示意图所代表的微粒中,最难发生化学反应的是() A . B . C . D . 3.一定量的锎(252 98Cf)是医学上常用作治疗恶性肿瘤的中子源,1 mg(252 98Cf)每秒约放出2.34×109个中子。下列有关锎的说法错误的是() A.(252 98Cf)原子中,中子数为154 B.锎元素的相对原子质量为252 C.(252 98Cf)原子中,电子数为98 D.(252 98Cf)原子中,质子数为98 4.最新科技报道,美国夏威夷联合天文中心的科学家发现了新型氢微粒,这种新微粒是由3个氢原子核(只含质子)和2个电子构成的。对于这种微粒,下列说法中正确的是() A.是氢的一种新的同素异形体B.是氢的一种新的同位素 C.它比一个普通H2分子多一个氢原子核D.它的组成可用H3—表示 5.下列说法正确的是() A .某单核微粒的核外电子排布为,则该微粒一定是氩原子 B.原子最外层只有1个电子的元素一定是金属元素 C.N H+4与H3O+具有相同的质子数和电子数 D.最外层电子数是次外层电子数2倍的元素原子容易失去电子成为阳离子 6.下列叙述正确的是() A.在多电子原子里,能量高的电子通常在离核近的区域内运动 B.核外电子总是尽先排在能量低的电子层上 C.6Li和7Li的电子数相等,中子数也相等 D.微粒的最外层只能是8个电子才稳定 7.下列事实一般不能用于判断金属性强弱的是() A.金属间发生的置换反应 B.1 mol金属单质在反应中失去电子的多少 C.金属元素的最高价氧化物对应水化物的碱性强弱 D.金属元素的单质与水或酸反应置换出氢气的难易程度 8.如图为元素周期表前4周期一部分,且X、Y、Z、R和W为主族元素。下列说法中正确的是() A.五种元素一定都是非金属元素 B.五种元素的原子最外层电子数一定都大于2 C.X的氢化物的沸点一定比Z的氢化物高D.R的最高价氧化物对应水化物一定是强酸 X Y Z R W

第九章原子结构和元素周期律

第九章原子结构和元素周期律 §本章摘要§1.微观粒子运动的特殊性 微观粒子的波粒二象性测不准原理微观粒子运动的统计性规律 2.核外电子运动状态的描述 薛定谔方程用四个量子数描述电子的运动状态几率和几率密度径向分布和角度分布 3.核外电子排布和元素周期律 多电子原子的能级核外电子排布原则元素周期表科顿(F. A. Cotton) 轨道能级图斯蕾特(Slater) 规则 4.元素基本性质的周期性 原子半径电离能电子亲合能E电负性 , , 射线 粒子散射实验 的质能联系公式 E = m

, : , : , h = 6.626 与相关 速度方程:所以 如果位置测不准量为x, 量为p, 原子半径为m, 大测不准量为x 10m, 量v. 9.11x Kg. 2m =0.01Kg, x = m, v :

第九章原子结构和元素周期律 §本章摘要§1.微观粒子运动的特殊性 微观粒子的波粒二象性测不准原理微观粒子运动的统计性规律 2.核外电子运动状态的描述 薛定谔方程用四个量子数描述电子的运动状态几率和几率密度径向分布和角度分布

3.核外电子排布和元素周期律 多电子原子的能级核外电子排布原则元素周期表科顿(F. A. Cotton) 轨道能级图斯蕾特(Slater) 规则 4.元素基本性质的周期性 原子半径电离能电子亲合能E电负性 波函数是核外电子出现区域的函数。 为一个二阶偏微分方程:此方程= f(x, y, z) : V = - (), 则可求解出和 r,,,

数的下标 波函数的下标 对于单电子体系, H 或, 角动量, P = mv, (KJ.),

原子结构和元素周期律

第一章物质及其变化 第一节物质的聚集状态 体系:被研究的对象,例如一个烧杯中的溶液 一、物质的聚集状态: 各种物质总是以一定的聚集状态存在的 气、液、固为三种聚集状态,各具特征,在一定条件下可相互转化。 1、气体(g):扩散性和可压缩性 2、液体(l):流动性、无固定形状、一定条件下有一定体积 3、固体(s):具有一定体积、一定形状及一定程度的刚性。 二、物质的聚集状态和相: 相:在体系中任何具有相同的物理性质和化学性质的部分称为相。 相与相之间有界面隔开。 g-s,l-s,s-s一般为两相 g-g混合物为一相 l-l混合物: 一相:如5%HCl溶液,HCl以分子或离子形式分散在水中 两相:如油和水组成的体系,O/W,O以较多分子聚成粒子,以一定的界面和周围的水分开,是不连续的相,W是连续相。 g-L混合物:也存在如上关系:H2S溶于水为一相 S-S混合物制成合金时为一相。 物质的聚集状态或相可以相互变化,亦可共存。 如: S-L相平衡这一点温度即为凝固点。 气体的存在状态主要决定于四个因素:P、V、T、n,而几乎与它们的化学组成无关。反映这四个物理量之间关系的式子叫气体状态方程式。 理想气体:分子间完全没有作用力,分子只是一个几何点,没有体积。 实际上所碰到的气体都是真实气体,只有在温度不太低,压力不太高时,实际气体的存在状态才接近于理想气体,可以用理想气体的定律进行计算。

三、理想气体状态方程: R:常数,可由实验测得: 1 mol气体在273.15K(0℃),101.325kPa下测得其体积22.4×10-3m3 这是理想气体的状态方程式,而实际上气体分子本身必然占有体积,分子之间也具有引力,因此应用该方程进行计算时,不可避免地存在偏差。对于常温常压下的气体,这种偏差很小,随着温度的降低和压力的增大,偏差逐渐增大。 四、混合气体分压定律: 1、混合气体分压定律: 1801年,由Dalton(道尔顿)总结实验结果提出,因此又称为Dalton分压定律。 两种或两种以上不会发生化学反应的气体混合,混合气体的总压力等于各组分气体的分压力之和。 A、容器中注入30mL N2,压力为300mmHg B、容器中注入20mL O2,压力为200mmHg C、容器中注入30mL N2 + 20mL O2,压力为500mmHg 即:P总= ∑Pi Pi:分压力(简称分压),气体混合物中各组分气体的压力,等于该气体单独占有与混合气体相同体积时所产生的压力。 理想气体定律同样适用于混合气体: PiV = niRT , P总V = n总RT ====> ∑PiV = ∑niRT Pi:分压; V:总体积 2、分压的计算: P总可通过压力表测出,Pi则很难被直接测出,可通过分析、计算求得: PiV = niRT (1) P总V = n总RT (2) 由(1)÷(2),得: Pi / P总 = ni / n总 = Xi(摩尔分数) ∴Pi = Xi P总 计算分压的关键在于如何求得组分气体的摩尔分数。 求混合气体的摩尔分数,常用的方法是通过混合气体进行气体分析,测得各组分气体的体积分数:Vi / V总。 例1-1: 已知在250℃时PCl5能全部气化,并部分离解为PCl3和Cl2。现将2.98gPCl5置于1.00L容器中,在250℃时全部气化后,测定其总压力为113.4kPa。其中有哪几种气体?它们的分压各是多少?

元素周期表和元素周期律练习题答案

元素周期表及元素周期律 1.元素X、Y、Z原子序数之和为36,X、Y在同一周期,X+与Z2-具有相同 的核外电子层结构。下列推测不正确的是( )。 A.同周期元素中X的金属性最强 B.原子半径X>Y,离子半径X+>Z2- C.同族元素中Z的氢化物稳定性最高 D.同周期元素中Y的最高价含氧酸的酸性最强 【点评】在周期表中,元素的原子序数差因周期表结构出现以下两种情况:(1)同主族,相邻周期元素原子序数之差的判断。①第ⅠA、ⅡA族元素,相差上一周期元素所在周期所含元素的种数。②第ⅢA~ⅦA族元素,相差下一周期元素所在周期含有的元素的种数。 (2)同周期相邻主族元素原子序数之差的判断。①ⅠA、ⅡA元素或ⅢA~ⅦA相邻元素相差1。②ⅡA、ⅢA元素:若为第二或第三周期则相差1,若为第四或第五周期相差11,若为第六或第七周期则相差25。 2.A、B、C为三种短周期元素,A、B在同周期,A、C的最低价离子分别为 A2-和C-,B2+和C-具有相同的电子层结构。下列说法正确的是( )。A.原子序数:AB>C C.离子半径:A2->C->B2+

D.原子核外最外层电子数:A>C>B 3.在以离子键为主的化学键中常含有共价键的成分。下列各对原子形成化学键 时共价键成分最少的是( ) A.Li,F B.Na,F C.Na,Cl D.Mg,O 4.下列说法正确的是( )。 ①非金属元素不可能组成离子化合物②构成分子的粒子一定含有共价键③共价化合物中可能含有离子键④离子化合物中可能含有共价键⑤非极性键只存在于双原子单质分子里⑥不同元素组成的多原子分子里的化学键一定都是极性键 A.①②④⑥ B.②④⑤⑥ C.①③⑤⑥ D.只有④

《原子结构与元素周期表》教案

《原子结构与元素周期表》教案 第二节原子结构与元素周期表 【教学目标】 . 理解能量最低原则、泡利不相容原理、洪特规则,能用以上规则解释1~36号元素基态原子的核外电子排布; 2. 能根据基态原子的核外电子排布规则和基态原子的核外电子排布顺序图完成1~36号元素基态原子的核外电子排布和价电子排布; 【教学重难点】 解释1~36号元素基态原子的核外电子排布; 【教师具备】 多媒体 【教学方法】 引导式 启发式教学 【教学过程】 【知识回顾】 .原子核外空间由里向外划分为不同的电子层? 2.同一电子层的电子也可以在不同的轨道上运动? 3.比较下列轨道能量的高低(幻灯片展示)

【联想质疑】 为什么第一层最多只能容纳两个电子,第二层最多只能容纳八个电子而不能容纳更多的电子呢?第三、四、五层及其他电子层最多可以容纳多少个电子?原子核外电子的排布与原子轨道有什么关系? 【引入新课】通过上一节的学习,我们知道:电子在原子核外是按能量高低分层排布的,同一个能层的电子,能量也可能不同,还可以把它们分成能级,就好比能层是楼层,能级是楼梯的阶级。各能层上的能级是不一样的。原子中的电子在各原子轨道上按能级分层排布,在化学上我们称为构造原理。下面我们要通过探究知道基态原子的核外电子的排布。 【板书】一、基态原子的核外电子排布 【交流与讨论】(幻灯片展示) 【讲授】通过前面的学习我们知道了核外电子在原子轨道上的排布是从能量最低开始的,然后到能量较高的电子层,逐层递增的。也就是说要遵循能量最低原则的。比如氢原子的原子轨道有1s、2s、2px、2py、2pz等,其核外的惟一电子在通常情况下只能分布在能量最低的1s原子轨道上,电子排布式为1s1。也就是说用轨道符号前的数字表示该轨道属于第几电子层,用轨道符号右上角的数字表示该轨道中的电子数(通式为:nlx)。例如,原子c的电子排布式为1s2s22p2。

原子结构与元素周期表教(学)案

原子结构与元素周期表教案 一教学目标 1.知识与技能目标: ①使学生理解能量最低原则,泡利不相容原理,洪特规则等核外电子排布的原则。 ②使学生能完成1-36号元素基态原子的核外电子排布和价电子排布。 ③使学生知道核外电子排布与周期表中周期,族划分的关系。 ④使学生了解原子半径的周期性变化,并能用原子结构知识解释主族元素原子半径周期性变化的原因 2.过程与方法目标: 通过学习,使学生明确原子结构的量子力学模型的建立使元素周期表的建立有了理论基础。 3.情感态度与价值观 通过微观世界中核外电子所奉行的“法律”---电子排布原则的认识,发展学生学习化学的兴趣,感受微观世界的奇妙与和谐。 二教学重点和难点: 原子核外电子排布三原则,核外电子排布与原子半径,周期表中周期,族划分的关系。核外电子排布式,价电子排布式,轨道表示式的书写。 三教学方法: 活动·探究法,学案导学法,联想对比法,自学阅读法,图表法等 四教学过程 (第1课时) [新课引入]俗话说,没有规矩不成方圆,不管是自然界还是人类社会,都有自己的规律和规则,我们可以简单看这几图片,交通有交通规则,停车场有停车场的规矩,就连一个小小的鞋盒,也有自己的规矩。通过第一节“原子结构模型”的学习,我们知道原子核外有不同的原子轨道,那么电子在这些原子轨道上是如何排布的呢?有没有自己的规则和规矩呢?当然有,是什么呢?通过我们教材第二节《原子结构与元素周期表》,大

家就会了解这一微观世界的“法律”。 [活动探究] 1-18号元素的基态原子的电子排布 [提问]为什么你的基态原子的核外电子是这样排布的,排布原则是什么? [自学阅读]阅读基态原子的核外电子排布三原则5分钟。 [学案导学]见附页 [设问]为什么基态原子的核外电子排布要符合此三原则呢 [师讲]自然界有一普遍规律:能量越低越稳定,不管是能量最低原理还是泡利不相容原理,洪特规则,它们的基本要求还是稳定。 [投影]耸入云天的浮天阁 [师讲]通过这图片,我们可以很清楚的看出生活中随处都有类似的例子,和我们微观世界的规则不谋而合。浮天阁台阶对应能量最低原理,想休息,想稳定,在这高高的楼梯上,你最愿意选择什么地方呢?当然是最低处的台阶。基态原子的电子同样也是能量越低越稳定,为了稳定它们总是尽可能把原子排在能量低的电子层里。如氢原子的电子排布式为1s1.那多电子原子的电子如何排布呢? [生答]按能量由低到高的顺序排布 [师讲]那么原子轨道的能量高低顺序是什么呢? [投影]展示原子轨道能量高低顺序图,并指出能级交错现象。 [师讲]装有鞋子的鞋盒可以直观的看为泡利不相容原理,一个鞋盒最多容纳两个鞋子,且方向相反。井然有序的停车场,你看车辆尽可能分占不同的车位,方向相同,这样才能使整个停车场稳定有序,多像洪特规则。 [投影] 自选相反的鞋子,井然有序的停车场 [归纳总结] 1.基态原子:处于能量最低状态下的原子 2、基态原子的核外电子排布 原子核外电子的排布所遵循的三大原则:①能量最低原则 电子先占据能量低的轨道,再依次进入能量高的轨道 ②泡利不相容原理 每个轨道最多容纳两个自旋状态相反的电子 ③洪特规则 电子在能量相同的轨道上排布时,应尽可能分占不同的轨道,且自旋状态相同 [思考]请写出氯原子的原子结构示意图,根据你的书写请思考,该示意图能否清楚表示各原子轨道电子排布情况?如不能,用什么样的方法才能清楚表示呢? [师讲]电子排布式可简单写为nlx,其中n为电子层数,x为电子数,角量子数l用其对应的符号表示。 轨道表示式用小圆圈表示一个给定量子数n,l,m的原子轨道,用箭头来区别ms不同的电子,如:氦原子的轨道表示式 [练习]书写1~18号元素的基态原子的电子排布式 以氯原子为例比较电子排布式、轨道表示式、原子结构示意图书写的不同 [过渡]在以上书写家肯定有一种感觉,写着麻烦,有没有简单点的表示方法呢? [师讲] 33号砷As:[Ar]3d104s24p3;34号硒Se:[Ar]3d104s24p4;

原子结构与元素周期表.doc

原子结构与元素周期表 1、写出第三周期中所有元素的电子排布式和轨道排布式。 2、写出下列微粒的电子排布式。 ①19K+②26Fe3+③35Br- 3、写出原子序数为42号、43号、47号元素的电子排布式 4、前三周期的元素中,核外电子数不成对的数目和它的电子层数相等的元素共有多少种?请写出这几种元素的电子构型。第四周期有没有这类原子? 5、根据下列微粒的最外层电子排布(即“外围电子层排布”或“外围电子构型”),能够确定该元素在元素周期表中的位置的是() A、1s2 B、3s23p1 C、3s23P6 D、4s2 6、具有下列电子排布的微粒不能肯定是原子还是离子的是() A、1s2 B、1s22s22p4 C、[Ne]3s2 D、[Kr]4d105s2 7、具有下列电子构型的元素位于周期表的哪一区?是金属元素还是非金属元素。A、ns2(n≠1) B、ns2np4C、(n-1)d5ns2D、(n-1)d8ns2 8、据2004年2月9日《参考消息》报道,来自俄罗斯和美国的科学家已发现了115号和113号两种新元素。方法是用4820Ca原子撞击24395Am原子,即可从产物中分离出115号元素;115号经一次衰变,又可生成113号。这一发现扩大了元素周期表的范围。试写出这两种新元素的电子排布式,并判断它所在元素周期表中的位置。 9、下列离子中最外层电子数为8的是() A、Ga3+ B、Ti4+ C、Cu+ D、Li+ 10、电子构型为[Xe]4f145d76s2的元素是() A、稀有气体 B、过渡元素 C、主族元素 D、稀土元素 11、讨论题:(1)观察元素周期表,每相邻周期中的元素数目存在什么规律?这一规律与周期数有什么关系?导致产生这一规律的深层原因是什么?(提示:考虑周期表中第一种轨道类型的出现) (2)按现代原子结构理论,在每个电子层上可以有一个或几个原子轨道。现假设每个原子轨道上只能容纳1个电子(假设电子排布仍遵循原有电子排布的原理),请重新将1-27号元素排列成元素周期表,观察该“元素周期表”中

18年春高中化学第1章原子结构与元素周期律1.3.2预测同主族元素的性质课时训练鲁科版必修2

第2课时预测同主族元素的性质 课时训练7 预测同主族元素的性质 基础夯实 1.下列关于同主族元素的说法中错误的是( ) A.同主族元素原子序数递增,元素原子失电子能力逐渐增强 B.同主族元素原子序数递增,单质氧化性逐渐增强 C.同主族元素原子最外层电子数都相同 D.同主族元素的原子半径,随原子序数增大而逐渐增大 答案:B 2.已知钾在空气中燃烧生成KO2。自然界中仅存在极微量的金属钫(Fr),它的已知同位素都有放射性,它是碱金属元素中密度最大的元素。根据它在周期表中的位置预言其性质,其中不正确的是( ) A.在已知元素中(稀有气体除外),它具有最大的原子半径 B.在空气中燃烧时,生成氧化物Fr2O C.氧化物的水化物是极强的碱 D.单质的失电子能力比钠强 答案:B 解析:根据同主族和同周期元素性质递变规律可知,原子半径最大的元素位于周期表的左下角,即钫,A正确;碱金属元素从上到下,失电子能力逐渐增强,D正确;由于Na在氧气中燃烧生成Na2O2,K在氧气中燃烧生成KO2,据此可知,Fr在空气中燃烧应生成比Fr2O更复杂的氧化物,B错误。 3.我国在砷化镓太阳能电池研究方面处于国际领先地位。砷(As)和镓(Ga)都是第4周期元素,分别属于ⅤA和ⅢA族。下列说法中,不正确的是( ) A.原子半径:Ga>As>P B.热稳定性:NH3>PH3>AsH3 C.酸性:H3AsO4>H2SO4>H3PO4 D.Ga(OH)3可能是两性氢氧化物 答案:C 解析:元素的非金属性越强,其相应的最高价含氧酸的酸性越强,所以酸性:H2SO4>H3PO4>H3AsO4,故C项错误。 4.X、Y是元素周期表ⅦA族中的两种元素。下列叙述中能说明X的得电子能力比Y强的是( ) A.X原子的电子层数比Y原子的电子层数多 B.与H2化合的能力X

原子结构元素周期律知识点

元素周期律 1.元素周期律:元素的性质(核外电子排布、原子半径、主要化合价、金属性、非金属性)随着核电荷数的递增而呈周期性变化的规律。元素性质的周期性变化实质是元素原子核外.........电子排布的周期性变化.......... 的必然结果。 表左下方) 第ⅦA 族卤族元素:F Cl Br I At (F 是非金属性最强的元素,位于周期表右上方) ★判断元素金属性和非金属性强弱的方法: (1)金属性强(弱)——①单质与水或酸反应生成氢气容易(难);②氢氧化物碱性强(弱);③相互置换反应(强制弱)Fe +CuSO 4=FeSO 4+Cu 。 (2)非金属性强(弱)——①单质与氢气易(难)反应;②生成的氢化物稳定(不稳定);③最高价氧化物的水化物(含氧酸)酸性强(弱);④相互置换反应(强制弱)2NaBr +Cl 2=2NaCl +Br 2。

)先比较电子层数,电子层数多的半径大。 (2)电子层数相同时,再比较核电荷数,核电荷数多的半径反而小。 《元素周期律》练习题 1 .下列关于元素周期律的叙述正确的是 A .随着元素原子序数的递增,原子最外层电子总是从1到8重复出现 B .随着元素原子序数的递增,元素最高正价从+1到+7、负价从-7到-1重复出现 C .随着元素原子序数的递增,原子半径从小到大(稀有气体除外)发生周期性变化 D .元素性质的周期性变化是指原子核外电子排布、原子半径及元素主要化合价的周期性变化 2.下列说法正确的是 A .NaCl 固体中含有共价键 B .CO 2分子中含有离子键 C .12 6C 、13 6C 、14 6C 是碳的三种核素 D .16 8O 、17 8O 、18 8O 含有相同的中子数 3.已知元素的原子序数,可以推知原子的①原子数 ②核电荷数 ③核外电子数 ④在周期表中的位置,其中正确的是( ) A.①③ B.②③ C.①②③ D.②③④ 4. A 、B 、C 、D 、E 是同一周期的五种主族元素,A 和B 的最高价氧化物对应的水化物均呈碱性,且碱性B >A ,C 和D 的气态氢化物的稳定性C >D ;E 是这五种元素中原子半径最小的元素,则它们的原子序数由小到大的顺序是( ) A.A 、B 、C 、D 、E B.E 、C 、D 、B 、A C.B 、A 、D 、C 、E D.C 、D 、A 、B 、E 5.下列各组顺序的排列不正确...的是( ) A.离子半径:Na +>Mg 2+>Al 3+>F B.热稳定性:HCl >H 2S >PH 3>AsH 3 C.酸性强弱:H 2AlO 3<H 2SiO 4<H 2CO 3<H 3PO 4 D.溶点:金刚石>Na >SiO 2>CO 2 6.某元素原子的质量数为A ,它的阴离子X n-核外有x 个电子,w 克这种元素的原子核内中子数为( ) A. mol w n x A A )(+- B .mol A n x A w ) (-+ C . mol A n x A w )(+- D.mol A n x A w ) (-- 7.某主族元素R 的最高正价与最低负化合价的代数和为4,由此可以判断( ) A.R 一定是第四周期元素 B.R 一定是ⅣA 族元素

(完整word版)原子结构和元素周期律练习题

原子结构和元素周期律练习题 1. 给出下面每组中可能的量子数: (1) n = 3 , l = 1 , m = ? (2) n = 4 , l = ? , m = -1 (3) n = ? , l = 1 , m = +1 答:(1) m = 0 ,±1。 (2) l = 3,2,1。 (3) n≥2 2. 下列叙述是否正确?将不正确的改正过来。 (1) 氢原子只有一个电子,故氢原子只要一个轨道。 (2)主量子数为2时,有2s、2p两个轨道。 (3)因为p轨道的角度分布呈“8”字形,所以p电子运动的轨道为“8”字形。 (4)电子云是波函数∣ψ∣2在空间分布的形象化表示。 答:(1) 不正确。正确的叙述是:氢原子只有一个电子,但氢原子核外的原子轨道不只一个。 (2) 不正确。正确的叙述是:主量子数为2时,有1个2s轨道,3个2p轨道。 (3) 不正确。正确的叙述是:p轨道的角度分布呈“8”字形,p电子在围绕原子核 运动。 (4)正确。 3. A、B两元素,A原子的M层和N层的电子数分别比B原子的M层和N层的电子数少7个和4个。写出A、B两原子的名称和电子排布式。 答:A原子是钒,电子排布式为:1s22s22p63s23p63d34s2 B原子是硒,电子排布式为:1s22s22p63s23p63d104s24p4。 4. 按原子半径从大到小的顺序排列下列元素: Ca, Si, As,Te 答:Ca> Te> As> Si 5. 按各基态原子第一电离能从大到小的顺序排列下列元素: B, Be, C, N, O 答:N > O > C > Be > B 6. 按电负性从大到小的顺序排列下列元素: Al, B, Be, Mg 答:B> Al > Be > Mg 7. 有A、B、C、D四种元素。其中A为第四周期元素,与D可形成1:1和1:2原子比

相关文档
相关文档 最新文档