文档库 最新最全的文档下载
当前位置:文档库 › NADPH与NADH区别

NADPH与NADH区别

NADPH与NADH区别
NADPH与NADH区别

生化二第二次小组作业--------------NADH与NADPH区别

1.NADH

NADH,烟酰胺腺嘌呤二核苷酸,还原态,还原型辅酶Ⅰ。N指烟酰胺,A指腺嘌呤,D是二核苷酸。

NADH产生于糖酵解和细胞呼吸作用中的柠檬酸循环。

NAD+ 则是氧化态。

葡萄糖代谢时直接经代谢所产生的ATP是十分少的,而代谢产生的NADH或FADH2经由一个电子传递与氧化磷酸反应可产生大量的ATP。

烟酰胺腺嘌呤二核苷酸(氧化态)NAD+

烟酰胺腺嘌呤二核苷酸(还原态)NADH

烟酰胺腺嘌呤二核苷酸磷酸(还原态)NADPH

烟酰胺腺嘌呤二核苷酸磷酸(氧化态) NADP+

NAD+ + H+ + 2e- = NADH

NADP+ + H+ + 2e- = NADPH 他们都是辅酶,用来实现电子传递。

基本上涉及到氧化还原的反应都用得到,比如呼吸作用,光合作用等等,氨会抑制呼吸过程中的电子传递系统,尤其是NADH。

2.NADPH

NADPH 是一种辅酶,叫还原型辅酶Ⅱ,学名还原型烟酰胺腺嘌呤二核苷酸磷酸,曾经被称为三磷酸吡啶核苷酸,英文triphosphopyridine nucleotide,使用缩写TPN,亦写作[H],亦叫作还原氢。N指烟酰胺,A指腺嘌呤,D是二核苷酸,P 是磷酸基团。

在很多生物体内的化学反应中起递氢体的作用,具有重要的意义。它是烟酰胺腺嘌呤二核苷酸(NAD+)中与腺嘌呤相连的核糖环系2'-位的磷酸化衍生物,参与多种合成代谢反应,如脂类、脂肪酸和核苷酸的合成。这些反应中需要NADPH 作为还原剂、氢负离子的供体,NADPH是NADP+的还原形式。

NADPH是最终电子受体NADP+接受电子后的产物。

NAD+和NADP+:即烟酰胺腺嘌呤二核苷酸(NAD+,辅酶Ⅰ)和烟酰胺腺嘌呤二核苷酸磷酸(NADP+,辅酶Ⅱ,是NADPH的氧化形式)。NAD+和NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用。NADPH通常作为生物合成的还原剂,并不能直接进入呼吸链接受氧化。只是在特殊的酶的作用下,NADPH上的H 被转移到NAD+上,然后以NADH的形式进入呼吸链。

NADPH是在光合作用光反应阶段形成的,与ATP一起进入碳反应,参与CO2的固定。NADPH的形成是在叶绿体类囊体膜上完成的。

PEP是磷酸烯醇式丙酮酸(phosphoenolpyruvate)的缩写,它是糖酵解中重要中间产物,在光反应阶段产生(主要化学式为:NADP*+2e+2H*→NADPH+H*),为碳反应

阶段提供能量与相应的酶(PEP缩合酶),也是植物中将CO2固定的化合物。

3.NADH与NADPH区别

NADH主要用于糖酵解和细胞呼吸作用中的柠檬酸循环。

NADPH主要在磷酸戊糖途径中产生,它主要中来合成核酸和脂肪酸

(同学,你是北理的吧!)

三羧酸循环总结

真题回顾 【2002 - 22 生物化学A 型题】在三羧酸循环中,经底物水平磷酸化生成的高能化合物是 A. ATP B. GTP C. UTP D. CTP E. TTP 题目解析 在糖的无氧酵解和三羧酸循环中一共有三个底物水平磷酸化: 1,3-二磷酸甘油酸+ ADP →3-磷酸甘油酸+ ATP; 磷酸烯醇式丙酮酸+ ADP →丙酮酸+ ATP; 琥珀酰辅酶A + GDP →琥珀酸+ GTP。 故该题正确选项为B。 考点讲解 【2015 年西综大纲,生物化学,(二)物质代谢及其调节,2. 糖的有氧氧化(三羧酸循环)的过程、意义及调节】

一、三羧酸循环的过程 1. 在柠檬酸合酶的催化下乙酰辅酶A + 草酰乙酸缩合→柠檬酸。 2. 柠檬酸→顺乌头酸→异柠檬酸。 3. 在异柠檬酸脱氢酶的作用下异柠檬酸氧化脱羧→α-酮戊二酸。 4. 在α-酮戊二酸脱氢酶复合体的作用下α-酮戊二酸氧化脱羧→琥珀酰辅酶A。 5. 琥珀酰辅酶A 合成酶催化下琥珀酰辅酶A 经底物水平磷酸化→琥珀酸。 6. 琥珀酸脱氢酶作用下琥珀酸→延胡索酸。 7. 延胡索酸酶作用下延胡索酸→苹果酸。 8. 苹果酸脱氢酶作用下苹果酸→草酰乙酸。 二、总结 1. 反应5 为一次底物水平磷酸化产生GTP。

2. 每个循环消耗一分子乙酰辅酶A。 3. 反应3、4 两次脱羧,体内CO2 的主要来源。 4. 反应1、3、4 中三个关键酶柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶。 5. 反应3、4、8 脱氢由NAD+ 接受,反应6 脱氢由FAD 接受,共4 次脱氢。 6. 反应于线粒体内进行,乙酰辅酶A 起始产生10 ATP,丙酮酸起始产生12.5 ATP,葡萄糖起始产生30 / 32 ATP。 7. 三大营养物资的代谢通路,糖、脂肪、蛋白质联系的枢纽。 8. 反应1、3、4 为不可逆反应,其他为可逆反应。 三、三羧酸循环的意义 1. 三羧酸循环是三大营养物资的最终代谢通路 (1)糖、脂肪、氨基酸生物氧化后都会生成乙酰辅酶A,然后,其进入三羧酸循环进行降解。

Notch信号通路研究进展

224 中国医药生物技术 2009年6月第4卷第3期Chin Med Biotechnol, June 2009, V ol. 4, No. 3 DOI:10.3969/cmba.j.issn.1673-713X.2009.03.012 · 综述·Notch信号通路研究进展 王利祥,华子春 1917 年,Morgan 及其同事在果蝇体内发现一种基因,因其功能部分缺失可导致果蝇翅缘出现缺口,故命名该基因为 Notch。随后的研究发现,Notch 从无脊椎动物到脊椎动物的多个物种中表达,其家族成员的结构具有高度保守性,在细胞分化、发育中起着关键作用。迄今研究已阐明 Notch 信号通路的主要成员及核心转导过程,然而随着研究的深入,人们逐渐认识到该通路实际上处于十分复杂的调控网络之中,而这与其在发育过程中功能的多样性相符合。本文结合最新进展,系统阐述 Notch 信号通路的组成,功能,作用机制及调控,并揭示该通路异常与疾病的联系。 1 Notch 受体 Notch 受体是一个相对分子量约为 30 000 的 I 型膜蛋白,由胞外亚基和跨膜亚基组成,2 亚基之间通过 Ca2+ 依赖的非共价键结合形成异源二聚体。胞外亚基包含一组串联排列的 EGFR 和 3 个家族特异性的 LNR 重复序列。EGFR 在 Notch 受体与配体的结合中起关键作用,在果蝇中,Notch 受体的第 11 位和 12 位 EGFR 介导了其与配体的结合。LNR 位于 EGFR 的下游,富含半胱氨酸,介导了 2 亚基之间 Ca2+ 依赖的相互作用。跨膜亚基包括跨膜区、RAM 序列、锚蛋白重复序列、核定位序列、多聚谷氨酰胺序列以及 PEST 序列。RAM 结构域是 Notch 信号效应分子 CBF1/RBPJk 主要的结合部位。ANK 重复序列结构域是 Deltex、Mastermind 等的结合部位,这些蛋白对Notch 信号通路有修饰作用。PEST 结构域与泛素介导的Notch 胞内段降解有关[1]。 2 Notch 配体 Notch 配体与受体一样为 I 型跨膜蛋白。果蝇 Notch 配体有 2 个同源物 Delta 和 Serrate,线虫的 Notch 配体为 Lag 2,故又称 Notch 配体为 DSL 蛋白。脊椎动物体内也发现了多个 Notch 配体,与 Delta 同源性高的称为Delta 样分子,与 Serate 同源性高的被称作 Jagged。目前,发现人的 Notch 配体有 D ll l、3、4和 Jagged l、2。配体胞外 DSL 结构域在进化中高度保守,是配体与受体结合、激活 Notch 信号所必需的。Notch 配体的胞内域较短,仅70 个左右氨基酸残基,功能尚未阐明。近来研究发现,Delta 1 的胞内域能够诱导细胞的生长抑制[2]。有人推测,配体胞内段可能类似与受体胞内段,具有信号转导功能,但具体机制有待进一步研究。3 Notch 信号传递与效应因子 迄今研究发现主要有 6 种信号通路在多细胞生物的生长中发挥关键作用,分别是刺猬、骨形态发生蛋白、无翅、类固醇激素受体、Notch 和受体酪氨酸激酶。Notch 相对于其他信号通路结构较简单,没有第二信使的参与。现有研究提出了 Notch 信号活化的“三步蛋白水解模型”[3]。首先,Notch 以单链前体模式在内质网合成,经分泌运输途径,在高尔基体内被 Furin 样转化酶切割成相对分子质量为180 000 含胞外区的大片段和 120 000 含跨膜区和胞内区的小片段。两者通过 Ca2+依赖性的非共价键结合为异源二聚体,然后被转运到细胞膜。当 Notch 配体与受体结合,Notch 受体相继发生 2 次蛋白水解。第一次由 ADAM 金属蛋白酶家族的 ADAM 10/Kuz 或 ADAM 17/TACE 切割为 2 个片段。N 端裂解产物(胞外区)被配体表达细胞内吞,而 C 端裂解产物随后由早老素 1/2,Pen-2,Aph1 和Nicastrin 组成的γ-促分泌酶复合体酶切释放 Notch 受体的活化形式 NICD。 经典的 Notch 信号通路又称为 CBF-1/RBP-Jκ依赖途径。CBF-1/RBP-Jκ本身是 1 个转录抑制因子,能够特异性地与 DNA 序列“CGTGGGAA”相结合,并招募 SMRT,SKIP,I/II 型组蛋白去乙酰化酶等蛋白形成共抑制复合物,抑制下游基因的转录。当 Notch 信号激活后,NICD 通过上述酶切反应被释放进入胞核,通过 RAM 结构域及 ANK 重复序列与 CBF-1/RBP-Jκ结合使共抑制复合物解离,并募集 SKIP,MAML 1 组成共激活复合体,激活下游基因的转录。Notch 信号的靶基因多为碱性螺旋-环-螺旋转录抑制因子家族成员,如哺乳动物中的 HES、非洲爪蟾中的XHey-1,以及近来发现的 BLBP [3]。此外,存在非CBF-1/RBP-Jκ依赖的 Notch 信号转导途径。最近有研究报道,果蝇 Notch 结合蛋白 Deltex 是某些组织特异性非 Su (H)依赖性信号所必需的,同时发现 Deltex 也具有拮抗Notch 的功能 [4]。 4 Notch 信号途径功能 Notch 信号途径的功能最初是在果蝇神经系统发育的 基金项目:国家自然科学基金(30425009,30730030);江苏省自然科学基金(BK2007715) 作者单位:210093 南京大学医药生物技术国家重点实验室 通讯作者:华子春,Email:zchua@https://www.wendangku.net/doc/7f3291221.html, 收稿日期:2009-02-01

糖酵解 三羧酸循环最全总结

在高等植物中存在着多条呼吸代谢的生化途径,这是植物在长期进化过程中,对多变环境条件适应的体现。在缺氧条件下进行酒精发酵和乳酸发酵,在有氧条件下进行三羧酸循环和戊糖磷酸途径,还有脂肪酸氧化分解的乙醛酸循环以及乙醇酸氧化途径等(图5-2)。 图5-2 植物体内主要呼吸代谢途径相互关系示意图 一、糖酵解 己糖在细胞质中分解成丙酮酸的过程,称为糖酵解(glycolysis)。整个糖酵解化学过程于1940年得到阐明。为纪念在研究这一途径中有突出贡献的三位生物化学家:G.Embden,O.Meyerhof和J.K.Parnas,又把糖酵解途径称为EmbdenMeyerhofParnas途径,简称EMP途径(EMP pathway)。糖酵解普遍存在于动物、植物、微生物的细胞中。 (一)糖酵解的化学历程 糖酵解途径(图5-3)可分为下列几个阶段:

图5-3糖酵解途径 1.己糖的活化(1~9)是糖酵解的起始阶段。己糖在己糖激酶作用下,消耗两个ATP逐步转化成果糖-1,6二磷酸(F-1,6-BP)。 如以淀粉作为底物,首先淀粉被降解为葡萄糖。淀粉降解涉及到多种酶的催化作用,其中,除淀粉磷酸化酶(starch phosphorylase)是一种葡萄糖基转移酶外,其余都是水解酶类,如α-淀粉酶(α-amylase)、β-淀粉酶(β-amylase)、脱支酶(debranching enzyme)、麦芽糖酶(maltase)等。 2.己糖裂解(10~11)即F-1,6-BP在醛缩酶作用下形成甘油醛-3-磷酸和二羟丙酮磷酸,后者在异构酶(isomerase)作用下可变为甘油醛-3-磷酸。 3.丙糖氧化(12~16)甘油醛-3-磷酸氧化脱氢形成磷酸甘油酸,产生1个ATP和1个NADH,同时释放能量。然后,磷酸甘油酸经脱水、脱磷酸形成丙酮酸,并产生1个ATP,这一过程分步完成,有烯醇化酶和丙酮酸激酶参与反应。

6生物化学习题(答案)

5 糖类分解代谢 一、名词解释 1、糖酵解途径:是在无氧条件下,葡萄糖进行分解,形成2分子丙酮酸并伴随着ATP生成的一系列反应。 2、柠檬酸循环:是用于乙酰CoA中的乙酰基氧化生成CO2的酶促反应的循环系统,该循环的第一步反应是由乙酰CoA和草酰乙酸缩合形成柠檬酸。 3、糖的有氧氧化:糖的有氧氧化指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的过程。是糖氧化的主要方式。 4、磷酸戊糖途径:是指机体某些组织(如肝、脂肪组织等)种一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子的NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解中的两个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。 5、发酵:厌氧有机体把糖酵解生成NADH中的氢交给丙酮酸脱羧后的产物乙醛,使之生成乙醇的过程称之为乙醇发酵。如果将氢交给丙酮酸生成乳酸则叫乳酸发酵。 二、填空 1、糖酵解过程中有3个不可逆的酶促反应,这些酶是磷酸果糖激酶、己糖激酶和丙酮酸激酶。 2、3-磷酸甘油醛脱氢酶酶催化的反应是EMP途径中的第一个氧化反应。 3、糖酵解中催化作用物水平磷酸化的两个酶是磷酸甘油酸激酶和丙酮酸激酶。 4、在糖酵解中提供高能磷酸基团,使ADP磷酸化成A TP的高能化合物是1,3-二磷酸甘油酸和PEP。 5、糖酵解在细胞的细胞质中进行,该途径是将葡萄糖转变为丙酮酸,同时生成ATP和NADH的一系列酶促反应。 6、丙酮酸还原为乳酸,反应中的NADH来自于3-磷酸甘油醛的氧化。 7、TCA循环的第一个产物是柠檬酸。由柠檬酸合酶,异柠檬酸脱氢酶,和α-酮戊二酸脱氢酶所催化的反应是该循环的主要限速反应。 8、TCA循环中有二次脱羧反应,分别是由异柠檬酸脱氢酶和α-酮戊二酸脱氢酶催化。脱去的CO2中的C原子分别来自于草酰乙酸中的C1和C4。 9、TCA循环中大多数酶位于线粒体基质,只有琥珀酸脱氢酶位于线粒体内膜。 10、丙酮酸脱氢酶系由丙酮酸脱氢酶、二氢硫辛酰转乙酰基酶和二氢硫辛酸脱氢酶组成。三羧酸循环过程中有4次脱氢和2次脱羧反应。三羧酸循环过程主要的关键酶是柠檬酸合酶;每循环一周可生成1个A TP。 11、磷酸戊糖途径可分为2阶段,分别称为氧化脱羧和非氧化的分子重排,其中两种脱氢酶是6-磷酸葡萄糖脱氢酶和6-磷酸葡萄酸糖脱氢酶,它们的辅酶是NADP+。 12、在磷酸戊糖途径中催化由酮糖向醛糖转移二碳单位的酶为转酮醇酶,其辅酶为TPP(焦磷酸硫胺素);催化由酮糖向醛糖转移三碳单位的酶为转醛醇酶。转酮醇酶(transketolase)就是催化含有一个酮基、一个醇基的二碳基团(羟乙酰基)转移的酶。其接受体是醛,辅酶是TPP。转醛醇酶(transaldolase)是催化含有一个酮基、二个醇基的三碳基团(二羟丙酮基团)转移的酶.其接受体是醛,但不需要TPP. 13、植物中淀粉彻底水解为葡萄糖需要多种酶协同作用,它们是α-淀粉酶,β-淀粉酶,脱支酶,麦芽糖酶。 14、淀粉的磷酸解过程通过淀粉磷酸化酶降解α–1,4糖苷键,靠转移酶和脱支酶降解α–1,6糖苷键。 三、单项选择题 1、丙酮酸脱氢酶系是个复杂的结构,包括多种酶和辅助因子。下列化合物中哪个不是丙酮酸脱氢酶组分? A、TPP B、硫辛酸 C、FMN D、Mg2+ E、NAD+ 2、丙酮酸脱氢酶系受到哪些因素调控? A、产物抑制、能荷调控、磷酸化共价调节 B、产物抑制、能荷调控、酶的诱导 C、产物抑制、能荷调控 D、能荷调控、磷酸化共价调节、酶的诱导 E.能荷调控、酶的诱导 3、下述那种情况可导致丙酮酸脱氢酶系活性升高? A、ATP/ADP比值升高 B、CH3COCoA/CoA比值升高 C、NADH/ NAD+比值升高 D、能荷升高 E、能荷下降 4、三羧酸循环中有底物水平磷酸化的反应是: A、柠檬酸→α-酮戊二酸 B、琥珀酰CoA→琥珀酸(琥珀酸硫激酶) C、琥珀酸→延胡索酸 D、延胡索酸→草酰乙酸 E. 苹果酸→草酰乙酸 5、糖代谢中间产物中含有高能磷酸键的是: A、6-磷酸葡萄糖 B、6-磷酸果糖 C、1,6-二磷酸果糖 D、3-磷酸甘油醛 E、1,3-二磷酸甘油酸 6、1分子葡萄糖酵解时净生成多少个ATP? A、1 B、2 C、3 D、4 E、5 7、磷酸果糖激酶的最强变构激活剂是: A、AMP B、ADP C、ATP D、2,6-二磷酸果糖 E、1,6-二磷酸果糖 8、糖的有氧氧化的最终产物是: A、CO2+H2O+ATP B、乳酸 C、丙酮酸 D、乙酰CoA A、磷酸戊糖途径 B、糖异生 C、糖的有氧氧化 D、糖原合成与分解 E、糖酵解 10、三碳糖、六碳糖与七碳糖之间相互转变的糖代谢途径是: A、糖异生 B、糖酵解 C、三羧酸循环 D、磷酸戊糖途径 E、糖的有氧氧化

ERK5信号通路研究现状

World Journal of Cancer Research 世界肿瘤研究, 2014, 4, 41-46 Published Online October 2014 in Hans. https://www.wendangku.net/doc/7f3291221.html,/journal/wjcr https://www.wendangku.net/doc/7f3291221.html,/10.12677/wjcr.2014.44008 Review of the ERK5 Signaling Pathway Research Song Luo*, Shengfa Su, Weiwei Ouyang#, Bing Lu# Teaching and Research Section of Oncology, Guiyang Medical University, Guiyang Email: 4567436@https://www.wendangku.net/doc/7f3291221.html,, #ouyangww103173@https://www.wendangku.net/doc/7f3291221.html,, #lbgymaaaa@https://www.wendangku.net/doc/7f3291221.html, Received: Sep. 25th, 2014; revised: Oct. 16th, 2014; accepted: Oct. 20th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/7f3291221.html,/licenses/by/4.0/ Abstract Extracellular signal regulated kinase 5 (ERK5) is an important part of mitogen activated protein kinase (MAPK) system, and also is a new signal transduction pathway of MAPK signaling system, which has attracted much attention in recent years. ERK5 can be activated by many stimulating factors and plays an important role in cell survival, proliferation and differentiation. Furthermore, ERK5 is closely related to vascular development and proliferation, and other critical functions. This paper focuses on the origin, structure, property, physiological features of ERK5, and the relation-ship between ERK5 and tumor and non-oncologic diseases, and reviews the research direction in the future. Keywords ERK5, Signaling Pathways, MAPK ERK5信号通路研究现状 罗松*,苏胜发,欧阳伟炜#,卢冰# 贵阳医学院肿瘤学教研室,贵阳 Email: 4567436@https://www.wendangku.net/doc/7f3291221.html,, #ouyangww103173@https://www.wendangku.net/doc/7f3291221.html,, #lbgymaaaa@https://www.wendangku.net/doc/7f3291221.html, 收稿日期:2014年9月25日;修回日期:2014年10月16日;录用日期:2014年10月20日 *第一作者。 #通讯作者。

(完整版)生物化学试题及答案(4)

生物化学试题及答案( 4) 第四章糖代谢 【测试题】 一、名词解释 1.糖酵解( glycolysis ) 2.糖的有氧氧化 3.磷酸戊糖途径 4.糖异生( glyconoegenesis) 5.糖原的合成与分解6.三羧酸循环( krebs 循环) 7.巴斯德效应(Pastuer 效应) 8.丙酮酸羧化支路 9.乳酸循环( coris 循环) 10.三碳途径 二、填空题 21.葡萄糖在体内主要分解代谢途径有22.糖酵解反应的进行亚细胞定位是在23.糖酵解途径中仅有的脱氢反应是在底物水平磷酸化反应分别由 11.糖原累积症 12.糖酵解途径 13.血糖(blood sugar) 14.高血糖(hyperglycemin) 15.低血糖 (hypoglycemin) 16.肾糖阈 17.糖尿病 18.低血糖休克 19.活性葡萄糖 20.底物循环 、和 ,最终产物为。酶催化下完成的,受氢体是酶和酶催化。 24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。 25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶— 2 催化生成,该酶是一双功能酶同时具有和两种活性。 26.1 分子葡萄糖经糖酵解生成分子ATP,净生成分子ATP,其主要生理意义在于。 27.由于成熟红细胞没有,完全依赖供给能量。 28.丙酮酸脱氢酶复合体含有维生素、、、和。 29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、 - 次脱羧和次底物水平磷酸化,共生成分子ATP。 30.在三羧酸循环中催化氧化脱羧的酶分别是和。 31.糖有氧氧化反应的进行亚细胞定位是和。1 分子葡萄糖氧化成CO2和H2O 净生 成或分子ATP。 32.6—磷酸果糖激酶—1有两个ATP结合位点,一是ATP 作为底物结合,另一是与 ATP亲和能力较低,需较高浓度ATP才能与之结合。 33.人体主要通过途径,为核酸的生物合成提供。 34.糖原合成与分解的关键酶分别是和。在糖原分解代谢时肝主要受的调控, 而肌肉主要受的调控。 35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生 成增多。 36.糖异生主要器官是,其次是。 37.糖异生的主要原料为、和。 38.糖异生过程中的关键酶分别是、、和。 39.调节血糖最主要的激素分别是和。

信号通路研究思路

信号通路研究思路

证明一个药物能通过抑制P38表达而发挥保护细胞的作用,需要做的是: 要证明你的药物是通过抑制P38表达而发挥保护作用,首先要证明P38表达增加会导致损伤。 其次,要证明你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 首先证明P38表达增加会导致损伤。 这里需要建立一个损伤模型。正如你提到的,钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。 这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。 如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。) 其次,要证明你的药物存在保护作用。

当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 这一步看似不必要,其实是最重要的步骤,而国内的文章往往忽略了这一关键环节。 这里建议还是用RNA干扰P38表达,再用你的药物处理,再进行损伤刺激,如果用药组与没有用药组的损伤程度一致,那么才可以说你的药物是由于抑制了P38表达而发挥保护作用。 抑制剂也有其局限性,有时是“致命”的,主要原因是抑制剂缺乏特异性。虽然我们在文章里看到用抑制剂的时候都说是什么什么的特异性抑制剂,但真的那么特异吗?其实往往是作者为了写文章发文章的需要而夸大了抑制剂的特异性。细胞里无数的信号通路,谁也不能保证抑制剂在作用于靶分子时不会影响其他信号通路。其实无论什么抑制剂,对剂量的要求都相对比较苛刻,为什么?就是因为一旦浓度高了,就不知道会干扰到其他哪些信号通路,从而产生很多说不清道不明的现象。 PI3K的抑制剂---LY294002和wortmannin,它们都能抑制PI3K和相关的激酶,但LY294002的浓度达到200μM常用来抑制DNA依赖的蛋白激酶(DNA-PK);wortmannin在浓度超过3μM常用来抑制运动失调性毛细血管扩张基因

生物化学试题及答案(4)

生物化学试题及答案(4) 第四章糖代谢 【测试题】 一、名词解释 1.糖酵解(glycolysis)11.糖原累积症 2.糖的有氧氧化12.糖酵解途径 3.磷酸戊糖途径13.血糖(blood sugar) 4.糖异生(glyconoegenesis)14.高血糖(hyperglycemin) 5.糖原的合成与分解15.低血糖(hypoglycemin) 6.三羧酸循环(krebs循环)16.肾糖阈 7.巴斯德效应(Pastuer效应) 17.糖尿病 8.丙酮酸羧化支路18.低血糖休克 9.乳酸循环(coris循环)19.活性葡萄糖 10.三碳途径20.底物循环 二、填空题 21.葡萄糖在体内主要分解代谢途径有、和。 22.糖酵解反应的进行亚细胞定位是在,最终产物为。 23.糖酵解途径中仅有的脱氢反应是在酶催化下完成的,受氢体是。两个 底物水平磷酸化反应分别由酶和酶催化。 24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。 25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶—2催化生成,该酶是一双功能酶同时具有和两种活性。 26.1分子葡萄糖经糖酵解生成分子ATP,净生成分子A TP,其主要生理意义在于。 27.由于成熟红细胞没有,完全依赖供给能量。 28.丙酮酸脱氢酶复合体含有维生素、、、和。 29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、 - 次脱羧和次底物水平磷酸化,共生成分子A TP。 30.在三羧酸循环中催化氧化脱羧的酶分别是和。 31.糖有氧氧化反应的进行亚细胞定位是和。1分子葡萄糖氧化成CO2和H2O净生成或分子ATP。 32.6—磷酸果糖激酶—1有两个A TP结合位点,一是ATP作为底物结合,另一是与ATP亲和能力较低,需较高浓度A TP才能与之结合。 33.人体主要通过途径,为核酸的生物合成提供。 34.糖原合成与分解的关键酶分别是和。在糖原分解代谢时肝主要受的调控,而肌肉主要受的调控。 35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生成增多。 36.糖异生主要器官是,其次是。 37.糖异生的主要原料为、和。 38.糖异生过程中的关键酶分别是、、和。 39.调节血糖最主要的激素分别是和。 40.在饥饿状态下,维持血糖浓度恒定的主要代谢途径是。 三、选择题

α-酮戊二酸脱氢酶(α-KGDH)活性测定试剂盒说明书

货号:MS2100 规格:100管/96样α-酮戊二酸脱氢酶(α-KGDH)活性测定试剂盒说明书 微量法 正式测定前务必取2-3个预期差异较大的样本做预测定 测定意义: α-KGDH(EC 1.2.4.2)广泛存在于动物、植物微生物和培养细胞的线粒体中,是三羧酸循环调控关键酶之一,催化α-酮戊二酸氧化脱羧生成琥珀酰辅酶A。 测定原理: α-KGDH催化α-酮戊二酸、NAD+ 和辅酶A生成琥珀酰辅酶A、二氧化碳和 NADH,NADH 在340 nm有特征吸收峰,以NADH的生成速率表示α-KGDH活性。 自备实验用品及仪器: 紫外分光光度计/酶标仪、水浴锅、台式离心机、可调式移液器、微量石英比色皿/96孔板、研钵、冰和蒸馏水。 试剂的组成和配制: 试剂一:100mL×1瓶,-20℃保存; 试剂二:20mL×1瓶,-20℃保存; 试剂三:1.5mL×1支,-20℃保存; 试剂四:液体20mL×1瓶,4℃保存; 试剂五:粉剂×1瓶,-20℃保存; 试剂六:粉剂×1支,-20℃保存; 样本的前处理: 组织、细菌或细胞中胞浆蛋白与线粒体蛋白的分离: 1、称取约0.1g组织或收集500万细胞,加入1mL试剂一和10uL 试剂三,用冰浴匀浆器或研 钵匀浆。 2、将匀浆600g,4℃离心5min。 3、弃沉淀,将上清液移至另一离心管中,11000g,4℃离心10min。 4、上清液即胞浆提取物,可用于测定从线粒体泄漏的α-KGDH(此步可选做)。 5、在步骤④的沉淀中加入200uL试剂二和2uL 试剂三,超声波破碎(冰浴,功率20%或200W, 超声3秒,间隔10秒,重复30次),用于线粒体α-KGDH活性测定。 测定步骤: 1、分光光度计或酶标仪预热30min以上,调节波长至340nm,蒸馏水调零。 2、样本测定 (1)在试剂五中加入18mL试剂四充分溶解,置于37℃(哺乳动物)或25℃(其它物种)水浴10min;现配现用; (2)在试剂六中加入1mL蒸馏水,充分溶解待用;用不完的试剂分装后-20℃保存,禁止反复冻融; (3)在微量石英比色皿或96孔板中加入10μL样本、10μL试剂六和180μL试剂五,混匀,立即记录340nm处20s时的吸光值A1和 2min20s后的吸光值A2,计算ΔA=A2-A1。 第1页,共2页

信号通路研究思路

证明一个药物能通过抑制P38表达而发挥保护细胞的作用,需要做的是: 要证明你的药物是通过抑制P38表达而发挥保护作用,首先要证明P38表达增加会导致损伤。 其次,要证明你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 首先证明P38表达增加会导致损伤。 这里需要建立一个损伤模型。正如你提到的,钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。 这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。 如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。) 其次,要证明你的药物存在保护作用。 当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 这一步看似不必要,其实是最重要的步骤,而国内的文章往往忽略了这一关键环节。 这里建议还是用RNA干扰P38表达,再用你的药物处理,再进行损伤刺激,如果用药组与没有用药组的损伤程度一致,那么才可以说你的药物是由于抑制了P38表达而发挥保护作用。 抑制剂也有其局限性,有时是“致命”的,主要原因是抑制剂缺乏特异性。虽然我们在文章里看到用抑制剂的时候都说是什么什么的特异性抑制剂,但真的那么特异吗?其实往往是作者为了写文章发文章的需要而夸大了抑制剂的特异性。细胞里无数的信号通路,谁也不能保证抑制剂在作用于靶分子时不会影响其他信号通路。其实无论什么抑制剂,对剂量的要求都相对比较苛刻,为什么?就是因为一旦浓度高了,就不知道会干扰到其他哪些信号通路,从而产生很多说不清道不明的现象。 PI3K的抑制剂---LY294002和wortmannin,它们都能抑制PI3K和相关的激酶,但LY294002的浓度达到200μM常用来抑制DNA依赖的蛋白激酶(DNA-PK);wortmannin在浓度超过3μM常用来抑制运动失调性毛细血管扩张基因突变(ATM)以及DNA-PK。相对而言,MEK1/2

糖代谢(EMP+TCA+呼吸链)3.27

生物化学试题1 一、填空题 21.葡萄糖在体内主要分解代谢途径有_____________、____________ 和 ____________ 。22.糖酵解反应的进行亚细胞定位是在 ____________,最终产物为____________。 23.糖酵解途径中仅有的脱氢反应是在____________酶催化下完成的,受氢体 是 ______,______ 两个。底物水平磷酸化反应分别由___________________酶 和 __________________酶催化。 26.1分子葡萄糖经糖酵解生成________分子ATP,净生成________分子ATP,其主要生理意义在于________________________ 。 27.由于成熟红细胞没有 ____________,完全依赖 ____________供给能量。 28.丙酮酸脱氢酶复合体含有维生素______,______,________,___________,_________。29.三羧酸循环是由____________与 ____________缩合成柠檬酸开始,每循环一次 有 _______次脱氢、_________次脱羧和_______次底物水平磷酸化,共生成分子ATP。30.在三羧酸循环中催化氧化脱羧的酶分别是____________和____________ 。 31.糖有氧氧化反应的进行亚细胞定位是____________和____________。1分子葡萄糖氧化成CO2和H2O净生成____________或____________分子ATP。 33.人体主要通过____________途径,为核酸的生物合成提供 ____________。 39.调节血糖最主要的激素分别是____________和 ____________ 。 40.在饥饿状态下,维持血糖浓度恒定的主要代谢途径是____________。 三、选择题 41.糖类最主要的生理功能是: A.提供能量 B.细胞膜组分 C.软骨的基质 D.信息传递作用 E.免疫作用44.关于糖酵解途径的叙述错误的是: A.是体内葡萄糖氧化分解的主要途径 B.全过程在胞液中进行 C.该途径中有ATP生成步骤 D.是由葡萄糖生成丙酮酸的过程 E.只有在无氧条件下葡萄糖氧化才有此过程45.人体内糖酵解途径的终产物: A.CO2和H2O B.丙酮酸 C.丙酮 D.乳酸 E.草酰乙酸 46.关于糖酵解途径中的关键酶正确的是: A.磷酸果糖激酶-1 B.果糖双磷酸酶-1 C.磷酸甘油酸激酶 D.丙酮酸羧化 酶 E.果糖双磷酸酶-2 47.糖酵解过程中哪种直接参与ATP的生成反应:

常见的信号通路

1 JAK-STAT信号通路 1) JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK(Janus kinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3

生化第六章糖代谢

第四章糖代谢 本章要点 ☆糖的作用: ①为生命活动提供能源和碳源; ②参与组成结缔组织等机体组织结构; ③调节细胞信息传递; ④形成NAD+、FAD、ATP等多种生物活性物质; ⑤构成激素、酶、免疫球蛋白等具有特殊生理功能的糖蛋白。 一、糖的消化吸收与转运 (一)、糖代谢后以单体形式吸收 1.人类食物中可被机体分解利用的糖类主要有植物淀粉、动物糖原、麦芽糖、蔗糖、乳糖和葡萄糖等。 2.食物中还含有大量的纤维素,由于人体内无β-糖苷酶故不能对其分解利用,但纤维素能起到刺激肠蠕动等作用,也是维持健康所必需的糖类。 3.唾液和胰液中都有α-淀粉酶,可水解淀粉分子内的α-1,4-糖苷键。 4.淀粉消化主要在小肠内进行,在胰液的α-淀粉酶作用下,淀粉被水解为麦芽糖、麦芽三糖、含分支的异麦芽糖、有4-9个葡萄糖残基构成的α-极限糊精。 5.寡糖的进一步消化在小肠粘膜刷状缘进行。α-糖苷酶(包括麦芽糖酶)水解没有分支的麦芽糖和麦芽三糖。α-极限糊精酶(包括异麦芽糖酶)可水解α-1,4-糖苷键和α-1,6-糖苷键,将α-极限糊精和异麦芽糖水解成葡萄糖。肠黏膜细胞还含有蔗糖酶和乳糖酶等。 6.糖类被消化成单糖后才能在小肠被吸收。小肠黏膜细胞依赖特定载体摄入葡萄糖,是一个主动耗能的过程,同时伴有Na+的转运。这类葡萄糖转运体称为Na+依赖型葡萄糖转运蛋白,他们主要存在于小肠黏膜和肾小管上皮细胞。 7.葡萄糖被小肠黏膜细胞吸收后经门静脉进入血循环,供身体各组织利用。肝对于维持血糖稳定发挥关键作用。当血糖较高时,肝通过糖原合成和分解葡萄糖来降低血糖;当血糖较低时,肝通过糖原分解和糖异生来升高血糖。 △乳糖不耐受症:缺乏乳糖酶 (二)、细胞摄取葡萄糖需要转运蛋白

4 糖代谢

第四章糖代谢 内容提要 食物中的糖类主要是淀粉,其主要在小肠粘膜细胞中经各种酶催化水解为葡萄糖。在小肠经特定载体转运,主动吸收入血。 糖酵解是在无氧情况下葡萄糖分解生成乳酸的过程。葡萄糖经磷酸化、异构化,一分为二分解为2分子磷酸丙糖,再经脱氢氧化、底物水平磷酸化生成ATP和丙酮酸,后者还原转变成2分子乳酸。反应过程中由己糖激酶(HK)、磷酸果糖激酶-1(PFK-1)及丙酮酸激酶(PK)三个限速酶催化的反应不可逆。糖酵解在胞浆中进行,1分子葡萄糖经酵解可净生成2分子ATP,是机体在缺氧情况下迅速获得能量的主要途径,也是成熟红细胞获得能量的唯一途径。 机体在有氧条件下可彻底氧化生成CO2和H2O的过程,称为糖的有氧氧化。它是糖氧化供能的主要方式,反应过程分为三个阶段:(1)在胞液葡萄糖经糖酵解途径分解为丙酮酸;(2)丙酮酸进入线粒体在丙酮酸脱氢酶复合体催化下氧化脱羧生成乙酰CoA 、NADH+H+、CO2;(3)三羧酸循环和氧化磷酸化。三羧酸循环是以草酰乙酸和乙酰CoA缩合生成柠檬酸开始,经脱氢脱羧等一系列反应又生成草酰乙酸的循环过程。此循环中由三个关键酶(异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体、柠檬酸合酶)催化的反应是不可逆的。每进行一次三羧酸循环有四次脱氢(生成3分子NADH+H+,1分子FADH2),两次脱羧(生成2分子CO2),一次底物水平磷酸化而氧化1分子乙酰基。NADH+H+、FADH2经氧化磷酸化生成ATP 及H2O。1分子乙酰CoA经三羧酸循环彻底氧化可生成12分子ATP。三羧酸循环的生理意义在于它是三大营养素的最终代谢通路;也是三大营养素相互转变的联系枢纽;还为其他合成代谢提供前体物质。 葡萄糖通过磷酸戊糖途径可产生磷酸核糖和NADPH。磷酸核糖是合成核苷酸的重要原料。NADPH作为供氢体参与多种代谢反应。磷酸戊糖途径在胞浆中进行,其关键酶是6-磷酸葡萄糖脱氢酶。 糖原是体内糖的储存形式。肝糖原合成的限速酶是糖原合酶,肝糖原可直接分解为葡萄糖补充血糖。但是因为肌组织缺乏葡萄糖-6-磷酸酶,肌糖原不能直接分解为葡萄糖补充血糖,只能进行酵解或有氧氧化。糖原分解的限速酶是磷酸化酶。 糖异生是指由非糖物质(如乳酸、甘油、丙酮酸、生糖氨基酸等)转变成葡萄糖或糖原的过程,主要在肝脏进行。糖异生基本上是糖酵解的逆过程,但糖酵解过程中三个限速酶催化的不可逆反应,在糖异生途径中需由丙酮酸羧化酶、磷酸烯醇式丙酮酸羧激酶、果糖双磷酸酶-1和葡萄糖-6-磷酸酶催化,此为糖异生的限速酶。糖异生在空腹或饥饿情况下维持血糖浓度的相对恒定方面具有重要意义。 血糖是指血中的葡萄糖,其正常水平相对恒定在3.89~6.11mmol/L之间(碱性酮法),这是血糖的来源与去路相对平衡的结果。血糖水平主要受多种激素的调控。胰岛素具有降低血糖的作用;而胰高血糖素、肾上腺素、糖皮质激素有升高血糖的作用。当人体糖代谢发生障碍时可引起血糖水平的紊乱,常见的临床症状有高血糖及低血糖。糖尿病是最常见的糖代谢紊乱疾病。

糖酵解 三羧酸循环最全总结

精心整理 在高等植物中存在着多条呼吸代谢的生化途径,这是植物在长期进化过程中,对多 变环境条件适应的体现。在缺氧条件下进行酒精发酵和乳酸发酵,在有氧条件下进行三 羧酸循环和戊糖磷酸途径,还有脂肪酸氧化分解的乙醛酸循环以及乙醇酸氧化途径等 (图5-2)。 图5-2植物体内主要呼吸代谢途径相互关系示意图 (二)糖酵解的生理意义 1.糖酵解普遍存在于生物体中,是有氧呼吸和无氧呼吸途径的共同部分。 2.糖酵解的产物丙酮酸的化学性质十分活跃,可以通过各种代谢途径,生成不同的 物质(图5-4)。 图5-4丙酮酸在呼吸和物质转化中的作用 3.通过糖酵解,生物体可获得生命活动所需的部分能量。对于厌氧生物来说,糖酵 解是糖分解和获取能量的主要方式。 4.糖酵解途径中,除了由己糖激酶、磷酸果糖激酶、丙酮酸激酶等所催化的反应以 外,多数反应均可逆转,这就为糖异生作用提供了基本途径。 二、发酵作用

生物体中重要的发酵作用有酒精发酵和乳酸发酵。在酒精发酵(alcoholfermentation)过程中,糖类经过糖酵解生成丙酮酸。然后,丙酮酸先在丙酮酸脱羧酶(pyruvicaciddecarboxylase)作用下脱羧生成乙醛。 CH3COCOOH→CO2+CH3CHO(5-5) 乙醛再在乙醇脱氢酶(alcoholdehydrogenase)的作用下,被还原为乙醇。 CH3CHO+NADH+H+→CH3CH2OH+NAD+(5-6) 在缺少丙酮酸脱羧酶而含有乳酸脱氢酶(lacticaciddehydrogenase)的组织里,丙酮酸便被NADH还原为乳酸,即乳酸发酵(lactatefermentation)。 CH3COCOOH+NADH+H+→CH3CHOHCOOH+NAD+(5-7) 在无氧条件下,通过酒精发酵或乳酸发酵,实现了NAD+的再生,这就使糖酵解得以继续进行。 乙酰基转移酶(dihydrolipoyltransacetylase)、二氢硫辛酸脱氢酶(dihydrolipoicaciddehydrogenase)。6种辅助因子。6种辅助因子分别是硫胺素焦磷酸(thiaminepyrophosphate,TPP)、辅酶A(coenzymeA)、硫辛酸(lipoicacid)、FAD(flavinadeninedinucleotide)、NAD+(nicotinamideadeninedinucleotide)和Mg2+。 图5-6三羧酸循环的反应过程 上述反应中从底物上脱下的氢是经FAD→FADH2传到NAD+再生成NADH+H+。 2.反应(2)乙酰CoA在柠檬酸合成酶催化下与草酰乙酸缩合为柠檬酸,并释放CoASH,此反应为放能反应(△G°,=-32.22kJ·mol-1)。 3.反应(3)由顺乌头酸酶催化柠檬酸脱水生成顺乌头酸,然后加水生成异柠檬酸。

相关文档