文档库 最新最全的文档下载
当前位置:文档库 › 非标减速机

非标减速机

非标减速机
非标减速机

非标减速机

wpo135蜗轮蜗杆减速机rv减速机厂家wps50蜗轮蜗杆减速机汇川电机配减速机汇川马达配减速机伺服减速箱信捷电机配减速机信捷马达配减速器伺服减速器三蜗轮参数计算公式帕克伺服马达专用斜齿-螺旋锥齿轮减速机减速器WPWDO120-30-YEJ2.2KW-4P 充填机/ 射出成型机/ CNC弹簧机电磁调速电机18.5KW 国产减速机tk108减速机配件交流伺服11KW15KW驱动器AB115-040-S2-P1/1326AB-B430ERVE40+40伺服电机伺服电机伺服电机松下伺服电机马达蜗杆减速机厂家tk108减速机配件tk108减速机配件AB115-040-S2-P1/1326AB-B430E交流伺服11KW15KW驱动器。

枫信A系列精密行星减速机具有高精度、高钢性、高负载、高效率、高速比、高寿命、低惯性、低振动、低噪音、低温升、外观美、结构轻小、安装方便、精确定位等特点,适用于交流伺服马达、直流伺服马达、步进马达、液压马达的增速与减速传动。适合于全球任何厂商所制造的驱动产品连接,如:松下、台达、安川、富士、三菱、三洋、西门子、施耐德、法那克、科比、科尔摩根、AMK、帕克等等。

应用领域:伺服行星减速机可直接安装到交流和直流伺服马达上,广泛应用于精密加工机床、航太工业、半导体设备、印刷机械,食品包裝、自动化产业、工业机器人、医疗检验、精密测试

仪器和自动化高精度的机电产品行业。

性能及特点:

A系列精密行星减速机提供了高性价比,应用广泛、经济实用、寿命长等优点,在伺服控制的应用上,发挥了良好的伺服刚性效应,准确的定位控制,在运转平台上具备了中低背隙,高效率,高输入转速,高输入扭矩,运转平順,低噪音等特性,外观及结构设计轻小。使用终身免更换的润滑油,及无论安装在何处,都可以免操作全封闭式设计,并且具有IP65的保护程度,因此工作环境差时亦可使用。

用于带式运输机上的两级圆柱齿轮减速器

机械设计课程设计说明书 设计题目设计一用于带式运输机上的两级圆柱齿轮减速器 (院) (专业) (班级) 姓名 学号 指导教师 2 0 0 9年7月1 0日

目录 一设计题目 3 二给定数据和要求 3 三应完成的工作 3 四设计内容 3 1. 总体设计4 2. 传动零件的设计计算8 3. 轴的设计18 4. 轴的校核23 5. 键的选择和校核29 6. 滚动轴承的选择和校核30 7. 联轴器的选择32 8. 箱体及其附件设计32 9. 润滑、密封的设计35五设计小结 36 六参考资料 37

一、设计题目 设计一用于带式运输机上的两级圆柱齿轮减速器。 二、给定数据和要求 已知条件:运输带工作拉力F=3000N;运输带工作速度v=1.5m/s(允许运输带速度误差为±5%);滚筒直径D=250mm。其中运输机工作平稳,单向运转,单班工作,使用期限8年,大修期3年,减速器由一般规模厂中小批量生产。 56 4 3 1 2 1-电动机2-带传动3-减速器4-联轴器5-滚筒6-传送带 三、应完成的工作 1.减速装配图一张 2.零件工作图2张(轴和齿轮)。 3.设计说明书1份。 四、设计内容 1. 总体设计 2. 传动零件的设计计算 3. 轴的设计 4. 轴的校核 5. 键的选择和校核 6. 滚动轴承的选择和校核 7. 联轴器的选择 8. 箱体及其附件设计 9. 润滑、密封的设计 四、设计内容

一.总体设计: 图1 带式运输机的专用传动装置 传动方案:如图1所示。 (一) 电动机的选择: 1.电动机类型的选择: 根据动力源和工作条件,选用Y 系列三相异步电动机。 2.电动机功率的选择: 取工作机的传动效率为0.96。 工作机所需要的有效功率为: kW kW Fv P w 688.496.010005 .13000 1000w =??== η 其中,w η为工作机传动效率。

车辆减速器是机械化

车辆减速器的概述 车辆减速器是机械化、半自动化和自动化驼峰编组站,对溜放中的车辆进行速度控制,使车辆溜入编组线的速度满足安全连挂要求的主要调速设备。驼峰编组站安装车辆减速器可以提高解编能力,保障作业和人身安全,减轻劳动强度。 目前铁路解编列车,最有效的方法任然是利用装有车辆减速器(或辅以其他调速设备)的机械化、半自动化和自动化驼峰调车场。 从1914年德国开始安装试验减速器,1924年美国正式使用减速器以来,经过几十年的改进与发展。早期发展的驼峰主要是机械化驼峰,因而间隔制动减速器得到较充分的发展。我国从1955年开始减速器的研究,改良了GEP-31型,仿制出了DK-59型。1966年研制成功了T.JY型(原66-11型)液压重力型减速器。1977年在DK-59型的基础上又改进设计了T.JK型气动非重力式减速器。1987年,为了简化结构、降低造价、提高性能、节省能源和便于维修,研制成功了液压传动T。T.JY3型、气压传动T.JK3型。 随着我国铁路运输的不断发展,编组站逐渐由机械化发展为半自动化和自动化,减速器也逐渐由间隔制动发展为目的制动。近20年来,目的制动减速器得到了很大的发展。为了满足驼峰半自动化和自动化的要求,自1975年研制成功T.JY1型(原7501型)减速器以后,1982年又研制成功了T.JY2型液压重力式减速器,1986年还研制成功了T.JK2型和T.JK2-A型气动重力式减速器。减速器的控制方式也从最简单的手动控制发展到半自动化和计算机控制,实现了驼峰溜放的自动化。 目前我国铁路应用的车辆减速器分为T.JY和T.JK两大系列,T.JY型为液压型,T.JK 型为气动式。T.JK系列浮轨重力式车辆减速器T.JK3、T.JK2、T.JK2-A型和T.JY系列浮轨重力式车辆减速器T.JY3、T.JY2、T.JY2-A型机体分别对应相同,其区别仅在于工作缸、控制阀和管道。T.JK系列车辆减速器用气缸、气动阀和气管;T.JY系列车辆减速器用油缸、液压阀和油管。车辆减速器的系列化和标准化,有利于生产、使用和维修,深受现场欢迎。 随着编组站运量和车辆轴重的增加,1995年又研制成功了改进型高强度和适用于50kg/m钢轨的减速器T.JK(Y)3-A(50)型,T.JK(Y)2-A(50)型,形成了新的系列化产品T.JK3-A、T.JK2-A和T.JY3-A、T.JY2-A的A系列,T.JK3-A50、T.JK2-A50和T.JY3-A50、T.JY2-A50的50系列。这些新的系列化产品在保持原有性能指标的基础上,增加了强度,提高了寿命,减少了维修,将逐步替代T.JK(Y)-(50)、T.JK(Y)2系列产品推广使用。为进一步增加减速器的寿命,减少维修,2000年又研制成功了新的目的制动减速器T.JK(Y)2-B(50)型,将作为T.JK(Y)2-A(50)型的替代产品推广使用。

RV减速机选型的具体方法

关于RV减速机选型的具体方法 机械、电子电器、筑路机械、化工机械、食品机械等行业中,主要起到降低转速,增加转矩的作用,由于减速机的种类繁多,型号各异,很多顾客在购买减速机时很头疼的问题,就是不知道如何选择,东莞台机作为专业生产各种类型减速机的公司,在减速机选型方面拥有颇多经验,所以台机减速机就分享一下关于rv减速机的如何选型: 第一步:根据需求确定减速机类型 减速机的类型很多,如果齿轮传动的类型可分为:蜗杆减速机、圆柱齿轮减速机等。如果按传动级数可分为:双级减速机与单级减速机以及多级减速机。按安装方式可为分:卧式与立式。如按铸造类型可以分为铸铁式与铝合金两种。你的减速机将用到什么地方、需要具备什么功能首先要搞清楚,然后确定自己要的是蜗轮蜗杆减速机、铝合金减速机、还是RV减速机,级数是单级还是双级。 第二步:了解减速机的基本参数 减速机在选型过程中需要知道的几个系数分别是:工况系数、安全系数、环境温度系数、负荷率系数、公称功率利用系数、电机功率、电机转速、减速机速 第三步:确定减速机的传动比 按照公式:电机转速/工作机转速,根据用户要求的传动比选取接近的公称传动比。

第四步:确定减速机具体参数 计算减速机的中心距、扭矩、键长以及所需电机功率、工况系数、安全系数、环境温度系数、负荷率系数、公称功率利用系数等等。 第五步:校核减速机的热功率能否通过 热功率=负载功率*环境温度系数*负荷功率系数*公称功率利用系数小于等于减速机功率(没有冷却措施的前提下)。对于圆柱齿轮减速机,只有采用盘状管冷却时,计算减速机功率(盘状管冷却或循环油润滑)大于热功率。因此可以选的减速机的型号,采用油池润滑,盘状水管通水冷却润滑油。如果不采用盘状管冷却,则需另选较大规格的减速机。 以上就关于RV减速机选型的具体要求,台机减速机建议购买减速机首先确定自己是需要什么类型什么型号,才能选择合适的减速机。切忌乱选、盲选,否则会带来严重后果。

带式运输机传动装置减速器课程设计说明书

重庆交通大学 课 程 设 计 说明书 机电学院:XXXXXX系 郎以墨: XXXXXXXXXXXXXXX 指导老师: XXX

目录 一、设计目的 (2) 二、传动装置总体设计 (3) (一)设计任务书 (3) (二)确定传动方案 (4) (三)电动机的选择 (5) 三、传动零件的设计计算 (7) (一)高速级齿轮的参数计算 (7) (二)低速级齿轮的参数计算 (11) 四、轴及轴承装置的设计计算 (15) (一)轴的设计、校核及寿命计算 (16) (二)齿轮的设计 (28) 五、键连接的选择及计算 (30) 六、联轴器的选择 (32) 七、减速器的润滑和密封 (33) (一)润滑方式 (34) (二)密封方法 (34) 八、减速器的附件及说明 (35) 参考文献 (36) 附录A(装配图) (37)

一、设计目的 机械设计课程是培养学生具有机械设计能力的技术基础课。课程设计则是机械设计课程的实践性教学环节,同时也是高等工科院校大多数专业学生第一次全面的设计能力训练,其目的是: (1)通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。 (2)学习机械设计的一般方法,掌握机械设计的一般规律。 (3)通过制定设计方案,合理选择传动机构和零件类型,正确计算零件工作能力,确定尺寸和掌握机械零件,以较全面的考虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和掌握机械零件,机械传动装置或简单机械的设计过程和方法。 (4)学习进行机械设计基础技能的训练,例如:计算,绘图,查阅设计资料和手册,运用标准和规范等。 二、传动装置总体设计 (一)设计任务书 1.设计题目 本次设计的对象为带式输送机传动系统中的减速器。要求传动系统中采用两级圆柱直齿齿轮减速器传动及V带传动。 2.设计任务 (1)设计方案论述。 (2)选择电动机。

汽车主减速器设计

汽车主减速器设计 主减速器设计 3.2主减速器设计 321主减速器的结构型式 主减速器的结构型式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异。 (1)主减速器齿轮的类型 在现代汽车驱动桥上,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。在双级主减速器中,通常还要加一对圆柱齿轮(多采用斜齿圆柱齿轮),或一组行星齿轮。在轮边减速器中则常采用普通平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动。在某些公共汽车、无轨电车和超重型汽车的主减速器上,有时也采用蜗轮传动。 (2 )主减速器主动锥齿轮的支承型式及安置方法 在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确啮合并具有较高使用寿命的重要因素之一。 现在汽车主减速器主动锥齿轮的支承型式有以下两种: 悬臂式 齿轮以其轮齿大端一侧的轴颈悬臂式地支承于一对轴承上。为了增强支承刚度,应使两轴承支承中心间的距离齿轮齿面宽中点的悬臂长度大两倍以上,同时比齿轮节圆直径的70%还大,并使齿轮轴径大于等于悬臂长。当采用一对圆锥滚子轴承支承时,为了减小悬臂长度和增大支承间的距离,应使两轴承圆锥滚子的小端相向朝内,而大端朝外,以缩短跨距,从而增强支承刚度。 (3 )主减速器从动锥齿轮的支承型式及安置方法 主减速器从动锥齿轮的支承刚度依轴承的型式、支承间的距离和载荷在支承之间的分布而定。为了增加支承刚度,支承间的距离应尽可能缩小。两端支承多采用圆锥滚子轴承,安装时应使他们的圆锥滚子的大端相向朝内,小端相背朝外。为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。 轿车和轻型载货汽车主减速从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高

(整理)圆柱齿轮减速机减速机的选用

圆柱齿轮减速机减速机的选用 一、概述 执行国家标准JB/8853-2001,硬齿面圆柱齿轮减速机。 适用范围: 1、高速轴转速不大于1500转/分 2、齿轮传动圆周速度不大于20米/秒 3、工作环境温度为-40~45度,如果低于0度,启动前润滑油应预热至0度以上,本减速机可用于正反两个方向运转。 二、特点: 1、齿轮采用高强度低碳合金钢经渗碳淬火而成,齿面硬度达到HRC58-62,齿轮均采用磨齿工艺,要求精度高,接触性好。 2、传动效率高:单级大于96%、双极大于93%、三级大于90% 3、传动平稳,噪音低 4、体积小、重量轻,使用寿命长,承载能力高。 5、便于拆检、便于安装。 三、减速机型号、规格及其表示方法 1、型号:ZDY、ZL Y、ZSY、ZFY圆柱齿轮减速机 2、规格:单级80——560 两级:112——710 三级:160——710 四级:180——800 3、表示方法: 型号—低速级中心距(mm)—公称传动比—装配型式标准号 D表示单级、L表示单级、S表示单级、F表示单级、Y表示采用硬质齿面齿轮 4、转向规定:配置逆止器的减速机只允许单向运转,转向规定为:面对输出轴,输出轴顺时针运转为“S”,逆时针运转为“N”。 四、外形及安装尺寸: 五、减速机承载能力: 减速机输入功率P:为计算功率或台架试验功率,配套电机是必须考虑工况系数和安全系数。减速机转速一般指的是输入轴转速。 六、减速机齿轮的润滑 1、减速机齿轮的润滑,冷却一般采用油池润滑,自然冷却。 当减速机承载功率超过发热功率时,可采用循环油润滑,或采用油池润滑加盘状管冷却,对采用循环油润滑的减速机在停歇时间超过24小时且满载启动时,应在启动前给润滑油。润滑油的牌号(粘度),按高速级齿轮圆周速度或润滑方法选择: 当V小于2.5m/s或当环境温度在35-50度之间时,选中级压齿轮油N320(或VG320,Mo-bi632)。 当V大于2.5m/s,或采用润滑油时,选中级压齿轮油N220(或VG220,Mo-bi630)。 2、轴承的润滑 采用飞溅油润滑,轴承的润滑油品与齿轮润滑油品相同。 七、安装、使用与维护: 1、减速机的输入轴轴线和输出轴轴线,与连接部分的轴线保证同轴,其误差不得大于允许值。对采用三角皮带传输的动力时,三角带轮应通过金切加工以减少不平衡质量。宜采用高强度窄形带传动为佳,这样可以降低振动噪声和提高使用寿命。 2、安装好后,箱体油池内必须注入润滑油,油面应至于油尺规定高度(油标上、下限刻线之间)。 3、减速机在正式使用前,用手转动,必须灵活,无卡住现象,然后进行空载操作,时间不

如何选择减速机

我们需要了解一定的减速机参数,到底哪些参数需要知道呢?这里将详细的说明。决定减速机中热功率的校核的是什么?是周围环境的温度。这是我们需要分析的一个数据,作为减速机,它的内部应该有一个电机,这个电机的级数究竟是多少,合适不合适,它的功率又是什么,也需要我们来做深入的分析,此外,减速机的安全系数如何,大家的安全性可不可以得到可靠保证,更是重中之重,决不可忽视。还有就是减速机在什么设备上来使用,以及使用它可能的一些结果,也是绝对不可以马虎的事项。减速机输出轴的径向力和轴向力的校核,也是需要注意的一点。 电动机的功率.应根据生产机械所需要的功率来选择,而减速机则是根据所要传递的功率或者扭矩,以及工作所需要的转速来选择的。 电动机的功率.应根据生产机械所需要的功率来选择,尽 量使电动机在额定负载下运行。选择时应注意以下两点: (1)如果电动机功率选得过小.就会出现“小马拉大车”现 象,造成电动机长期过载.使其绝缘因发热而损坏.甚至电动 机被烧毁。 (2)如果电动机功率选得过大.就会出现“大马拉小车”现 象.其输出机械功率不能得到充分利用,功率因数和效率都不 高(见表),不但对用户和电网不利。而且还会造成电能浪 费。 要正确选择电动机的功率,必须经过以下计算或比较: (1)对于恒定负载连续工作方式,如果知道负载的功率 (即生产机械轴上的功率)Pl(kw).可按下式计算所需电动机 的功率P(kw): P=P1/n1n2 式中n1为生产机械的效率;n2为电动机的效率。即传动效 率。 按上式求出的功率,不一定与产品功率相同。因此.所选 电动机的额定功率应等于或稍大于计算所得的功率。 例:某生产机械的功率为3.95kw.机械效率为70%、如 果选用效率为0.8的电动机,试求该电动机的功率应为多少 kw? 解=P1/ n1n2=3.95/0.7*0.8=7.1kw 由于没有7.1kw这―规格.所以选用7.5kw的电动机。 (2)短时工作定额的电动机.与功率相同的连续工作定额的电动机相比.最大转矩大,重量小,价格低。因此,在条件许可时,应尽量选用短时工作定额的电动机。 (3)对于断续工作定额的电动机,其功率的选择、要根据负载持续率的大小,选用专门用于断续运行方式的电动机。负载持续串Fs%的计算公式为 FS%=tg/(tg+to)×100% 式中tg为工作时间,t。为停止时间min;tg十to为工作周期,而减速机的作用就是来提高力矩,想选好电机必须要知道启动最大力矩

带式运输机用的二级圆柱齿轮减速器设计

目录 1.题目 (1) 2.传动方案的分析 (2) 3.电动机选择,传动系统运动和动力参数计算 (2) 4.传动零件的设计计算 (5) 5.轴的设计计算 (16) 6.轴承的选择和校核 (26) 7.键联接的选择和校核 (27) 8.联轴器的选择 (28) 9.减速器的润滑、密封和润滑牌号的选择 (28) 10.减速器箱体设计及附件的选择和说 明 (29) 11.设计总结 (31) 12.参考文献 (31)

广东技术师范学院机电系 《机械设计课程设计》 设计任务书 题目:设计一带式输送机使用的V带传动或链传动及直齿圆柱齿轮减速器。设计参数如下表所示。 1、基本数据 数据编号QB-5 运输带工作拉力F/N2000 运输带工作速度 1.4 v/(m/s) 卷筒直径D/mm340 滚筒效率η0.96 2.工作情况两班制,连续单向运转,载荷平稳; 3.工作环境室内,灰尘较大,环境最高温度35度左右。 4.工作寿命15年,每年300个工作日,每日工作16小时 5.制作条件及生产批量: 一般机械厂制造,可加工7~8级齿轮;加工条件:小批量生产。生产30台 6.部件:1.电动机,2.V带传动或链传动,3.减速器,4.联轴器,5.输送带 6.输送带鼓轮 7.工作条件:连续单向运转,工作时有轻微振动,室内工作; 运输带速度允许误差±5%; 两班制工作,3年大修,使用期限15年。

(卷筒支承及卷筒与运输带间的摩擦影响在运输带工作拉力F中已考虑。) 8.设计工作量:1、减速器装配图1张(A0或sA1); 2、零件图1~3张; 3、设计说明书一份。 §2传动方案的分析 1—电动机,2—弹性联轴器,3—两级圆柱齿轮减速器,4—高速级齿轮,5—低速级齿轮6—刚性联轴器7—卷筒 方案分析:

汽车主减速器设计教学内容

汽车主减速器设计

主减速器设计 3.2 主减速器设计 3.2.1 主减速器的结构型式 主减速器的结构型式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异。 (1)主减速器齿轮的类型 在现代汽车驱动桥上,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。在双级主减速器中,通常还要加一对圆柱齿轮(多采用斜齿圆柱齿轮),或一组行星齿轮。在轮边减速器中则常采用普通平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动。在某些公共汽车、无轨电车和超重型汽车的主减速器上,有时也采用蜗轮传动。 (2)主减速器主动锥齿轮的支承型式及安置方法 在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确啮合并具有较高使用寿命的重要因素之一。 现在汽车主减速器主动锥齿轮的支承型式有以下两种: 悬臂式 齿轮以其轮齿大端一侧的轴颈悬臂式地支承于一对轴承上。为了增强支承刚度,应使两轴承支承中心间的距离齿轮齿面宽中点的悬臂长度大两倍以上,同时比齿轮节圆直径的70%还大,并使齿轮轴径大于等于悬臂长。当采用一对圆锥滚子轴承支承时,为了减小悬臂长度和增大支承间的距离,应使两轴承圆锥滚子的小端相向朝内,而大端朝外,以缩短跨距,从而增强支承刚度。

(3)主减速器从动锥齿轮的支承型式及安置方法 主减速器从动锥齿轮的支承刚度依轴承的型式、支承间的距离和载荷在支承之间的分布而定。为了增加支承刚度,支承间的距离应尽可能缩小。两端支承多采用圆锥滚子轴承,安装时应使他们的圆锥滚子的大端相向朝内,小端相背朝外。为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。 轿车和轻型载货汽车主减速从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配合固定在差建界壳的突缘上。这种方法对增强刚性效果较好,中型和重型汽车主减速从动锥齿轮多采用有幅式结构并有螺栓或铆钉与差速器壳突缘连结。 (4)主减速器的轴承预紧及齿轮啮合调整 支承主减速器齿轮的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。预紧力的大小与安装形式、载荷大小、轴承刚度特性及使用转速有关。 主动锥齿轮轴承预紧度的调整,可通过精选两轴承内圈间的套筒长度、调整垫圈厚度、轴承与轴肩之间的调整垫片等方法进行。近年来采用波形套筒调整轴承预紧度极为方便,波形套筒安装在两轴承内圈间或轴承与轴肩间。 (5)主减速器的减速型式 主减速器的减速型式分为单级减速、双级减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。 单级主减速器

电机、减速器的选型计算实例

电机减速机的选型计算 1参数要求 配重300kg ,副屏重量为500kg ,初选链轮的分度圆直径为164.09mm ,链轮齿数为27,(详见misimi 手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s 。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 惯惯2121F F G G F h ++-= 其中: 115009.84900G m g N ==?= 223009.82940G m g N ==?= 110.55002501F m a N ==? =惯 120.53001501 F m a N ==?=惯 所以: 49002940250150 2360h F =-++=

合力产生的力矩: 0.16409 23602 193.6262h M F r Nm =?=? = 其中:r 为链轮的半径 链轮的转速为: 0.5 6.1/0.082 v w rad s r === 6.1 (1/60)58.3/min 22w n r ππ === 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 300051.558.3 d n i n === 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 44193.62 5.9500.9 d M T Nm i η===? 初选电机为松下,3000r/min ,额定扭矩为:9.55Nm ,功率3kw 转子转动惯量为7.85X10-4kgm 2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

电机与减速机选用方法

电机与减速机选用方法 用扭矩计算功率的公式功率(w) = 扭矩(nm) * 角速度角速度= 2Pi*转/秒看到A4L的2.0T,计算了一下: 最大扭矩(N·m): 320 最大扭矩转速(rpm): 1500-3900 那么3900的时候的功率 = 320nm * 2 * 3.14 * 3900/60s=130624w = 130kW 几乎就是最大功率了啊 电机功率:P=T*N/9550*η(其中T为扭矩,N为转速,η为机械效率)9550就是转换为角速度电机需要扭矩=9550*电机功率(千瓦)/电机转速n, 一、P= F×v÷60÷η (直线运动) 公式中 P 功率 (kW) ,F 牵引力 (kN),v 速度 (m/min) ,η传动机械的效率二、T=9550 P/N (转动) P—功率,kW;n—电机的额定转速,r/min; T —转矩,Nm。实际功率=K×扭矩×转速,其中K是转换系数 已知转矩减速器速比电机转速怎样求电机功率电机联减速器后输出转矩为T=200NM,减速器速比为i=11,电机转速为1450r/min,求电机功率最小是多少?输出转速ω=(1450÷1.1)×2pi÷60=138.1(rad/s) 电机功率P≥T×ω=200×138.1=27607.94(W)=27.61(kW) 只是理论计算。实际电机功率要考虑减速器与联轴器(联电机与减速器)的传动效率η问题,具体你可根据减速器与联轴器的型号查手册选取。若η=0.9,所以实际电机的最小功率P=T×ω÷η=30.7kW。 减速机的选用: 1 先选速比:先确定负载所需转速(也就是减速机出力轴的输出转速),在用伺服电机的输出转速/减速机轴输出转速=减速比 2 减速机选型:得到以上减速比后,伺服电机的额定输出扭矩X减速比<减速机额定输出扭矩,再更具这个输出扭矩选型,这样可以100%保证在任何情况下减速机都不会崩齿。 3再将伺服电机型号或尺寸报给减速机厂商即可。

小汽车减速器的发展

小汽车减速器的发展 第1章引言 1.1课题研究的目的及意义 汽车主减速器是驱动桥最重要的组成部分,其功用是将万向传动装置传来的发动机转矩传递给驱动车轮,是汽车传动系中减小转速、增大扭矩的主要部件。对发动机纵置的汽车来说,主减速器还有改变动力传输方向的作用。汽车正常行驶时,发动机的转速通常在200至3000r/min左右,如果将这么高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需要很大,齿轮的半径也相应加大,也就是说变速箱的尺寸会加大。另外,转速下降,扭矩必然增加,也加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可以使主减速器前面的传动部件,如变速箱、分动器、万向传动装置等传递的扭矩减小,同时也减小了变速箱的尺寸和质量,而且操控灵敏省力[1]。 1.2汽车主减速器发展现状 改革开放以来,中国的汽车工业得到了长足发展,尤其是加入WTO以后,我国的汽车市场对外开发,汽车工业逐渐成为世界汽车整体市场的一个重要组成部分。同样,车用减速器也随着整车的发展不断成长和成熟起来[3]。 随着高速公路网状况的改善和国家环保法规的完善,环保、舒适、快捷成为客车和货车市场的主旋律。对整车主要总成之一的驱动桥而言,小速比、大扭矩、传动效率高、成本低逐渐成为客车和货车主减速器技术的发展趋势。 产品上,国内卡车市场用户主要以承载能力强、齿轮疲劳寿命高、结构先进、易维护等特点的产品为首选。目前己开发的产品,如陕西汉德引进德国撇N公司技术的485单级减速驱动桥,一汽集团和东风公司的13吨级系列车桥为代表的主减速器技术,都是在有效吸收国外同类产品新技术的基础上,针对国内市场需求开发出来的高性能、高可靠性、高品质的车桥产品。这些产品基本代表了国内车用减速器发展的方向。通过整合和平台化开发,目前国内市场形成了457、460、480、500等众多成型稳定产品,并被用户广泛认可和使用。设计开发上,CAD、CAE、等计算机应用技术,以及AUTOCAD、UG16、CATIA、等设计软件先后应用于主减速器的结构设计和齿轮加工中,有限元分析、数模建立、虚拟试验分析等也被采用,齿轮设计也初步实现了计算机编程的电算化。新一代减速

电机减速器的选型计算实例

电机减速器的选型计算 实例 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电机减速机的选型计算1参数要求 配重300kg,副屏重量为500kg,初选链轮的分度圆直径为164.09mm,链轮齿数为27,(详见misimi手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 其中: 所以: 合力产生的力矩: 其中:r为链轮的半径 链轮的转速为: 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 初选电机为松下,3000r/min,额定扭矩为:9.55Nm,功率3kw转子转动惯量为 7.85X10-4kgm2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

转换到电机轴的转动惯量为: 惯量比为: 电机选型手册要求惯量比小于15,故所选电机减速器满足要求 减速机扭矩计算方法: 速比=电机输出转数÷减速机输出 ("速比"也称"传动比")知道电机功率和速比及,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数

减速器带式输送机传动系统方案

1. 设计任务书 一、设计已知条件: 1、 输入轴功率P=3.8 KW 2、输入轴转速N=960r /min 3、传动比i= 16(减速器内传动比) 4、单向传动,载荷平稳,中型机械 5、设计寿命:1 0年 二、设计参考图 1、传动系统功能图(图一) 2、齿轮传动减速器结构图(图二) 3、齿轮传动减速器装配图(图三) 三、主要零件选材建议 l 、齿轮 8级精度,小齿轮40Cr 钢,调质齿面硬度250HBS;大齿轮45﹟钢,齿面硬度225HBS 。 2、传动轴 选用45#-钢,正火处理,200HBS ,σb =590Mpa 3、减速器上、下座箱材料:灰口铸铁HT200 4、电动机 J02—32—2 P=4KW ,N =1 500r /min 四.设计要求 1:设计说明书1份,字数在5000—10000字。 2、齿轮和轴的设计内容要详细,包括材料与热处理,齿轮的主要参数及几何尺寸,轴的结构,技术要求,强度和刚度的校核。 3、电动机型号选择,轴承选择,减速器上、下座箱基本尺寸,键、轴盖、皮带轮尺寸等要做简要说明。 4、要求总装图纸一张 (1#)、齿轮轴零件图一张(2#图纸)、齿轮的零件图一张(2图纸) 五.毕业设计说明书按下列要求编写: 1,说明书目录 2,概况 3,各零部件设计结构(附图) 4,设计计算步骤、方法所采用的数据、公式及来源 5,设计结果的评价认识及建议,不尽合理处的改进方法 6,设计小结 2. 传动系统方案的拟定 带式输送机传动系统方案如下图所示。 P=4KW N =1 500r /min

带式输送机由电动机驱动。电动机1通过V 带传动2将动力传入两级 圆柱齿轮减速器3,再经过联轴器4,将动力传至输送机滚筒5,带动输 送机6工作。传动系统中经V 带轮减速之后,再通过两级齿轮减速器,其 结构简单,但齿轮相对于轴承位置不对称,因此要求轴有较大的刚度。 3. 电动机的选择 1)传动系统总效率η η5w —输送机滚筒轴至输送带之间的传动效率; ηc —联轴器效率,ηc =0.99; ηg —闭式圆柱齿轮传动效率,η'g =0.97 ηb —对滚动轴承效率,ηb =0.99; ηb —V 带效率,ηv =0.94; ηcy —输送机滚筒效率,ηcy =0.96; 估算传动系统总效率 η=η12η34η45η56η7w 式中 η23=ηv =0.94; η34=ηb ηg =0.99×0.97=0.9603; η45=ηb ηg =0.99×0.97=0.9603; η56=ηb ηc =0.99×0.99=0.9801; η7w =ηb ηcy =0.99×0.95=0.9504; 系统总效率 η=η23η34η45η56η7w =0.94×0.9603×0.9603×0.9801×0.9504=0.8074; 2)电动机型号的选择 根据任务书推荐要求选用Y 系列三相异步电动机,型号为Y112M-4,其主要性能数据如下: P w =2.53 kW Y112M-4 P m =4.0 kW n =1440 r/min

汽车减速器工作原理

汽车减速器工作原理 2008-05-26 23:46中华车检网佚名我要评论(0)我要去社区论坛 -> 汽车减速器工作原理:主减速器是在传动系中起降低转速,增大转矩作用的主要部件,当发动机纵置时还具有改变转矩旋转方向的作用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的,采用圆锥齿轮传动则可以改变转矩旋转方向。将主减速器布置在动力向驱动轮分流之前的位置,有利于减小其前面的传动部件(如离合器、变速器、传动轴等)所传递的转矩,从而减小这些部件的尺寸和质量。 结构种类:为满足不同的使用要求,主减速器的结构型式也是不同的。按参加减速传动的齿轮副数目分,可分为单级式主减速器和双级式主减速器。除了一些要求大传动比的中、重型车采用双级主减速器外,一般微、轻、中型车基本采用单级主减速器。单级主减速器具有结构简单、体积小,重量轻和传动效率高等优点。在双级式主减速器中,若第二级减速在车轮附近进行,实际上构成两个车轮处的独立部件,则称为轮边减速器。这样作的好处是可以减小半轴所传递的转矩,有利于减小半轴的尺寸和质量。轮边减速器可以是行星齿轮式的(见gif-08a),也可以由一对圆柱齿轮副构成。当采用圆柱齿轮副进行轮边减速时(见 gif-08b),可以通过调节两齿轮的相互位置,改变车轮轴线与半轴之间的上下位置关系。这种车桥称为门式车桥,常用于对车桥高低位置有特殊要求的汽车。 按主减速器传动比档数分,可分为单速式和双速式两种。目前,国产汽车基本都采用了传动比固定的单速式主减速器。在双速式主减速器上,设有供选择的两个传动比,这种主减速器实际上又起到了副变速器的作用。 按减速齿轮副结构型式分,可分为圆柱齿轮式、圆锥齿轮和准双曲面齿轮等型式。
在发动机横向布置汽车的驱动桥上,主减速器往往采用简单的斜齿园柱齿轮;在发动机纵向布置汽车的驱动桥上,主减速器往往采用圆锥齿轮和准双曲面齿轮等型式。与圆锥齿轮相比,准双曲面齿轮工作平稳性更好,弯曲强度和接触强度更高,还可以使主动齿轮轴线相对于从动齿轮轴线偏移。当主动齿轮轴线向下偏移时,可以降低传动轴的位置,从而有利于降低车身及整车重心高度,提高汽车的行驶稳定性。 12-11圆锥齿轮和准双曲面齿轮 如图D-C5-3所示为单级主减速器结构,它采用一对准双曲面锥齿轮传动。主动锥齿轮4与输入轴制成一体,用圆锥滚子轴承5和6支承。这两个轴承安装在主减速器壳的轴承孔内,并被台阶轴向定位,用来承受在主减速器工作时,对主动锥齿轮4产生的轴向和径向力。因为主动锥齿轮4处于圆锥滚子轴承5和6支承点的外面,所以让两轴承的小端相对,这能够增大有效支承点的距离,并使轴承5有效支承点距锥齿轮4更近,有利于增加主动锥齿轮的支承刚度。输入轴前端的固定螺母把垫圈、叉形凸缘、轴承6内圈、预紧调整垫片、隔离套管8、轴承5内圈和齿轮前后位置调整垫片等固定在齿轮4的前端面上。 从动锥齿轮1被螺栓固定在差速器壳10上,差速器壳又被两个圆锥滚子轴承3支承在主减速器壳内。因为从动锥齿轮1处于两个圆锥滚子轴承之间,所以让两轴承的大端相对,这能够适当减小两轴承有效支承点的距离,对增加从动锥齿轮的支承刚度是有利的。 在桑塔纳、奥迪100、切诺基等发动机纵置的汽车上,都采用了以上形式的主减速器。 1-从动锥齿圈;2-薄垫片;3-差速器轴承;4-主动锥齿轮;5-主动锥齿轮后轴承;6-主动锥齿轮前轴承;7-主动锥齿轮密封圈;8-隔离套管;9-半轴齿轮;10-差速器壳;11-进油道

单级减速器

单级减速器

单级减速器设计说明书 设计题目: 学号: 学生姓名: 指导教师: 完成日期:

设计课题:机械设计基础课程设计 一,传动方案拟定。 设计单级圆柱齿轮减速器和一级带传动。 1、工作为双班工作制,空载起动,工作载荷平稳,电压380/220V的三相交流电源。 2、原始数据: 输送带有效拉力:F=3000 N 输送带工作速度:v=1.2 m/s 输送机滚筒直径: d=400 mm

方案拟定:1 采用V带传动与齿轮传动的组合,即可满足传动比要求,同时由于带传动具有良好的缓冲,吸振性能,适应大起动转矩工况要求,结构简单,成本低,使用维护方便。 1.电动机 2.V带传动 3.圆柱齿轮减速器 4.连轴器 5.滚筒 二、运动参数和动力参数计算 (1)电动机的选择 1、电动机类型和结构的选择:选择Y系列三相异步电动机,此系列电动机属于一般用途的全封闭自扇冷电动机,其结构简单,工作可靠,价格低廉,维护方便,适用于不易燃,不易爆,无腐蚀性气体和无特殊要求的机械。 2. 、电动机容量选择: 电动机所需工作功率为: 式(1):Pd=PW/ηa() 由电动机至运输带的传动总效率为: η总=η 1×η22×η 3

式中:η1、η2、η3、η4分别为带传动、轴承、齿轮传动。 η1=0.96η2=0.99 η3=0.987η η总=0.91 所以:电机所需的工作功率: Pd=PW/ηa =3.2/0.91=3.52 kw 3.额定功率p ed=5.5 . 查表二十章20-1 4. 根据手册P7表1推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’=3~6。 取V带传动比I1’=2~4。则总传动比理论范围为:Ia’=6~24。 则电动机转速可选为: N’d=I’a×n卷筒=78*(2-4)*(3-6)=468-1872r/min 76*(2-4)*(3-6)=468-1872r/min 则符合这一范围的同步转速有:1000、1500 (2)分配传动比I总=1420/52=11.1

汽车主减速器设计开题报告

扬州大学 毕业设计开题报告 学生姓名:陈东民学号:090007303 学院、系:广陵学院 专业:机械设计及其自动化(汽车工程) 设计题目: 汽车差速器-主减速器总成设计 指导教师:_____________________ 高晓宏 _______________ 2013年4月1日

毕业设计开题报告

通过性有着独特的作用,是汽车设计的重点之一。 1.2国内外汽车车桥的发展现状及前景: 随着目前世界汽车领域新理论,新技术,新工艺,新材料的发展,车桥的结构较传统形式有了很大的改观?这些变化主要是为提高汽车的舒适性、安全性和可靠性。 根据汽车工业年鉴相关资料,2006年汽车销量达到722万辆,2007年中国汽车销售879.15万辆,2008年汽车产销量将突破1000万,2010年汽车销售规模将达到1263万辆。 我国车桥产量虽然以10%以上的速度增长,2010年将达到1335万台,但车桥行业的总体利润率不高,行业资金利税率也在不断下降。另外由于整车厂的产品扩展,使车桥企业向多品种、跨地域发展,车桥企业正面临产业上下游的大力挤压,预期未来3-5年,车桥企业将出现更激烈、更正面的竞争与整合。轻型桥市场,2010年预计轻卡、轻客、SUV、皮卡的市场需求总计将达到212.4万辆,特别是中高档轻卡、中高档皮卡、中高档SUV 等市场非常大。同时,轻型整车厂车桥采购体系相对开放,以及轻型车桥企业曙光车桥、湖南车桥、合肥车桥、江铃底盘、福建台亚等市场份额普遍不高,这些有利因素都将促进轻型桥的发展。重型桥市场竞争激烈,进入风险巨大。国内重型车桥生产企业主要集中在山汽改、东风车桥、济南桥箱厂、陕西汉德车桥、重庆红岩和安凯车桥等几家企业,这些企业几乎占到国内重卡车桥90%以上的市场;大中型客车企业车桥市场自主生产较多,社会化采购主要集中在宇通与金龙等企业。 随着中国公路建设水平的不断提高,公路运输车辆正向大吨位、多轴化、大马力方向发展,使得汽车车桥总成也向传动效率高的单级减速方向发展。中国重汽的一位工程师 告诉记者,单级驱动桥结构简单,机械传动效率高,易损件少,可靠性高。由于单级桥传动链减少,摩擦阻力小,比双级桥省油,噪声也小。过去,单级桥因为桥包尺寸大,离地间隙小,导致通过性较差,应用范围相对较小,但是现在公路状况已经得到了显著改善,汽车使用条件对通过性的要求降低。这种情况下,单级桥的劣势得以忽略,而其优势不断突出,所以在公路运输中的应用范围肯定越来越广。目前我们卡车中,双级减速桥的应用 比例还在60%左右。 不过,有专家认为,双级减速桥的缺点也比较明显:传动效率相对较低,油耗高;长途运输容易导致汽车轮毂发热,散热效果差,为了防止过热发生爆胎,不得不增加喷淋 装置;结构相对复杂,产品价格高等。因此,在欧美重型汽车中采用该结构的车桥产品呈下降趋势,日本采用该结构的产品更少。我国双级桥使用比例下降也是必然的,有专家预测,今

减速机的选型与使用

减速机的选型与使用 一、选型指南 为了选到合适的减速电机,有必要了解该减速电机所驱动机器的详尽技术特性,就必须确定一个使用系数Fb,使用系数Fb. 减速电机的选用首先应确定一下技术参数:每天工作小时数;每小时启停次数;每小时运转周期;可靠度要求;工作机转矩T工作机;输出转速n出;载荷类型;环境温度;现场散热条件; 减速机通常是根据恒转矩、启停不频繁及常温的情况设计的,其许用输出转矩T由下式确定: T=T出X FB使用系数 T出----------减速电机输出扭矩,FB-------减速电机使用系数 传动比i i=n 入/ n出电机功率P(KW) P=T出*n出/9550*η输出转矩T出(N.m)T出=9550*P*η/n 出式中:n入—输入转速η—减速机的传动效率 在选用减速电机时,根据不同的工况,必须同时满足以下条件:1、T出≥T工作机 2、T=FB总*T工作机式中:FB总—总的使用系数,FB总=FB*FB1*KR*KW FB—载荷特性系数,KR—可靠度系数 FB1—环境问的系数; 二、减速机安装注意事项 安装减速机时,应重视传动中心轴线对中,其误差不得大于所用联轴器的使用补偿量。对中良好能延长使用寿命,并获得理想的传动效率。在输出轴上安装传动件时,不允许用锤子敲击,通常利用装配夹具和轴端的内螺纹,用螺栓将传动件压入,否则有可能造成减速机内部零件的损坏。最好不采用钢性固定式联轴器,因该类联轴器安装不当,会引起不必要的外加载荷,以致造成轴承的早期损坏,严重是甚至造成输出轴的断裂。 减速机应牢固地安装在稳定水平的基础或底座上,排油槽的油应能排除,且冷却空气循环流畅,基础不可靠,运转时会引起振动及噪音,并促使轴承及齿轮受损,当传动联件有凸出物或采用齿轮、链条传动时,应考虑加装防护装置,输出轴上承受较大的径向载荷时,应选用加强型。 按规定的安装装置保证工作人员能方便地靠近油标,通气塞、排油塞。安装就位后,应按次序全面检查安装位置的准确性,各紧固件压紧的可靠性,安装后应能灵活转动。减速机采用油池飞溅润滑,在运行前用户需将通气孔的螺栓取下,换上通气塞。按不同安装位置,并打开油位塞螺钉检查有为线的高度,从油位塞处加油至润滑油从油位塞螺孔溢出为止,拧上油位塞确定无误后,方可进行空载试运转,时间不得少于2小时。运转应平稳,无冲击、振动、杂音及渗油漏油现象,发现异常应及时排除。 经过一定时期应再检查油位,以防止机壳可能造成的泄漏,如环境温度过高或过低时,可改变润滑油的牌号。 三、轴装式减速机的安装 1、减速机与工作机的联接 减速机直接套装在工作机主轴上,当减速机运转时,作用在减速机箱体上的反力矩,又安装在减速机箱体上的反力矩支架或由其他方法来平衡,机直接相配,另一端与固定支架联接 2、反力矩支架的安装 反力矩支架安装在减速机朝向工作机的那一侧,以减小附加在工作机轴上的弯矩。 反力矩支架与固定支撑联接端的轴套使用橡胶等弹性体,以防止发生挠曲并吸收所产生的转矩波动 3、减速机与工作机的安装关系 为了避免工作机主轴挠曲及在减速机轴承上产生附加力,减速机与工作机之间的距离,在不影响正

一级减速器设计(带传动)

减速器在原动机和工作机或者是执行机构之间起到匹配转速和传递转矩的作用,在现代机械中应用极为广泛。减速器按照用途可以分为通用减速器和专用减速器两大类,两者的设计、制造和使用特点各不相同。20世纪70-80年代,世界上的减速器技术有了很大的发展,并且与新技术革命的发展紧密结合。 减速器多用来作为原动机和工作机之间的独立的闭式传动装置。用来降低转速和增大转矩,以满足工作的需要。在某中场合也可用作增速传动装置,成为增速器。根据传动型式,减速器可分为齿轮、蜗杆、和齿轮-蜗杆减速器;根据齿轮形状不同,可分为圆柱、圆锥和圆柱-圆锥减速器,根据传动的级数,可分为一级和多级减速器;根据传动的结构布置形式,还可分为展开式、同轴式和分流式减速器。 减速器的种类虽然是多种多样的,但是它们的工作原理是相同的,都是工作在原动机和从动机(即执行机构之间)。减速器减速器在现实生活当中的应用是十分广泛的,在现在以及未来减速器都会在人们的日常生活中起到重要的作用,本次设计主要就是针对简单的一级减速器进行设计。

一.序言 1.毕业设计的目的 毕业设计是机电工程类教学过程的一个重要环节,其目的在于: 1)运用所学的机械设计课程的理论,以及有关课程的知识,进行一次较为全面的综合设计练习,培养自己的动手能力,加深对所学知识的理解,也是达到毕业要求的一部分。 2)通过这一设计环节,掌握一般传动装置的设计方法、设计步骤等 3)通过这一设计掌握具有运用标准、规范、手册、图册和查阅有关技术资料的能力,进一步培养独立分析问题和解决问题的能力。 2.毕业设计的内容和步骤 ⑴毕业设计的内容:以一级减速器的设计为主,其设计内容包括 ①拟定传动装置的传动方案。 ②电动机的选择。 ③传动装置的运动参数和动力参数的计算 ④传动件及轴的设计计算 ⑤轴承、键的选择和校核计算及减速器润滑和密封的选择 ⑥减速器的结构和附件设计 ⑦零件图的绘制等 ⑵毕业设计的步骤 第一阶段:拟定传动装置的转动方案;选择电动机;传动装置总传动比的确定及各级传动比分配;计算轴的功率、转矩和转速。 第二阶段:传动零件及轴的设计计算。如齿轮传动,带传动及轴径的初算。 第三阶段:设计及相关的零件图。包括减速箱箱体的设计;轴的设计(轴的机构);轴承的选择;键的选择;减速器的润滑和密封方式的选择。 第四阶段:相关零件图的绘制及结束语。 二.传动装置的总体设计 1.减速器的简要介绍 减速器多用来作为原动机和工作机之间的独立的闭式传动装置。用来降低转速和增大转矩,以满足工作的需要。在某中场合也可用作增速传动装置,成为增速器。根据传动型式,减速器可分为齿轮、蜗杆、和齿轮-蜗杆减速器;根据齿轮形状不同,可分为圆柱、圆锥和圆

相关文档