文档库 最新最全的文档下载
当前位置:文档库 › ATX开关电源维修图解

ATX开关电源维修图解

ATX开关电源维修图解
ATX开关电源维修图解

ATX开关电源维修图解

计算机A TX开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。

首先,我们要知道计算机开关电源的工作原理。电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。

此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。通过对多台电源的维修,总结出了对付电源常见故障的方法。

一、在断电情况下,“望、闻、问、切”

由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。

用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管VT1、VT2击穿。

然后检查直流输出部分。脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。

二、加电检测

检修A TX开关电源,应从PS-ON和PW-OK、+5V SB信号人手。脱机带电检测A TX 电源待机状态时,+5V SB、PS-ON信号高电平,PW-OK低电平,其他电压无输出。A TX 电源由待机状态转为启动受控状态的方法是:用一根导线把A TX插头14脚PS-ON信号,与任一地端3、5、7、13、15、16、17中的一脚短接,此时PS-ON信号为零电平,PW-OK、+5V SB信号为高电平,开关电源风扇旋转,A TX插头+3.3V、+5V、+12V有输出。

在通过上述检查后,就可通电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。一般来讲应重点检查一下电源的输入端,开关三极管,电源保护电路以及电源的输出电压电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量TL494的4脚电压,正常值应为0.4V以下,若测得电压值为+4V以上,则说明电源的处于保护状态下,应重点检查产生保护的原因。由于接触到高电压,建议没有电子基础的朋友要小心操作。

三、常见故障

1.保险丝熔断

一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这些元器件有无击穿、开路、损坏等。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出。如果没有发现上述情况,则用万用表进行测量,如果测量出来两个大功率开关管e、c极间的阻值小于100kΩ,说明开关管损坏。其次测量输入端的电阻值,若小于200kΩ,说明后端有局部短路现象。

2.无直流电压输出或电压输出不稳定

如果保险丝是完好的,可是在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。这时,首先用万用表测量系统板+5V电源的对地电阻,若大于0.8Ω,则说明电路板无短路现象;然后将电脑中不必要的硬件暂时拆除,如硬盘、光盘驱动器等,只留下主板、电源、蜂鸣器,然后再测量各输出端的直流电压,如果这时输出为零,则可以肯定是电源的控制电路出了故障。

3.电源负载能力差

电源负开能力差是一个常见的故障,一般都是出现在老式或是工作时间长的电源中,主要原因是各元器件老化,开关三极管的工作不稳定,没有及时进行散热等。应重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏、晶体管工作点未选择好等。

4、通电无电压输出,电源内发出吱吱声。

这是电源过载或无负载的典型特征。先仔细检查各个元件,重点检查整流二极管、开关管等。经过仔细检查,发现一个整流二极管1N4001的表面已烧黑,而且电路板也给烧黑了。找同型号的二极管换下,用万用表一量果然是击穿的。接上电源,可风扇不转,吱吱声依然。用万用表量+12V输出只有+0.2V,+5V只有0.1V。这说明元件被击穿时电源启动自保护。测量初级和次级开关管,发现初级开关管中有一个已损坏,用相同型号的开关管换上,故障排除,一切正常。

5、没有吱吱声,上一个保险丝就烧一个保险丝。

由于保险丝不断地熔断,搜索范围就缩小了。可能性只有3个:1、整流桥击穿;2、大电解电容击穿;3、初级开关管击穿。电源的整流桥一般是分立的四个整流二极管,或是将四个二极管固化在一起。将整流桥拆下一量是正常的。大电解电容拆下测试后也正常,注意焊回时要注意正负极。最后的可能就只剩开关管了。这个电源的初级只有一个大功率的开关管。拆下一量果然击穿,找同型号开关管换上,问题解决。

其实,维修电源并不难,一般电源损坏都可以归结为保险丝熔断、整流二极管损坏、滤波电容开路或击穿、开关三极管击穿以及电源自保护等,因开关电源的电路较简单,故障类

型少,很容易判断出故障位置。只要有足够的电子基础知识,多看看相关报刊,多动动手,平时注意经验的积累,电源故障是可以轻松检修的。

健全的PC电源中都具备9种颜色的导线(目前主流电源都省去了白线),它们的具体功能相信还有不少网友搞不清楚,今天就给大家详细的讲解一下。

黄色:+12V

黄色的线路在电源中应该是数量较多的一种,随着加入了CPU和PCI-E显卡供电成分,+12V的作用在电源里举足轻重。

+12V一直以来硬盘、光驱、软驱的主轴电机和寻道电机提供电源,及为ISA插槽提供工作电压和串口设备等电路逻辑信号电平。+12V的电压输出不正常时,常会造成硬盘、光驱、软驱的读盘性能不稳定。当电压偏低时,表现为光驱挑盘严重,硬盘的逻辑坏道增加,经常出现坏道,系统容易死机,无法正常使用。偏高时,光驱的转速过高,容易出现失控现象,较易出现炸盘现象,硬盘表现为失速,飞转。目前,如果+12V供电短缺直接会影响PCI-E 显卡性能,并且影响到CPU,直接造成死机。

蓝色:-12V

-12V的电压是为串口提供逻辑判断电平,需要电流不大,一般在1A以下,即使电压偏差过大,也不会造成故障,因为逻辑电平的0电平从-3V到-15V,有很宽的范围。

红色:+5V

+5V导线数量与黄色导线相当,+5V电源是提供给CPU和PCI、AGP、ISA等集成电路的工作电压,是电脑中主要的工作电源。目前,CPU都使用了+12V和+5V的混合供电,对于它的要求已经没有以前那么高。只是在最新的Intel A TX12V 2.2版本加强了+5V的供电能力,加强双核CPU的供电。它的电源质量的好坏,直接关系着计算机的系统稳定性。

白色:-5V

目前市售电源中很少有带白色导线的,白色-5V也是为逻辑电路提供判断电平的,需要电流很小,一般不会影响系统正常工作,基本是可有可无。

橙色:+3.3V

这是A TX电源专门设置的,为内存提供电源。最新的24pin主接口电源中,着重加强了+3.3V供电。该电压要求严格,输出稳定,纹波系数要小,输出电流大,要20安培以上。一些中高档次的主板为了安全都采用大功率场管控制内存的电源供应,不过也会因为内存插反而把这个管子烧毁。使用+2.5V DDR内存和+1.8V DDR2内存的平台,主板上都安装了电压变换电路。

紫色:+5VSB(+5V待机电源)

A TX电源通过PIN9向主板提供+5V 720MA的电源,这个电源为WOL(Wake-up On Lan)和开机电路,USB接口等电路提供电源。如果你不使用网络唤醒等功能时,请将此类功能关闭,跳线去除,可以避免这些设备从+5VSB供电端分取电流。这路输出的供电质量,直接影响到了电脑待机是的功耗,与我们的电费直接挂钩。

绿色:P-ON(电源开关端)

通过电平来控制电源的开启。当该端口的信号电平大于1.8V时,主电源为关;如果信号电平为低于1.8V时,主电源为开。使用万用表测试该脚的输出信号电平,一般为4V左右。因为该脚输出的电压为信号电平。这里介绍一个初步判断电源好坏的土办法:使用金属

丝短接绿色端口和任意一条黑色端口,如果电源无反应,表示该电源损坏。现在的电源很多加入了保护电路,短接电源后判断没有额外负载,会自动关闭。因此大家需要仔细观察电源一瞬间的启动。

灰色:P-OK(电源信号线)

一般情况下,灰色线P-OK的输出如果在2V以上,那么这个电源就可以正常使用;如果P-OK的输出在1V以下时,这个电源将不能保证系统的正常工作,必须被更换。这也是判断电源寿命及是否合格的主要手段之一。

认识导线种类作用是DIY玩家的必修课,是菜鸟用户晋级的必经之路,大家掌握了电源导线种类可以更清晰的认识电源的输出规格,方便大家选购电源和排除故障。

开关电源的维修-通俗易懂篇很实用

开关电源维修 开关电源在工业自动化时代,已经被用于到所有行业,其精密电路板和对电流电源的严格要求,使得开关电源电路板维修成为PCB维修行业中难度比较大的一中常见故障设备。 在开关电源维修之前,我们必须了解开关电源的工作原理,电源先将高电压交流电通过全桥二极管整流以后成为高电压的波动直流电,再经过电容滤波以后成为较为平滑的高压直流电。这时,控制电路控制大功率开关管将高压直流电按照一定的高频频率分批送到高频变压器的初级。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使负载工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关管发出信号控制电压上下调整的幅度。在开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏,再就是脉宽调制器的反馈和保护部分。 一、在断电情况下 首先,在开关电源没通电前,先用万用表测一下高压电容两端的电压先。如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放掉,此电压有300多伏,如果不小心被阁下玉手摸到,一定让你留下难忘的记忆! 由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝是否熔断,再观察电源的内部情况,如果发现电源的

PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。 用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关管击穿。然后检查直流输出部分脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。 二、加电检测 在通过以上检测后,就可以进行加电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。一般来讲应重点检查一下电源的输入端,开关三极管,电源保护电路以及电源的输出电压电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量PWM芯片保护输入脚的电压,如果电压超出规定值,则说明电源的处于保护状态下,应重点检查产生保护的原因。由于接触到高电压,建议没有电子基础的朋友需要小心操作。 三、常见故障 1.保险丝熔断 一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流

ATX开关电源PCB

湖南工程学院 电子实习 课题名称PCB制板与工艺设计 专业班级自动化0901 姓名彭玉昆 学号200901020122 指导教师赵葵银,邱泓等 2012年 6 月22日

湖南工程学院 电子实习任务书课题名称PCB制板与工艺设计 专业班级自动化0901 学生姓名彭玉昆 学号 200901020122 指导老师赵葵银、邱泓等 审批 任务书下达日期 2012 年 6月18日 任务完成日期2012年6月22日

设计内容与设计要求 设计内容: 对给定的电路(按学号进行分配),使用Protel软件,进行电路图绘制,进行PCB制版设计,设计为双面板,板子大小合适,进行合理的规则设置,PCB板子的元器件布局、布线合理,要求补泪滴、铺铜,电源线与地线不小于20mil,要求按工业化标准设计,并进行必要的合理的抗干扰处理。 设计要求: 1)初步分析电路图,按16纸张大小,绘制电路图,若超出16K,则分页绘制。 2)查阅元器件参数与封装,没有的封装要求自建封装库。 3)进行ERC规则检查,生成正确的网络表(不打印); 4)按工业化标准进行PCB制板与工艺设计(参数设置,规则设置,板子大小确定,布局,布线,补泪滴,铺铜,抗干扰处理等)。 5)生成的报表有(网络表,板子信息表,材料清单表,数控钻孔文件,元件拾放文件); 6)写说明书(以图为主,文字为辅) 7) 必须打印的文档为:①原理图②材料清单③顶层④底层⑤各层叠印(各层重叠一起打印)⑥丝印层⑦3D效果图。其他的表单或PCB图层只生成,不打印。 8)提高说明书及电子文档

主要设计条件 1.现代电子设计实验室(EDA); 2.Protel软件。 3.任务电路图; 4.设计书籍与电子资料若干。 5.示范成品PCB样板若干,示范电子成品若干。 说明书格式 目录 第1章电路图绘制 第2章元器件参数对应封装选择及说明(有适当文字说明)第3章 ERC与网络表(有适当文字说明,网络表不需打印)第4章 PCB制板与工艺设计(有适当文字说明) 第5章各种报表的生成 第6章 PCB各层面输出与打印 第7章总结 参考文献

详细电脑开关电源维修图解及原理图解大字版

电脑开关电源维修图解 一颗强劲的CPU可以带着我们在复杂的数码世界里飞速狂奔,一块最酷的显示卡会带着我们在绚丽的3D世界里领略那五光十色的震撼,一块最棒的声卡更能带领我们进入那美妙的音乐殿堂。相对于CPU,显示卡、声卡而言,电源可能是微不足道的,我们对它的了解也不是很多,可是我们必须知道,一个稳定工作的电源,是使我们计算机能够更好工作的前提。 计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电 路知识,就可以轻松的维修电源。 首先,我们要知道计算机开关电源的工作原理。电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。

此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。通过对多台电源的维修,总结出了对付电源常见故障的方法。

一、在断电情况下,“望、闻、问、切” 由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB 板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。

开关电源常见四大故障及检修方法

开关电源常见四大故障及检修方法 开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于深圳开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 1. 无输出,保险管正常这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 2. 保险烧或炸主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险

烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 3. 有输出电压,但输出电压过高这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4. 输出电压过低除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a. 开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b. 输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c. 开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。 12v开关电源维修分析 一.开关电源不启振,出现这种情况,我们首先要查看开关频率是否正确、保护电路是否封锁、电压反馈电路、电流反馈电路又没问题以及开关管是否击穿等。

开关电源维修步骤及常见故障分析 - 电源

开关电源维修步骤及常见故障分析- 电源 1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。 2、第一步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。 3、然后,对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常,接着检测PWM组件的工作状态,测量其电源输入端VC ,参考电压输出端VR ,启动控制Vstart/Vcontrol端电压是否正常,利用220VAC/220VAC隔离变压器给开关电源供电,用示波器观测PWM模块CT端对地的波形是否为线性良好的锯齿波或三角形,如TL494 CT端为锯齿波,FA5310其CT端为三角波。输出端V0的波形是否为有序的窄脉冲信号。 4、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降。当R断路后无VC,PWM 组件无法工作,需更换与原来功率阻值相同的电阻。当PWM组件启动电流增加后,可减小R值到PWM组件能正常工作为止。在修一台GE DR电源时,PWM模块为UC3843,检测未发现其他异常,在R(220K)上并接一个220K的电阻后,PWM组件工作,输出电压均正常。有时候由于外围电路故障,致使VR端5V电压为0V,PWM组件也不工作,在修柯达8900相机电源时,遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM 组件正常工作,输出电压均正常。 5、当滤波电容上无380VDC左右电压时,说明PFC电路没有正常工作,PFC模块关键检测脚为电源输入脚VC,启动脚Vstart/control,CT和RT脚及V0脚。修理一台富士3000相机时,测试一板上滤波电容上无380VDC电压。VC,Vstart/control,CT和RT波形以及V0波形均正常,测量场效应功率开关管G极无V0 波形,由于FA5331(PFC)为贴片元件,机器用久后出现V0端与板之间虚焊,V0信号没有送到场效应管G极。将V0端与板上焊点焊好,用万用表测量滤波电容有380VDC电压。当Vstart/control 端为低电平时,PFC亦不能工作,则要检测其端点与外围相连的有关电路。

ATX开关电源维修图解

ATX开关电源维修图解 计算机ATX开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。 首先,我们要知道计算机开关电源的工作原理。电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。

此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。通过对多台电源的维修,总结出了对付电源常见故障的方法。

一、在断电情况下,“望、闻、问、切” 由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。

解析开关电源电压输出低的原因和检修方法

解析开关电源电压输出 低的原因和检修方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

解析开关电源电压输出低的原因和 检修方法 1、开关电源电压输出低的原因 (1)220V交流电压输入和整流滤波电路对开关管提供的工作电压不够,超出脉宽调整电路控制范围。 (2)负载电路存在过流引起开关电源负载加重而导致输出电压下降。 (3)开/关机切换错误,行扫描电路刚开始工作瞬间,开关电源即处于待机状态,此类故障适用于无预备电源的机器,CPu电源取自同一个电源,非副电源提供。 (4)开/关机接口电路末端因故障处于开机与待机之间的状态,从而导致开关电源输出电压低于正常值高于待机值。 (5)保护电路末端因故障进入导通状态,使电源进入弱振状态,引起开关电源输出电压下降。 (6)整流输出电路中二极管和滤波电容、限流电阻损坏引起输出电压低。 (7)脉宽调制电路故障,不能对开关电源输出电压的变化作出正确的响应,对开关管基极电压调整方向不对,从而造成开关电源输出电压低。 (8)正反馈电路中的正反馈电阻值变化,续流二极管性能变质或恒流源故障,使正反馈量不足,导致振荡周期变长,振荡频率下降,从而引起开关电源输出电压低。 (9)它激式开关电源因未得到行逆程脉冲而工作于低频状态,造成输出电压低。 2、判断故障的方法与步骤 从上述分析的原因看出,引起电压低的原因涉及到了开关电源自身的各个部分和与开关电源相关的所有电路,在检修时应先缩小故障范围。 (1)先测开关管c极电压,确认开关管供电正常。 (2)根据开关电源各个输出端电压判断故障。 开关电源有的输出端电压正常,有的低于正常值。故障在输出电压低的这个整流输出电路,应对电路中的限流电阻、整流二极管、滤波电容进行检查代换,若限流电阻发烫,说明负载过流,查负载。 开关电源各路输出均低。这种情况说明负载和整流输出电路均正常,故障在开关电源的正反馈电路、脉宽调整、开/待机电路、保护电路。 输出电压有的下降比例大,有的输出电压下降比例小。测量结果说明故障在输出电压下降比例大的电路。此时可断开此路负载,如果断开的是行电路,应接假负载。在断开负载后,再测开关电源各输出端电压,若恢复正常,可判断所断电路的负载有过流现象。若仍不正常,说明故障在该整流滤波电路。 3、断开主负载、接上灯泡,判断是否负载故障

台式计算机ATX开关电源检修技巧

台式计算机ATX开关电源检修技巧 摘要:针对台式计算机ATX 开关电源主要故障,从ATX 开关电源的结构特点及基本工作过程分析出发,根据多年教学和维修经验,提出了通过对关键测试点波形和参数的检测,确定故障范围,对故障范围内的易损元件观测判断,能很快找到损坏元件,快速修复开关电源的新方法,对计算机维修人员和教学、自学人员有一定的参考价值和应用价值。 由于ATX 电源便于实现计算机的远程控制和唤醒,近年来应用比较普遍。ATX 电源电路结构较复杂,各部分电路不但在功能上相互配合、相互渗透,且各电路参数设置非常严格,稍有不当则电路不能正常工作。台式计算机电源电路故障在计算机故障中占有较高的比例,大多数计算机用户和维修人员,对其结构和工作过程不熟悉,遇到与电源有关的故障不能准确判断是哪部分电路的故障,哪个元件的故障,有时不能确定电源故障或是主板上其他电路或设备的故障,给计算机的使用和维修带来一定的困难。笔者根据多年教学和维修经验,总结出关键测试点检测和易损元件观测查找故障的方法,即对故障现象的分析确定关键测试点,通过对关键测试点的波形和参数的测试,可以快速确定故障范围,通过对故障范围内易损元器件的观测,能很快找到故障元器件,更换元件修复计算机电源。 1 ATX 开关电源的特点及工作过程 台式计算机ATX 开关电源是独立的单元电路,由待机电源电路和主电源电路两部分组成。与AT 电源不同,它取消了传统的市电开

关,主机关机并为彻底断电,+5VSB 电源仍然存在,依靠+5VSB 控制信号的组合来实现电源的开启和关断,实现开闭自动管理和远程唤醒通信联络。主电源电路只有主机开启,主电源电路被唤醒时才开始工作,主要输出+3.3、5、-5、+12、-12 V 5 种直流电压,通过多组电源输出插头与主机连接,为计算机提供各种优质的工作电源,ATX开关电源结构如图1 所示。 图1 ATX 开关电源结构 待机电源电路采用单管自激振荡方式,不管主机是否开启,只要接上市电电源,它就开始工作。300 V 直流电压同时加到主开关管、主开关变压器、待机电源开关管、待机电源开关变压器。由于此时主开关管没有开关信号,处于截止状态,因此主电源开关变压器上没有电压输出。由于待机电源电路设计成单管自激式振荡方式,300 V 直流电加到待机电源开关管和待机电源开关变压器后,待机电源开关管立即开始工作,在待机电源开关变压器的次级上输出二组交流电压,经整流滤波后,输出+5VSB 和+12 V 电压,+5VSB 加到主板上作为

电脑ATX开关电源维修手册附电子图

一、概述 ATX开关电源的主要功能是向计算机系统提供所需的直流电源。一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。它将市电整 流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。其外观图和内部结构实物图见图1和图 2所示。 ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V(0.5A)、+12V(10A)、—12V(1A)、+3.3V(14A)、 +5VSB(0.8A)。为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。

二、工作原理 ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及 多路直流稳压输出电路、自动稳压稳流与保护控制电路。参照实物绘出整机电路图,如图3所示。 1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接 为开关电源控制电路提供工作电压。如图4所示,交流电AC220V经过保

险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。 TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电 窜入后级直流电路造成高频辐射干扰。R2和R3为隔离平衡电阻,在电路中对C5和C6起平均分配电压作用,且在关机后,与地形成回路,快速泄放C5、C6上储存 的电荷,从而避免电击。 2、高压尖峰吸收电路 如图5所示,D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖 峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 3、辅助电源电路 如图6所示,整流器输出的+300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极 提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往 Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时 D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚 ,同时T3次级绕组产生的感应电动势经D50、C04整流滤波后,一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导 通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极 管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈 绕组上的感应电动势开始下降,最终使T3③~④反馈绕组感应电动势反相(上负下正),并与C02电压叠加后送往Q03的b极,使b极电位变负,此时开关管Q03因 b极无启动电流而迅速截止。

开关电源维修手册

开关电源维修手册 目录引言 一、二、三、 LLC谐振变换器原理 2 LLC 谐振腔之元件设计3 L6598\L6599 芯片资 料 .................................................................. ....错误!未定义书签。 1、L6599 芯片介绍................................................................... ............................ 错误!未定义书签。 2、芯片与典型方框 图 .................................................................. ........................................................... 5 3、PIN 脚功能................................................................... ..................................................................... ... 5 4、典型电源系统 图 .................................................................. ............................................................... 6 5、振荡器...............................................................................................................7 6、工作在轻载或无载时 (8) 四、 L6599 的工作流程 1、 L6599 供电回路………………………………………………………………………………………. 8 2、 L6599 的启动.......................................................................................................9 3、 L6599 稳压原理 (1) 0 4、L6599 的 SCP 保护及次级 OCP 保护 (11) 附: 过流延时保护电路 (12) 2007-12-20 1 DQA 内部专用资料

ka开关电源维修

k a开关电源维修 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

在国产的显示器中,电源PWM控制电路最常用的集成电路型号就是UC3842(或KA3842).下面简单介绍一下UC3842好坏的判断方法:在更换完外围损坏的元器件后,先不装开关管,加电测UC3842的7脚电压,若电压在10-17V间波动,其余各脚也分别有波动的电压,则说明电路已起振,UC3842基本正常;若7脚电压低,其余管脚无电压或不波动,则UC3842已损坏.在UC3842的7、5脚间外加+17V左右的直流电压,若测8脚有+5V电压,1、2、4、6脚也有不同的电压,则UC3842基本正常,工作电流小,自身不易损坏.它损坏的最常见原因是电源开关管短路后,高电压从G极加到其6脚而致使其烧毁.而有些机型中省去了G极接地的保护二极管,则电源开关管损坏时,UC3842和G极外接的限流电阻必坏.此时直接更换即可.需要注意的是,电源开关管源极(S极)通常接1个小阻值大功率的电阻作为过流保护检测电阻.此电阻的阻值一般在0.2-0.6 之间,大于此值会出现带不起负载的现象(就是次极电压偏低).由于UC3842(KA3842)的工作电压和输出功率均与UC3843(KA3843)相差甚远,因此,它们之间是不能直接代替的,这一点在维修工作中必须要注意.3842系列和3843系列在启动电压和关闭电压方面也存在着较大的区别.前者的启动电压为16V,关闭电压为10V;后者的启动电压为8.5V,关闭电压为7.6V。这两个系列的IC不能直接代换。如确有必要用后者代换前者时,要对电路加以改造方可。

开关电源的工作原理和维修

电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 二.开关电源的组成 开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。 1.主电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。 输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。 逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2.控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 3.检测电路 提供保护电路中正在运行中各种参数和各种仪表数据。 4.辅助电源 实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。

三.开关电源的工作原理 开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。 VO=TON/T*Vi VO 为负载两端的电压平均值 TON 为开关每次接通的时间 T 为开关通断的工作周期

开关电源的检修思路和检修方法

开关电源的检修思路和检修方法 开关电源简化电路图 变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向——振荡回路、稳压回路、保护回路和负载回路等。 看一下电路中有几路脉络。 1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N 2、D1、C1形成振荡芯片的供电电压。这三个环节的正常运行,是电源能够振荡起来的先决条件。 当然,PC1的4脚外接定时元件R2、C2和PC1芯片本身,也构成了振荡回路的一部分。 2、稳压回路:N 3、D3、C4等的+5V电源,R7—R10、PC3、R5、R6等元件构成了稳压控制回路。 当然,PC1芯片和1、2脚外围元件R3、C3,也是稳压回路的一部分。 3、保护回路:PC1芯片本身和3脚外围元件R4构成过流保护回路;N1绕组上并联的D2、R6、C4元件构成了IGBT的保护电路;实质上稳压回路的电压反馈信号——稳压信号,也可看作是一路电压保护信号。但保护电路的内容并不仅是局限于保护电路本身,保护电路的起控往往是由于负载电路的异常所引起。 4、负载回路:N3、N4次级绕组及后续电路,均为负载回路。负载回路的异常,会牵涉到保护回路和稳压回路,使两个回路做出相应的保护和调整动作。 振荡芯片本身参与和构成了前三个回路,芯片损坏,三个回路都会一齐罢工。对三个或四个回路的检修,是在芯片本身正常的前提下进行的。另外,要像下象棋一样,用全局观念和系统思路来进行故障判断,透过现象看本质。如停振故障,也许并非由振荡回路元件损坏所引起,有可能是稳压回路故障或负载回路异常,导致了芯片内部保护电路起控,而停止了PWM脉冲的输出。并不能将和各个回路完全孤立起来进行检修,某一故障元件的出现很可能表现出“牵一发而全身动”的效果。 开关电源电路常表现为以下三种典型故障现象(结合图3、9): 一、次级负载供电电压都为0V。变频器上电后无反应,操作显示面板无指

ATX开关电源结构图

ATX开关电源的原理框图: 上图工作原理简述: 220V交流电经过第一、二级EMI滤波后变成较纯净的50Hz交流电,经全桥整流和滤波后输出300V的直流电压。300V直流电压同时加到主开关管、主开关变压器、待机电源开关管、待机电源开关变压器。 由于此时主开关管没有开关信号,处于截止状态,因此主电源开关变压器上没有电压输出,上图中的-12V至+3.3V,5组电压均没电压输出。电+脑*维+修-知.识_网 (w_ww*dnw_xzs*co_m) 但我们同时注意到,300V直流电加到待机电源开关管和待机电源开关变压器后,由于待机电源开关管被设计成自激式振荡方式,待机电源开关管立即开始工作,在待机电源开关变压器的次级上输出二组交流电压,经整流滤波后,输出+5VSB

和+22V电压,+22V电压是专门为主控IC供电的。+5VSB加到主板上作为待机电压。当用户按动机箱的Power 启动按键后,(绿)色线处于低电平,主控IC内部的振荡电路立即启动,产生脉冲信号,经推动管放大后,脉冲信号经推动变压器加到主开关管的基极,使主开关管工作在高频开关状态。主开关变压器输出各组电压,经整流和滤波后得到各组直流电压,输出到主板。但此时主板上的CPU仍未启动,必须等+5V的电压从零上升到95%后,IC检测到+5V上升到4.75V时,IC发出P.G信号,使CPU启动,电脑正常工作。当用户关机时,绿色线处于高电平,IC内部立即停止振荡,主开关管因没有脉冲信号而停止工作。-12至+3.3的各组电压降至为零。电源处于待机状态。 输出电压的稳定则是依赖对脉冲宽度的改变来实现,这就叫做脉宽调制PWM。由高压直流到低压多路直流的这一过程也可称DC-DC变换,是开关电源的核心技术。采用开关变换的显著优点是大大提高了电能的转换效率,典型的PC电源效率为70—75%,而相应的线性稳压电源的效率仅有50%左右。 保护电路的工作原理: 在正常使用过程中,当IC检测到负载处于:短路、过流、过压、欠压、过载等状态时,IC内部发出信号,使内部的振荡停止,主开关管因没有脉冲信而停止工作。从而达到保护电源的目的。电+脑*维+修-知.识_网(w_ww*dnw_xzs*co_m) 由上述原理可知,即使我们关了电脑后,如果不切断交流输入端,待机电源是一直工作的,电源仍有5到10瓦的功耗。 内部电路结构 电源的内部电路分为抗干扰电路、整流滤波电路、开关电路、保护电路、输出电路等。 抗干扰电路电源的抗干扰电路位于电源输入插座后,由线圈和电容组成一个滤波电路(如图1 ),它可以滤除电源线上的高频杂波和同相干扰信号,构成了电源抗电磁干扰的第一道防线。由于这部分电路不影响电源的正常工作,很多便宜的电源会把它省略。随着3 C 认证制度的实施,在这部分开始增加P F C (功率因数校正)电路,凡是3 C 认证的电脑电源,必须增加P F C 电路。PFC 电路可以减少对电网的谐波污染和干扰。PFC 电路有两种:有源PFC 和无源P F C 。无源P F C 一般采用电感补偿方法使交流输入的基波电流与电压之间相位差减小来提高功率因数,有源P F C 由电感电容及电子元器件组成,能够获得更高的功率因数,但成本也相对较高。有源P F C 电路具有低损耗和高可靠性等优点,可获得高度稳定的输出电压,因此,有源P F C 的电源不需要采用很大容量的滤 波电容。PFC电路是面已经提到PFC,PFC电路称为功率因素校正电路,功率

计算机开关电源的工作原理与维修

计算机开关电源的工作原理与维修 计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。 对ATX电源控制电路的工作原理进行了较详细的阐述,望能对广大维修者有所帮助。 一、ATX型电源电路的组成及工作原理 ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。请参照图1和ATX电源电路原理图。 1.辅助电源电路 只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。市电经高压整流、滤波,输出约300V 直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。反馈电流通过

R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。 Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。 Q15饱和期间,T3二次绕组输出端的感应电势为负,整流管截止,流经一次绕组的导通电流以磁能的形式储存在T3辅助电源变压器中。当Q15由饱和转向截止时,二次绕组两个输出端的感应电势为正,T3储存的磁能转化为电能经BD5、BD6整流输出。其中BD5整流输出电压供Q16三端稳压器7805工作,Q16输出+5VSB,若该电压丢失,主板就不会自动唤醒ATX电源启动。BD6整流输出电压供给IC1脉宽调制TL494的12脚电源输入端,该芯片14脚输出稳压5V,提供ATX开关电源控制电路所有元件的工作电压。 2.PS-ON和PW-OK、脉宽调制电路 PS-ON信号控制IC1的4脚死区电压,待机时,主板启闭控制电路的电子开关断开,PS-ON信号高电平3.6V,IC10精密稳压电路WL431的Ur电位上升,Uk电位下降,Q7导通,稳压5V通过Q7的e、c极,R80、D25和D40送入IC1的4脚,当4脚电压超过3V时,封锁8、11脚的调制脉宽输出,使T2推动变压器、T1主电源开关变压器停振,停止提供+3.3V、±5V、±12V的输出电压。受控启动后,PS-ON信号由主板启闭控制电路的电子开关接地,IC10的Ur为零电位,Uk电位升至+5V,Q7截止,c极为零电位,IC1的4脚低电平,允许8、11脚输出脉宽调制信号。IC1的输出方式控制端13脚接稳压5V,脉宽调制器为并联推挽式输出,8、11脚输出相位差180度的脉宽调制控制信号,输出频率为IC1的5、6脚外接定时阻容元件的振荡频率的一半,控制Q3、Q4的c极所接T2推动变压器初级绕组的激励振荡,T2次级它激振荡产生的感应电势作用于T1主电源开关变压器的一次绕组,二次绕组的感应电势经整流形成+3.3V、±5V、±12V 的输出电压。 推动管Q3、Q4发射极所接的D17、D18以及C17用于抬高Q3、Q4发射极电平,使Q3、Q4基极有低电平脉冲时能可靠截止。C31用于通电瞬间封锁IC1的8、11脚输出脉冲,ATX电源带电瞬间,由于C31两端电压不能突变,IC1的4脚出现高电平,8、11脚无驱动脉冲输出。随着C31的充电,IC1的启动由PS-ON 信号控制。 PW-OK产生电路由IC5电压比较器LM393、Q21、C60及其周边元件构成。待机时IC1的反馈控制端3脚为低电平,Q21饱和导通,IC5的3脚正端输入低电位,小于2脚负端输入的固定分压比,1脚低电位,PW-OK向主机输出零电平的电源自检信号,主机停止工作处于待命休闲状态。受控启动后IC1的3脚电位上升,Q21由饱和导通进入放大状态,e极电位由稳压5V经R104对C60

开关电源维修技巧

开关电源的检修技巧 开关电源中保险熔断的直接原因:开关管\电源厚模块\整流二极管击穿\100uf/400v大电容击穿漏电,消磁电阻内部碎裂. 开关电源各输出端始终无电压输出的最常见原因:交流220v整流滤波电路中的保险电阻开路;开关管基极到100uf/400v大滤波电容正极之间的电阻开路. 开关电源只在开机瞬间有小电压输出的常见原因:行输出管击穿,开关电源中开关变压器一左的2.2uf~100uf电解电容失效`漏电 开关电源输出电压低的最常见原因:行输出变压器局部短路`脉宽调制电路中的三极管和二极管击穿`漏电`光耦合器件中的三极管漏电等. 造成光栅与图象S扭曲和有两条垂直方向移动黑带的原因:100UF?400V大滤波电容失效和容量下降. 造成光栅局部有彩斑的和图象局部彩色不对的原因:是开关电源交流220V输入电路中的消兹电阻开路. 开关电源无输出的检修技巧 1开关电源始终无电压输出的原因 开关电源始终无电压输出是指开关电源各输出端,在按电源开关开机后始终为0V,这种情况是由于开关电源未产生震荡所致.进一步证实的方法是测开关电源100UF/400V电容关机后的电压,若300V之后慢慢下降,则说明开关电源未产生振荡.开关电源未产生振荡的原因有: (1)开关管集电极未得到足够的工作电压 (2)开关管基极未得到启动电压和相关电路漏电 (3)开关管正反馈元件失效 2判断故障的方法和步骤 检修这类故障的首要任务是判断鼓障在上述三个部位中的哪个部位,具体方法是测开关管集电极,基极电压,可能有以下几种情况: (1)开关管集电极电压为0V和低于市电1.4倍,开关管没有正常的工作电压,如果有1.4倍的 电压,说明开关管集电极具备了正常的工作电压,说明AC220V及整流滤波电路工作正常. (2)开关管的基极电压为0V(包括开机瞬间)这种情况说明启动电路对开关管基极未提供启 动(导通)电压,或基极与发射极之间相关元件击穿,应对启动电路和开关管发射极及相关元件进行检查,若电压为0.6~0.7(包括开几瞬间),说明启动电路和开关管发射极元件正常,若在0.7V以上说明启动电路正常,但开关管发射结或其元件断路或阻值变大. (3)开关管具备导通条件:开关管基极电压为0.6~0.7V,集电极电压大于250V,说明开关管具 备了工作条件,故障在正反馈电路,包括正反馈电阻,电容,续流二极管及开关变压器正反馈绕组及其之间的连接应制板. 开关电源瞬间有电压出检修技巧 1瞬间电压输出故障原因 这种故障在按下启动开关的瞬间,开关电源某个或各个输出端电压有一个小的电压输出,然后降为0V,这种情况说明开关电源在加电的初始产生了振荡,但后由于过压,过流保护引起停振,或开关机接口电路加电初始为开机状态,但随CPU清零的结束而转入待机状态,引发这种情况的原因有: (1)开关电源因故输出电压比标准值高10V而引起过压保护 (2)负载过流引起保护动作

ATX电源电路原理分析与维修

ATX电源电路原理分析与维修 ATX电源结构简介 ATX电源电路结构较复杂,各部分电路不但在功能上相互配合、相互渗透,且各电路参数设置非常严格,稍有不当则电路不能正常工作。下面以市面上使用较多的银河、世纪之星ATX电源为例,讲述A TX电源的工作原理、使用与维修。其主电路整机原理图见图13-10,从图中可以看出,整个电路可以分成两大部分:一部分为从电源输入到开关变压器T3之前的电路(包括辅助电源的原边电路),该部分电路和交流220V电压直接相连,触及会受到电击,称为高压侧电路;另一部分为开关变压器T3以后的电路,不和交流220V直接相连,称为低压侧电路。二者通过C2、C3高压瓷片电容构成回路,以消除静电干扰。其原理方框图见图13-1,从图中可以看出整机电路由交流输入回路与整流滤波电路、推挽开关电路、辅助开关电源、PWM脉宽调制及推动电路、PS-ON控制电路、自动稳压与保护控制电路、多路直流稳压输出电路和PW-OK信号形成电路组成。弄清各部分电路的工作原理及相互关系对我们维修判断故障是很有用处的,下面简单介绍一下各组成部分的工作原理。 图13-1 主机电源方框原理图 1、交流输入、整流、滤波与开关电源电路 交流输入回路包括输入保护电路和抗干扰电路等。输入保护电路指交流输入回路中的过流、过压保护及限流电路;抗干扰电路有两方面的作用:一是指电脑电源对通过电网进入的干扰信号的抑制能力:二是指开关电源的振荡高次谐波进入电网对其它设备及显示器的干扰和对电脑本身的干扰。通常要求电脑对通过电网进入的干扰信号抑制能力要强,通过电网对其它电脑等设备的干扰要小。 推挽开关电路由Q1、Q2、C7及T3,组成推挽电路。推挽开关电路是A TX开关电源的主要部分,它把直流电压变换成高频交流电压,并且起着将输出部分与输入电网隔离的作用。推挽开关管是该部分电路的核心元件,受脉宽调制电路输送的信号作激励驱动信号,当脉宽调制电路因保护电路动作或因本身故障不工作时,推挽开关管因基级无驱动脉冲故不工作,电路处于关闭状态,这种工作方式称作他激工作方式。

相关文档
相关文档 最新文档