文档库 最新最全的文档下载
当前位置:文档库 › 考虑级配效应的粒状材料本构模拟_刘映晶

考虑级配效应的粒状材料本构模拟_刘映晶

考虑级配效应的粒状材料本构模拟_刘映晶
考虑级配效应的粒状材料本构模拟_刘映晶

纳米材料的表面界面问题

纳米材料的表面、界面问题 目录 摘要 (2) 1 纳米粒子和纳米固体的表面、界面问题 (3) 纳米微粒的表面效应 (3) 纳米固体的界面效应 (3) 纳米材料尺度效应导致的热学性能问题 (4) 纳米材料尺度效应导致的力学性能问题 (4) 纳米材料尺度效应导致的相变问题 (4) 2. 金属纳米材料的表面、界面问题 (5) 高性能铜(银)合金中的高强高导机理问题 (5) 金属复合材料的强化模型和物理机制问题 (5) 原子尺度上的Cu/X界面研究 (6) 3 纳米材料表面、界面效应的研究成果综述 (9) 参考文献 (11)

摘要 纳米材料包含纳米微粒和纳米固体两部分,纳米微粒的粒子直径与电子的德布罗意波长相当,并且具有巨大的比表面;由纳米微粒构成的纳米固体又存在庞大的界面成分。强大的表面和界面效应使纳米材料体现出许多异常的特性和新的规律,这些特性和规律使其展现出广阔的应用前景。其中,在宏观尺度上制造出具有纳米结构和纳米效应的高性能金属材料,并揭示这些材料的组织演化特征以实现功能调控,是金属材料学科面临的重大科学问题和需要解决的核心关键技术。本文将对纳米材料的表面、界面效应进行介绍并重点阐述金属纳米材料界面、尺度与材料塑变、强化关系的研究进展。 关键词:纳米材料;表面效应;复合材料 、

1 纳米粒子和纳米固体的表面、界面问题 纳米粒子是指颗粒尺度在范围的超细粒子,它的尺度小于通常的微粉,接近于原子簇。是肉眼和一般显微镜看不见的微小粒子[1]。只能用高倍的电子显微镜进行观察。最早日本名古屋大学上田良二教授给纳米微粒下了一个定义:用电子显微镜能看到的微粒被称为纳米微粒[2]。 纳米固体是由纳米微粒压制活特殊加工而成的新型固体材料,它可以是单一材料,也可以是复合材料。纳米固体最早是由联邦德国萨尔兰大学格莱特等人在80年代初首先制成的。他们用气相冷凝发制得具有清洁表面的纳米级超级微粒子,在超高真空下加压形成固体材料。 纳米微粒的表面效应 随着微粒粒径的减小,其比表面积大大增加,位于表面的原子数目将占相当大的比例。例如粒径为5nm时,表面原子的比例达到50%;粒径为2nm时,表面原子的比例数猛增到80%;粒径为1nm时,表面原子比例数达到99%,几乎所有原子都处于表面状态。庞大的表面使纳米微粒的表面自由能,剩余价和剩余键力大大增加。键态严重失配、出现了许多活性中心,表面台阶和粗糙度增加,表面出现非化学平衡、非整数配位的化学价,导致了纳米微粒的化学性质与化学平衡体系有很大差别,我们把这些差别及其作用叫做纳米微粒的表面效应[3]。 从电镜研究中也可以看出,由于强烈的表面效应使得纳米微粒的微观结构处于不断地变化之中。 纳米固体的界面效应 由纳米微粒制成的纳米固体,不同于长程有序的晶态固体,也不同于长程无序短程有序的非晶态固体,而是处于一种无序状态更高的状态。格莱特认为,这类固体的晶界有“类气体”的结构,具有很高的活性和可移动性。从结构组成上看它是由两种组元构成,一是具有不同取向的晶粒构成的颗粒组元,二是完全无序结构各不相同的晶界构成的界面组元。由于颗粒尺寸小,界面组元占据了可以与颗粒组元相比拟的体积百分数。例如当颗粒粒径为5-50nm时构成的纳米固体,

尼龙材料在不同应变率及温度下的力学特性【文献综述】

毕业论文文献综述 工程力学 尼龙材料在不同应变率及温度下的力学特性 1 文献检索范围 1.中文科技期刊全文库(维普) 1989-2010.10 2.中国学位论文全文数据库(万方) 1980-2010.10 3.中国学位论文文摘数据库(万方) 1980-2010.10 4.中国学术会议论文全文数据库(万方) 1985-2010.10 5.中国学术会议论文文摘数据库(万方) 1985-2010.10 6.中国科技成果数据库(万方) 1983-2010.10 7.数字化期刊全文数据库(万方) 1998-2010.10 8.中国期刊网全文数据库(同方) 1983-2010.10 2 课题的研究历史与研究现状 聚酰胺(PA,俗称尼龙),是五大工程塑料中消费量最大、品种最多、资格最老的一种。PA具有良好的综合性能,比强度高于金属,具有良好的机械性能、耐热性、耐磨损性、耐化学性、阻燃性及自润滑性,而且容易加工,摩擦系数低,也适宜于玻璃纤维及其他材料填充增强改性。广泛应用于汽车、电子电器、包装、机械、运动休闲及日用品等方面。聚酰胺纤维由于聚酯等纤维的竞争而增长放慢,但作为工程塑料非纤维用途的拓展,聚酰胺工业仍呈现出良好的发展前景。 聚酰胺的品种主要有尼龙6、尼龙66、尼龙610、尼龙11、尼龙12五大品种,此外,还有尼龙1010、尼龙4、尼龙8、尼龙9、尼龙810、MC尼龙、聚芳酰胺及各种共聚改性尼龙。其中,尼龙6和尼龙66的用量最大,约占聚酰胺总消费量的90%。 尼龙6的最大消费市场是汽车,也有部分尼龙6用于包装薄膜的生产,玻璃纤维增强尼龙还可用于生产液体贮存器;尼龙66也主要用于汽车工业,广泛用于散热器、引擎等部件的生产;尼龙12和尼龙11因吸水性低,粘结性能好,多用于汽车软管和热熔胶的生产。在美国,聚酰胺生产主要以尼龙66为主,约占53%,其次是尼龙6,为33%,尼龙11和尼龙12共占14%。近年来发展最快的是尼龙薄膜,现在用量已占聚酰胺总产量的15%。欧洲聚酰胺生产集中在德国,主要应用领域是汽车制造业。日本的聚酰胺生

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

纳米材料物理

纳米材料的基本效应 纳米材料的特殊性能是由于纳米材料的特殊结构,使之产生四大效应,即尺寸效应(量子尺寸效应、小尺寸效应)/表(界)面效应/量子效应(宏观量子隧道效应、库仑堵塞与量子隧穿)/介电限域效应,从而具有传统材料所不具备的物理、化学性能。 宏观尺度的金属材料在高温条件下,其能带可以看作是连续的。 (久保理论) 对于纳米金属颗粒来说,低温下能带的离散性会凸现出来。相邻电子能级之间的间隔d将随颗粒体积V的减小而增加。量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。 能带理论表明,金属费米能级附近电子能级一般是连续的,这一点只有在高温或宏观尺寸情况下才成立。对于只有有限个导电电子的超微粒子来说,低温下能级是离散的,对于宏观物体包含无限个原子(即导电电子数N→∞),由久保公式可得能级间距d→0,即对大粒子或宏观物体能级间距几乎为零;而对纳米微粒,所包含原子数有限,N值很小,这就导致d有一定的值,即能级间距发生分裂。当能级间距大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须要考虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性有着显著的不同。

Ag的电子数密度n = 6 × 1022/cm3,由公式 当T=1K时,能级最小间距d/kB=1,代入上式,求得d=20nm。根据久保理论,当d>kB时才会产生能级分裂,出现量子尺寸效应.由此得出,当粒径d<20nm,Ag纳米微粒变为 非金属绝缘体,如果温度高于1K,则要求d << 20nm才有可能变为绝缘体。这里应当指出,实际情况下金属变为绝缘体除了满足d>kB外,还需满足电子寿命>h/d的条件。实验表明,纳米Ag的确具有很高的电阻,类似于绝缘体,这就是说,纳米Ag满足上述两个条件。 Shift to higher energy in smaller size Discrete structure of spectra Increased absorption intensity

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

多尺度方法在复合材料力学研究中的进展

多尺度方法在复合材料力学分析中的研究进展 摘要简要介绍了多尺度方法的分量及其适用围,详细论述了多尺度分析方法在纤维增强复合材料弹性、塑性等力学性能中的研究进展,最后对多尺度分析方法的前景进行了展望。 关键词多尺度分析方法,复合材料,力学性能,细观力学,均匀化理论 1 引言 多尺度科学是一门研究不同长度尺度或时间尺度相互耦合现象的跨学科科学,是复杂系统的重要分支之一,具有丰富的科学涵和研究价值。多尺度现象并存于生活的很多方面,它涵盖了许多领域。如介观、微观个宏观等多个物理、力学及其耦合领域[1]。空间和时间上的多尺度现象是材料科学中材料变形和失效的固有现象。 多尺度分析方法是考虑空间和时间的跨尺度与跨层次特征,并将相关尺度耦合的新方法,是求解各种复杂的计算材料科学和工程问题的重要方法和技术。对于求解与尺度相关的各种不连续问题。复合材料和异构材料的性能模拟问题,以及需要考虑材料微观或纳观物理特性,品格位错等问题,多尺度方法相当有效。 复合材料是由两种或者两种以上具有不同物理、化学性质的材料,以微观、介观或宏观等不同的结构尺度与层次,经过复杂的空间组合而形成的一个多相材料系统[2]。复合材料作为一种新型材料,由于具有较高的比强度和比刚度、低密度、强耐腐蚀性、低蠕变、高温下强度保持率高以及生物相容性好等一系列优点,越来越受到土木工程和航空航天工业等领域的重视。 复合材料是一种多相材料,其力学性能和失效机制不仅与宏观性能(如边界

条件、载荷和约束等)有关,也与组分相的性能、增强相的形状、分布以及增强相与基体之间的界面特性等细观特征密切相关,为了优化复合材料和更好地开发利用复合材料,必须掌握其细观结构对材料宏观性能的影响,即应研究多尺度效应的影响。 如何建立起复合材料的有效性能和组分性能以及微观结构组织参数之间的关系,一直是复合材料研究的重点,也是复合材料研究的核心目标之一。近年来,随着细观力学的发展和渐近均匀化理论的深化,人们逐渐认识并开始研究复合材料宏观尺度和细观尺度之间的联系,并把二者结合起来。本文综述了多尺度分析法在纤维增强复合材料力学性能中的研究进展,并对多尺度分析方法的发展进行了展望。 2 纤维增强复合材料力学性能分析中的多尺度方法 目前,纤维增强复合材料的研究方法可分为宏观力学和细观力学方法两种。复合材料宏观力学方法[3]是从唯象学的观点出发,基于均匀化假设,将复合材料当做宏观均匀介质,视增强相和基体为一体,不考虑组分相的相互影响,仅考虑复合材料的平均表现性能。宏观力学方法中的应力、应变不是基体和增强相的真实应力、应变,而是在宏观尺度上的某种平均值。 复合材料细观力学[4]的目的是建立复合材料宏观性能同其组分材料性能及细观结构之间的定量关系,是将微观结构形态特征量与宏观力学分析相综合,来建立两个不同尺度之间的联系,细观力学是介于宏观力学与微观力学之间的重要分支学科,对研究跨尺度效应的力学问题,既有重要的理论价值,也有重要的工程应用前景,是当前力学研究的国际前沿性问题。

纳米尺寸效应

纳米尺寸效应 纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 (1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。 (2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~

实验三半导体的霍尔效应

实验三半导体的霍尔效应 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产 生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于 1879年发现的,后被称为霍 尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段, 而且利用该效应制成的 霍尔器件已广泛用于非电量的电测量、 自动控制和信息处理等方面。 在工业生产要求自动检 测和控制的今天,作为敏感元件之一的霍尔器件, 将有更广泛的应用前景。掌握这一富有实 用性的实验,对日后的工作将有益处。 、实验目的 1?了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 .学习用“对称测量法”消除副效应的影响,测量试样的 .确定载流子浓度以及迁移率。 实验仪器 霍尔效应实验组合仪。 实验原理 图1.1霍尔效应实验原理示意图 a )载流子为电子(N 型) b )载流子为空穴(P 型) 1.霍尔效应 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。 当带电 粒子(电子或空穴)被约束在固体材料中, 这种偏转就导致在垂直电流和磁场方向上产生正 若在X 方向通以电流Is ,在Z 方向加磁场B ,则在丫方向即试样A-A / 电极两侧就开始聚 集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图 1.1 (a )所 V H-I S > V H I M 曲线。 负电荷的聚积,从而形成附加的横向电场,即霍尔电场 E H 。如图1.1所示的半导体试样, b a

V H I 1°8 R H = |S B 8 上式中的1°是由于磁感应强度 B 用电磁单位(高斯)而其它各量均采用 CGS 实用单位而 引入。 率之间有如下关系: (1-5) 示的N 型试样,霍尔电场逆 丫方向,(b )的P 型试样则沿丫方向。即有 (N 型) (P 型) E H (Y) 0 E H (Y) 0 显然,霍尔电场 洛仑兹力 evB 相等, E H 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力 eE H 与 样品两侧电荷的积累就达到动态平衡,故 eE H eVB (1-1) E H 为霍尔电场, b,厚度为d ,载流子浓度为 I S nevbd 其中 设试样的宽为 v 是载流子在电流方向上的平均漂移速度。 n ,则 (1-2) 由(1-1 )、( 1-2 ) 两式可得: V H E H b 丄上B ne d (1-3) 即霍尔电压 V H (A 、A 电极之间的电压) 'S B 乘积成正比与试样厚度 d 成反比。 比例系数 R H 丄 ne 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。 只要测出 V H (伏)以及知道 I S (安)、B (高斯)和d (厘米)可按下式计算 R H (厘米2 3 /库仑): (1-4) V A 'A °,即点A 点电位高于点 A'的电位,则R H n (2)由F H 求载流子浓度n 。即 1 R H ?。应该指出,这个关系式是假定所有载流子 都具有相同的漂移速度得到的,严格一点,如果考虑载流子的速度统计分布,需引入 修正因子(可参阅黄昆、谢希德著《半导体物理学》 (3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 3 8的 n 以及迁移 ne

纳米材料的形貌控制.(DOC)

纳米材料的形貌控制 1 概述 纳米材料是指材料的三维尺寸中至少有一维处于纳米尺度(1-100 nm),或由纳米尺度结构单元构成的材料。随着纳米材料尺寸的降低,其表面的晶体结构和电子结构发生了变化,产生了如小尺寸效应、表面效应、量子尺寸效应等宏观物质所不具有的特殊效应,从而具有传统材料所不具备的物理化学性质。纳米材料的尺度处于原子簇和宏观物质交界的过渡域,是介于微观原子或分子和宏观物质间的过渡亚稳态物质,它有着与传统固体材料显著不同的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应[1],表现出奇异的光学、磁学、电学、力学和化学特性。 1.1 纳米材料的特性 1.1.1 量子尺寸效应 当粒子的尺寸下降到某一临界值时,其费米能级附近的电子能级由准连续变为离散能级,并且纳米半导体微粒存在不连续的最高被占据的分子轨道和最低未被占据的分子轨道能级,使得能隙变宽的现象,称为纳米材料的量子尺寸效应。当能级间距大于磁能、热能、静电能或超导态的凝聚能时,量子尺寸效应会导致纳米颗粒光、电、磁、热及超导电性能与宏观性能显著不同。量子尺寸效应是未来光电子、微电子器件的基础。 1.1.2 小尺寸效应 当纳米材料的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等外部物理量的特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米颗粒表面层附近的原子密度减小,从而导致其光、电、磁、声、热、力学等物质特性呈现出显著的变化:如熔点降低;磁有序向磁无序态,超导相向正常相的转变;光吸收显著增加,并产生吸收峰的等离子共振频移;声子谱发生

改变等,这种现象称为小尺寸效应。纳米材料的这些小尺寸效应为实用技术开拓了新领域。 1.1.3 表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变化而急剧增大后引起的材料性质上的变化。随着材料尺寸的减小,比表面积和表面原子所占的原子比例将会显著增加。例如,当颗粒的粒径为10 nm时,表面原子数为晶粒原子总数的20%,而当粒径为l nm时,表面原子百分数增大到99%。由于表面原子数增多,原子配位不足及高的表面能,使这些原子易与其他原子相结合以降低表面能,故具有很高的化学活性。这种表面原子的活性不但能引起纳米粒子表面输运和构型的变化,也会引起电子能级和电子自旋构象的变化,从而对纳米材料的电学、光学、光化学及非线性光学性质等产生重要影响。通过利用有机材料对纳米材料表面的修饰和改性,可以得到超亲水和超疏水等性能可调的纳米材料,可以广泛的应用于民用工业。 1.1.4 宏观量子隧道效应 量子物理中把微观粒子具有的贯穿势垒的能力称为隧道效应。近年来的研究发现一些宏观量,如超微颗粒的磁化强度,量子相干器件中的磁通以及电荷等也具有隧道效应,它们可以穿越宏观系统的势垒而发生变化。故称为宏观量子隧道效应。对宏观量子隧道效应的研究对基础及应用研究都有着重要意义。宏观量子隧道效应与量子尺寸效应一起都将会是未来微电子、光电子器件的基础。此外,纳米粒子还具有其它的一些特殊性质,如库伦阻塞与量子隧穿及介电限域效应等。 1.2 纳米材料特性对材料性能的影响 1.2.1 电学性能 电学性能发生奇异的变化,是由于电子在纳米材料中的传输过程受到空间维度的约束而呈现出量子限域效应。纳米材料晶界上原子体积分数增大,晶界部分

复合材料板弯曲行为分析的高阶多尺度方法

复合材料板弯曲行为分析的高阶多尺度方法 王自强 摘要 复合材料具有良好的物理、力学性能,在航空航天和日常工业用品中已得到广泛应用, 它们经常被制备成板或者壳的形式。因此,针对复合材料板的宏‐细观模型、性能预测、优化设计,以及复合材料板在各种物理和力学荷载作用下的弯曲行为分析已经成为一个十分重要的研究领域。本文主要研究复合材料板静、动力弯曲行为分析的高阶多尺度方法,其结果将为复合材料板的设计和性能预测提供理论支持。 本文的第一部分研究周期性复合材料板在静力作用下弯曲行为分析的高阶双尺度方法。首先,从三维的线弹性方程出发,在细观上定义三维的局部单胞函数,并利用它求出均匀化系数和定义出均匀化方程。其次,利用Reissner-Mindlin位移模式求解均匀化方程后,把得到的局部单胞函数和均匀化解组装成复合材料板弯曲问题位移场的二阶双尺度逼近解。然后,分析了该近似解在点点意义下的对原始方程的近似性和在能量模意义下的整体近似性。最后,给出了典型算例,其数值结果说明了算法的有效性。 本文的第二部分研究周期性复合材料板在稳态热‐力耦合作用下弯曲行为分析的高阶双尺度方法。首先,从三维的稳态热‐力耦合方程出发,在细观上定义能够反映温度增量对位移场影响的三维的局部单胞函数,并利用它求出均匀化系数和定义均匀化方程。其次,对于均匀化的温度场采用积分投影近似,均匀化位移场采用Reissner-Mindlin位移模式求解。然后,由它们组装出温度和位移场的高阶双尺度渐近展开式并给出计算温度场和位移场的二阶双尺度算法,进一步得到温度梯度、位移、应变和应力的二阶双尺度算法。分析了二阶双尺度近似解在点点意义下对原始方程的近似性和在能量模意义下的整体的近似性。最后,给出了数值算例,其数值结果表明算法的有效性。 本文的最后一部分研究周期性复合材料板在瞬态热‐力耦合作用下的弯曲行为分析的高阶双尺度方法。首先,从三维的瞬态热‐力耦合方程出发,在细观上定义能够反映应变率对温度场影响以及温度增量对位移场影响的三维局部单胞函数,并利用它们求出均匀化系数和定义均匀化方程。其次,对于均匀化温度场采用积分投影近似和均匀化的位移场采用Reissner-Mindlin位移模式求解。最后,由高阶的双尺度渐近展开式给出计算温度场和位移场的二阶双尺度算法,进一步可以得到温度梯度、应变和应力的二阶双尺度算法。并分析了二阶双尺度近似解在点点意义下的对原始方程近似性和在能量模意义下的整体的近似性。 高阶多尺度方法可以作为解决类似问题的一个有效工具,可以应用新型复合材料结构的研究、设计及其工程实践。 关键词:复合材料板,弯曲问题,热‐力耦合问题,高阶多尺度方法,近似性分析

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

纳米材料的基本效应

第二章纳米材料的基本效应 §第一节表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒子尺寸的减小而大幅度的增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子物理、化学性质的变化。 纳米粒子的表面原子所处的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和性质,因而极易与其他原子相结合而趋于稳定,具有很高的化学活性。 1、比表面积的增加 比表面积常用总表面积与质量或总体积的比值表示。质量比表面积、体积比表面积 (G代表质量,m2/g) (V代表颗粒的体积;m-1) 当颗粒细化时,粒子逐渐减小时,总表面积急剧增大,比表面积相应的也急剧加大。 如:把边长为1cm的立方体逐渐分割减小的立方体,总表面积将明显增加。

随着粒径减小,表面原子数迅速增加。这是由于粒径小,总表面积急剧变大所致。例如,粒径为10nm时,比表面积为90m2/g, 粒径为5nm时,比表面积为180m2/g, 粒径下降到2nm时,比表面积猛增到450m2/g。 这样高的比表面,使处于表面的原子数越来越多,同时表面能迅速增加。 2. 表面原子数的增加 由于粒子尺寸减小时,表面积增大,使处于表面的原子数也急剧增加.

3.表面能 由于表层原子的状态与本体中不同。 表面原子配位不足,因而具有较高的表面能。 如果把一个原子或分子从内部移到界面,或者说增大表面积,就必须克服体系内部分子之间的吸引力而对体系做功。 在T和P组成恒定时,可逆地使表面积增加dA所需的功叫表面功。 颗粒细化时,表面积增大,需要对其做功,所做的功部分转化为表面能储存在体系中。 因此,颗粒细化时,体系的表面能增加.。 由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。

纳米材料四大效应

1.小尺寸效应:当纳米粒子尺寸与德布罗意波以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,对于晶体其周期性的边界条件将被破坏,对于非晶态纳米粒子其表面层附近原子密度减小,这些都会导致电、磁、光、声、热力学等性质的变化,这称为小尺寸效应 我的理解是尺寸小了就会出现一些新的现象、新的特性。从理论层面讲主要是由于尺寸变小导致了比表面的急剧增大。由此很好地揭示了纳米材料良好的催化活性。 2.表面效应:是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。 其实质就是小尺寸效应。球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 3. 量子尺寸效应:当粒子尺寸降低到某一值时,金属费米能级附近的电子能级由准连续变为分立能级和纳米半导体微粒的能隙变宽的现象均称为量子尺寸效应。 可否直接说连续的能带变成能级。 宏观量子隧道效应:微观粒子具有穿越势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微粒的磁化强度、量子相干器件中的磁通量等亦具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,故称为宏观量子隧道效应。 表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。因为表面原子数目增多,比表面积大,原子配位不足,表面原子的配位不饱和性导致大量的悬空键和不饱和键,表面能高,因而导致这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。这种表面原子的活性不但易引起纳米粒子表面原子输运和构型的变化,同时也会引起表面电子自旋构象和电子能谱的变化。纳米材料由此具有了较高的化学活性,使得纳米材料的扩散系数大,大量的界面为原子扩散提供了高密度的短程快扩散路径,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。(2)小尺寸效应 当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,从而使其声、光、电、磁,热力学等性能呈现出新的物理性质的变化称为小尺寸效应。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。利用这些特性,可以高效率地将

霍尔效应及用其理论测量半导体材料的性能

本科毕业论文 题目:霍尔效应及用其理论测量 半导体材料的性能 学院:物理与电子科学院 班级: 09级物理二班 姓名:闫文斐 指导教师:付仁栋职称:讲师完成日期: 2013 年 5 月 15 日

霍尔效应及用其理论测量 半导体材料的性能 摘要:简述了霍尔效应的基本原理,测量判定半导体材料的霍尔系数,确定半导体材料的导电类型、载流子浓度及迁移率。因此,霍尔效应时研究半导体性质的重要实验方法。分析了利用霍尔效应测量半导体特性参数中影响的重要副效应,给出了减小或消除这些副效应的方法,并在实验中,对实验仪器进行了一定得改进,使实验更有利于操作。 关键字:霍尔效应;半导体;副效应;载流子;改进

目录 引言 (1) 1. 霍尔效应 (2) 1.1霍尔效应的基本原理 (2) 1 .2 霍尔电势差和磁场测量 (3) 2. 实验内容 (5) 2.1 确定霍尔元件的导电类型 (5) 2.2 霍尔灵敏度、霍尔系数、载流子浓度的测量 (6) 2.3实验数据的处理 (6) 3. 误差分析 (8) 3.1主要误差及原因 (8) 3.2 消除误差的方法 (9) 4. 实验的改进 (10) 4.2 霍尔元件载流子迁移率μ和电导率σ的测量 (11) 5. 结束语 (11) 致谢 (11) 参考文献 (11)

引言 霍尔效应是电磁效应在实验中的应用的一中,这是美国的一位伟大的物理学家霍尔(A.H.Hall,1855—1938)发现的,于1879年在探索金属的导电原理时偶然发明的。将载流霍尔元件置于与其垂直的磁场B中,板内出现的磁场会与电流方向垂直,同样的,板的两边就会出现一个横向电压(如图1)。在霍尔发现的100年后,1985年德国克利青( K laus von K litzing,1943-)等研究极低温度和强磁场中的半导体时发现量子霍尔效应获得诺贝尔奖。1998年华裔科学家崔琦(Daniel Chee Tsui,1939-)、斯坦福大学的美国物理学家劳克林(Robert https://www.wendangku.net/doc/7a3575828.html,ughlin,1950-)和哥伦比亚大学的施特默(Horst L.Stormer,1949-)在更强磁场下研究量子霍尔效应,因为发现分数量子霍尔效应而荣获诺贝尔奖。 霍尔效应原本的发现是在对金属的研究中, 但在科学发展到现在,却发现该效应在半导体中的应用更加突出, 所以在半导体的研究中一直以来提供非常重要的理论依据。本文通过霍尔效应测量,不仅判别了半导体材料的导电类型,霍尔系数、载流子浓度及迁移率和电导率等主要的半导体材料的特性参数。并在分析操作中因受各种副效应的影响,带来的测量准确度的影响,如何避免这些副效应的影响也是很必要的。因此,本文还对我们的实验元件做了很好的改进,可以通过实验测量的方法直接得到我们所需要的迁移率和电导率。

实验三 半导体的霍尔效应

实验三 半导体的霍尔效应 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的V H -I S 、曲线。 3.确定载流子浓度以及迁移率。 二、实验仪器 霍尔效应实验组合仪。 三、实验原理 1.霍尔效应 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。如图1.1所示的半导体试样, 若在X 方向通以电流 ,在Z 方向加磁场,则在Y 方向即试样 A-A / 电极两侧就开始聚 集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图 1.1(a )所 M H I V -H E S I B X Y Z

示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 显然,霍尔电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力与洛仑兹力相等,样品两侧电荷的积累就达到动态平衡,故 (1-1) 其中为霍尔电场,是载流子在电流方向上的平均漂移速度。 设试样的宽为b ,厚度为d ,载流子浓度为n ,则 (1-2) 由(1-1)、(1-2)两式可得: (1-3) 即霍尔电压(A 、A / 电极之间的电压)与乘积成正比与试样厚度成反比。 比例系数 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。只要测出(伏)以及知道 (安)、(高斯)和(厘米)可按下式计算(厘米3 /库仑): R H = (1-4) 上式中的10是由于磁感应强度用电磁单位(高斯)而其它各量均采用CGS 实用单位而 引入。 2.霍尔系数与其它参数间的关系 根据 可进一步确定以下参数: (1)由的符号(或霍尔电压的正负)判断样品的导电类型。判别的方法是按图1.1所示的I 和B 的方向,若测得的即点点电位高于点的电位,则为负,样品属N 型;反之则为P 型。 (2)由R H 求载流子浓度n 。即 。应该指出,这个关系式是假定所有载流子 都具有相同的漂移速度得到的,严格一点,如果考虑载流子的速度统计分布,需引入的 修正因子(可参阅黄昆、谢希德著《半导体物理学》)。 (3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度n 以及迁移 率 之间有如下关系: (1-5) )(P 0)() (N 0)(型型?>?

相关文档