文档库 最新最全的文档下载
当前位置:文档库 › 一种改进的Mean Shift跟踪算法

一种改进的Mean Shift跟踪算法

一种改进的Mean Shift跟踪算法
一种改进的Mean Shift跟踪算法

全过程跟踪控制方案

全过程跟踪控制方案 第一章绪言部分 第一节项目造价咨询的难点要点分析 第二节投资控制方案编制依据 第二章造价咨询服务工作计划 第一节投资控制的目标计划 第二节预算编制的工作计划 第三节施工过程控制的工作计划 第四节结算审核的工作计划 第三章招标阶段造价咨询工作方案 第一节造价咨询的工作内容 第二节预算编制基本要求 第三节预算编制工作流程 第四节预算编制主要方法 第五节预算编制要点及注意事项 第四章施工阶段全过程投资跟踪控制方案 第一节造价咨询的工作内容 第二节施工阶段全过程投资控制流程 第三节施工阶段全过程投资控制内容 第四节投资跟踪控制总目标及主要节点目标 第五节全过程投资跟踪控制方案 第六节造价控制偏差分析方法及纠偏措施 第五章竣工结算审核工作方案 第一节造价咨询的工作内容 第二节结算审核工作要点 第三节结算审核工作流程 第四节结算审核主要方法

第五节结算审核风险与防范措施 第一章绪言部分 第一节项目造价咨询的难点要点分析建设项目工程造价全过程投资跟踪控制是在新形势下产生的一项新的投资管理方式,也是工程造价由事后控制向事前、事中、事后的全过程控制的转变。投资跟踪控制作为现代投资管理一种重要方式,已经在大中型建设项目实施过程中被普遍实用,并且取得了明显的社会效益和经济效益。 1.预算阶段难点、要点分析概预算编制有时时间紧、任务急、工程数量繁杂,难免多算、漏算、重复计算,这就要加强审核力度,提高概预算编制的准确性。 ①审核工程量、审核采用的定额单价、指标是否合适 a)根据设计图纸、设计说明、施工组织设计的要求审核工程量。 b)定额具有科学性、权威性、法令性,它的形式、内容任何人都必须严格执行。审核采用的定额名称、规格、计量单位、内容是否满足施工方法要求,套用定额不同,单价则不同。 c)定额包含内容是否与设计相符。如定额含筋率、混凝土标号等。 d)补充定额是否符合要求,计算是否正确。 ②审核材料价格对材料价格、运杂费进行审核,材料价格是否包括运杂费,材料运输 方法、 措施是否符合实际,做到既要满足工程要求,又要努力降低费用。 ③其他费用 a)取费标准是否符合工程性质; b)费率计算是否正确; c)计算基数是否符合规定; d)价差调整是否符合规定。 2.结算阶段难点、要点分析 ①工程合同的不完全性决定了工程价款的不确定性 与一般货物购销合同不同, 工程合同是一种典型的不完全性合约。由于工程 本身的专业性、复杂性以及建设工程的契约商品性质, 工程合同不可能对所有事件及其对策做出详尽可行的规定, 不可能对违约造成的损失事先就规定补偿和解决办法, 合同履行结果对于相关第三方是难以证实和无法直观地确定的。为弥补 合同的不完全性, 合同各方需要在初始合同中考虑合同再协商谈判、修正对策的 设计问题,即在合同中建立一种机制来弥补缺口。因此, 工程合同的两个主要特 征是合同规划上缺口的存在和一系列的程序和技术的出现。以GF1999-0201《建 设工程施工合同》和FIDIC 施工合同条件为例, 两者在合同机制设计上均对初始合同以及再谈判程序进行恰当的安排。主要表现为: a)合同价款体现为初始造价和追加造价,是不确定的或待定的。工程合同价款一般由清单费用、工程变更费用、价格调整和索赔费用四个部分组成, 其中只有清单费用是相对确定的, 而变更费用、价格调整和索赔费用在合同签订时是不确定的, 而在实施过程中通过再协商谈判而不断调整。 b)对合同实施过程中的现协商谈判的程序和规则进行了详尽规定,例如:对计量与支付、工程变更费用、价格调整和索赔费用等方面双方的权利义务、程序、期限的规定。 c)在合同履行机制上,引入第三方合同机制:工程监理制度,重视过程管理。 ②工程管理的现实矛盾蕴含着无序和混乱, 制约着工程结算 a)工程合同的不完全性要求规范化管理,价款的不确定性要求加强过程管理但由于长期计划经济体制下形成的管理方式、管理手段的制约, 当前我国的合同管理极不规

传统meanshift跟踪算法流程

传统meanshift 跟踪算法实现流程 一、 Meanshift 算法流程图 视频流 手动选定跟踪目标 提取目标灰度加权直方图特征hist1 提取候选目 标区域 提取候选目标的灰度加权直方图特征hist2 均值漂移得到均值漂移向量及新的候选区域位 置 是否满足迭代结束条件 第二帧之后图像 第一帧图像 得到当前帧目标位置 是 否 图1 meanshift 流程图 二、 各模块概述 1、 手动选定目标区域:手动框出目标区域,并把该区域提取出来作为目标模板 区域; 2、 提取目标灰度加权直方图特征hist1; 2.1构造距离权值矩阵m_wei ; 使用Epanechnikov 核函数构造距离加权直方图矩阵:设目标区域中像素

点(,)i j 到该区域中心的距离为dist ,则 _(,)1/m wei i j dist h =-,这里h 是核函数窗宽,h 为目标区域中离区域中心 最远的像素点到中心的距离:若所选目标区域为矩形区域,区域的半宽度为 x h ,半高度为y h ,则22()x y h sqrt h h =+; 2.2得到归一化系数C ; 1/C M =,其中M 是m_wei 中所有元素值之和; 2.3计算目标的加权直方图特征向量hist1; 若图像为彩色图像,则把图像的,,r g b 分量归一化到[0,15]之间(分量值与16取余,余数即为归化后的分量值),然后为不同的分量值赋予不同的权值得到每个像素点的特征值_q temp : _256*16*q t e m p r g b = ++ 对于像素点(,)i j ,设其特征值为_q temp ,则另 1(_1)1(_1)_(,)hist q temp hist q temp m wei i j +=++; 若图像是灰度图像,则直接利用每个像素的灰度值作为每个像素的特征值,然后统计得到hist1; 把一维数组hist1归一化:11*hist hist C =;归一化后的数组hist1即为目标的加权直方图特征向量; 3、 从第二帧开始的图像,通过迭代的方式找到该帧图像中目标的位置; 3.1提取候选目标区域:以上一帧图像中目标的位置或上一次迭代得到的目标位置为中心提取出目标模板区域大小的区域; 3.2提取候选目标区域的加权直方图特征向量hist2:提取方法同步骤2.3; 计算候选目标区域的特征值矩阵_1q temp : _1 (,)256*(,) 16*(,)q t e m p i j r i j g i j b i j =++; 3.3均值漂移到新的目标区域; 3.3.1计算候选目标区域相对于目标区域的均值漂移权值w : ( 1()/2()),2(2w s q r t h i s t i h i s t i h i s t =≠ 2() 0h i s t i =时,()0;w i = 3.3.2 根据每个像素点所占的均值漂移权值计算漂移矩阵xw : 11(_1(,)1)*[(1),(2)]a b i j xw xw w q temp i j i y j y ===++--∑∑ 3.3.2得到权值归一化后的均值漂移向量Y :

近两年跟踪速度较快的算法

近两年跟踪速度较快的算法小结 近两年跟踪速度较快的算法有CN [1],KCF [2],STC [3],ODFS [4]等等,均足以满足现实场景中实时跟踪的应用。 各算法执行速度: 各算法的主要思想: CN 跟踪器是CSK [5]跟踪器的改进算法。它联合颜色特征(ColorName )和灰度特征来描述目标,在文献[1]作者通过大量的实验证明了Color Name 在视觉跟踪中的卓越性能,并且对ColorName 进行了PCA 降维,去除了ColorName 中的冗余信息,使得对目标的外观描述更加精确和鲁棒。在分类器的训练中,在CSK 算法的代价函数的基础上引入一个固定的权值β,使得分类器的训练和更新更加准确和鲁棒。CN 跟踪器对很多复杂的视频序列都有很好的跟踪结果,比如:光照变化,遮挡,非刚性形变,运动模糊,平面内旋转,出平面旋转和背景杂乱。CN 跟踪器也有不足的地方,比如:尺度变化,快速运动,出视角和低分辨率,等视频的跟踪效果不佳。 KCF 跟踪器是原CSK 跟踪器的作者对CSK 跟踪器的完善,这里简单介绍一下CSK 跟踪器的主要思想。CSK 跟踪器最大亮点就是提出了利用循环移位的方法进行稠密采样并结合FFT 快速的进行分类器的训练。稠密采样的采样方式能提取目标的所有信息,这对目标的跟踪至关重要。虽然CSK 的速度很快,但是CSK 只是简单的使用了灰度特征,对目标的外观描述能力显然不足。对此作者改进了CSK 提出了KCF ,从原来的单通道灰度特征换成了多通道Hog 特征。KCF 算法通过核函数对多通道的Hog 特征进行了融合,使得训练所得的分类器对待检测目标的解释力更强。KCF 跟踪器对光照变化,遮挡,非刚性形变,运动模糊,背景杂乱和旋转等视频均能跟踪良好,但对尺度变化,快速运动,刚性形变等视频跟踪效果不佳。 STC 跟踪器是一个简单快速而且鲁棒的算法,它利用稠密的空时场景模型来进行跟踪。在贝叶斯框架下,它利用目标和目标局部的稠密信息的空时关系来建模。置信图在被计算时考虑了上一帧目标的位置的先验信息,这有效的减轻了目标位置的模糊。STC 跟踪器使用了最简单的灰度特征,但是灰度并不能很好对外观进行描述。这里可以改进为其他比较好的特征(Colorname 或者Hog ),但是就会遇到多通道特征融合的问题。一般的Tracking-by-Detection 跟踪算法基本都不能实现尺度的变化,而STC 跟踪器就提出了一种有效的尺度变化方案,也是文章[3]中最大的亮点。这里简单介绍一下,通过连续两帧的目标最 佳位置t x *处的置信值()t m x *的比值来计算当前帧中目标的估计尺度 ()()()12' 1t t t s m x m x ** -=,为了不引入噪声和避免过度敏感的自适应引入连续n 帧的平均估 计尺度'1 1n t t i i s s n -==∑,最后通过滤波获得最终的目标估计尺度()11t t t s s s λλ+=-+。STC

mean shift及其改进算法图像跟踪原理和应用

mean shift及其改进算法图像跟踪原理和应用Mean Shift 简介 Mean Shift 这个概念最早是由Fukunaga等人[1]于1975年在一篇关于概率密度梯度函数的估计中提出来的,其最初含义正如其名,就是偏移的均值向量,在这里Mean Shift是一个名词,它指代的是一个向量,但随着Mean Shift理论的发展,Mean Shift的含义也发生了变化,如果我们说Mean Shift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束. 然而在以后的很长一段时间内Mean Shift并没有引起人们的注意,直到20年以后,也就是1995年,另外一篇关于Mean Shift的重要文献才发表.在这篇重要的文献中,Yizong Cheng对基本的Mean Shift算法在以下两个方面做了推广,首先Yizong Cheng定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同,其次Yizong Cheng还设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了Mean Shift的适用范围.另外Yizong Cheng 指出了Mean Shift可能应用的领域,并给出了具体的例子. Comaniciu等人把Mean Shift成功的运用的特征空间的分析,在图

像平滑和图像分割中Mean Shift 都得到了很好的应用. Comaniciu 等在文章中证明了,Mean Shift 算法在满足一定条件下,一定可以收敛到最近的一个概率密度函数的稳态点,因此Mean Shift 算法可以用来检测概率密度函数中存在的模态. Comaniciu 等人还把非刚体的跟踪问题近似为一个Mean Shift 最优化问题,使得跟踪可以实时的进行. 在后面的几节,本文将详细的说明Mean Shift 的基本思想及其扩展,其背后的物理含义,以及算法步骤,并给出理论证明.最后本文还将给出Mean Shift 在聚类,图像平滑,图像分割,物体实时跟踪这几个方面的具体应用. Mean Shift 的基本思想及其扩展 基本Mean Shift 给定d 维空间d R 中的n 个样本点i x ,i=1,…,n,在x 点的Mean Shift 向量的基本形式定义为: ()()1 i h h i x S M x x x k ∈≡ -∑ (1) 其中,h S 是一个半径为h 的高维球区域,满足以下关系的y 点的集合, ()() (){ } 2:T h S x y y x y x h ≡--≤ (2) k 表示在这n 个样本点i x 中,有k 个点落入h S 区域中.

基于meanshift的目标跟踪算法——完整版

基于Mean Shift的目标跟踪算法研究 指导教师:

摘要:该文把Itti视觉注意力模型融入到Mean Shift跟踪方法,提出了一种基于视觉显著图的Mean Shift跟踪方法。首先利用Itti视觉注意力模型,提取多种特征,得到显著图,在此基础上建立目标模型的直方图,然后运用Mean Shift方法进行跟踪。实验证明,该方法可适用于复杂背景目标的跟踪,跟踪结果稳定。 关键词:显著图目标跟踪Mean Shift Mean Shift Tracking Based on Saliency Map Abstract:In this paper, an improved Mean Shift tracking algorithm based on saliency map is proposed. Firstly, Itti visual attention model is used to extract multiple features, then to generate a saliency map,The histogram of the target based on the saliency map, can have a better description of objectives, and then use Mean Shift algorithm to tracking. Experimental results show that improved Mean Shift algorithm is able to be applied in complex background to tracking target and tracking results are stability. 1 引言 Mean Shift方法采用核概率密度来描述目标的特征,然后利用Mean Shift搜寻目标位置。这种方法具有很高的稳定行,能够适应目标的形状、大小的连续变化,而且计算速度很快,抗干扰能力强,能够保证系统的实时性和稳定性[1]。近年来在目标跟踪领域得到了广泛应用[2-3]。但是,核函数直方图对目标特征的描述比较弱,在目标周围存在与目标颜色分布相似的物体时,跟踪算法容易跟丢目标。目前对目标特征描述的改进只限于选择单一的特征,如文献[4]通过选择跟踪区域中表示目标主要特征的Harris点建立目标模型;文献[5]将初始帧的目标模型和前一帧的模型即两者的直方图分布都考虑进来,建立混合模型;文献[6]提出了以代表图像的梯度方向信息的方向直方图为目标模型;文献[7-8]提出二阶直方图,是对颜色直方图一种改进,是以颜色直方图为基础,颜色直方图只包含了颜色分布信息,二阶直方图在包含颜色信息的前提下包含了像素的均值向量和协方差。文献[9]提出目标中心加权距离,为离目标中心近的点赋予较大的权值,离目标中心远的点赋予较小的权值。文献[4-9]都是关注于目标和目标的某一种特征。但是使用单一特征的目标模型不能适应光线及背景的变化,而且当有遮挡和相似物体靠近时,容易丢失目标;若只是考虑改进目标模型,不考虑减弱背景的干扰,得到的效果毕竟是有限的。 针对上述问题,文本结合Itti 提出的视觉注意模型[5],将自底向上的视觉注意机制引入到Mean Shift跟踪中,提出了基于视觉显著图的Mean Shift跟踪方法。此方法在显著图基础上建立目标模型,由此得到的目标模型是用多种特征来描述的,同时可以降低背景对目标的干扰。 2 基于视觉显著图的Mean Shift跟踪方法

轮式移动机器人航向跟踪预估控制算法

轮式移动机器人航向跟踪预估控制算法 龚建伟 黄文宇 陆际联 (北京理工大学机器人中心,北京 100081) 摘 要:本文提出了一种轮式移动机器人航向跟踪预估控制算法,航向预估量根据机器人前轮偏角和纵向速度实时得出,预估量与机器人实际航向之和作为控制反馈航向.仿真和实验时用PID 控制器和航向预估算法结合进行航向跟踪,结果表明该算法与常规PID 算法相比,对机器人纵向速度适应范围较宽,能有效地改善控制器的动态特性,表现出了较好的自适应能力. 关键词:轮式移动机器人;自主车;侧向控制;航向跟踪;预估控制 1 引言 Introduction 轮式移动机器人是一个具有大延迟、高度非线性的复杂系统,建立精确的数学模型十分困难,在进行航向跟踪控制时,参数的变化对系统模型影响较大,其中纵向速度的变化影响最为明显.轮式移动机器人航向跟踪一般控制方法是把期望航向与机器人实测航向之差作为控制器输入偏差,控制器输出控制量为机器人的前轮偏角.轮式移动机器人的航向与其纵向速度、横向速度、前轮偏角、机器人绕其重心的转动惯量、重心位置、前后轮侧偏系数以及实际道路情况等诸多因素有关,在常规控制方法中,只考虑了期望航向与实际航向的偏差,而未能包含其它因素的影响,因此难以达到满意的控制效果,当系统参数特别是某些敏感参数发生变化时,就必须重新设定控制器参数.例如,我们用常规PID 控制器进行航向跟踪实验,在某一纵向速度下整定好PID 控制参数,当纵向速度发生很小变化时,必须重新整定PID 参数,否则控制性能变坏,超调较大,甚至出现振荡.表现在路径跟踪实验中,则是在该速度下能较好地完成弯道或急弯等路径跟踪任务,而速度变化后,跟踪误差变大或出现大幅度振荡.因此,在轮式机器人航向跟踪控制中,控制方法应该能对纵向速度等影响因素有一定的自适应能力,航向跟踪预估控制方法就是在这一背景下提出的. 2 二自由度轮式移动机器人动力学模型 T wo Degrees of Freedom Dynamic Model for Wheeled Mobile Robot 当横向加速度和横摆角速度较小时,常采用经简化的二自由度轮式移动机器人动力学模型1,2,其微分方程如下: r f r f r f zz C aC v U bC aC r U C b C a r I 2) (2)(222=-+++ (1) f f r f r f s s C v U C C r U bC aC U M v M δ2)(2)(2=++??????-++ (2) 其中:I zz :轮式机器人绕重心的转动惯量(kgm 2); M s :轮式机器人质量(kg);C f 、C r :分别为前、后轮侧偏系数(N/rad);U :轮式机器人纵向速度(m/s);v :轮式机器人横向速度(m/s);a 、b :前后车轴到重心的距离(m);r :轮式移动机器人横摆角速度. 将轮式移动机器人转向机构视为一个惯性环节,则有: d f f δδδτ=+ (3) 其中:τ:惯性时间常数;δd :期望前轮偏角. 在航向跟踪控制过程中,可以令道路曲率为零,即不计实际路径的影响,航向变化率即为机器人的横摆角速度3,即: r =? (4) 其中:?为轮式移动机器人航向与期望航向的偏差角. (1)、(2)、(3)、(4)式联立即可得出以横摆角速度、横向速度、航向偏差角、前轮偏角即X=(r ,v ,?,δf )为状态变量的系统状态空间表达式. 3 航向预估算法原理 Heading Prediction Algorithm 在实际的航向控制过程中,控制器根据期望航向与采样航向得到航向偏差,再计算控制量,而当执行机构执行这一控制量时,要经过一个采样周期,这时机器人的实际航向已经改

S T A P L E 目 标 跟 踪 算 法

计算机视觉中,究竟有哪些好用的目标跟踪算法(下) 在介绍SRDCF之前,先来分析下相关滤波有什么缺点。总体来说,相关滤波类方法对快速变形和快速运动情况的跟踪效果不好。 快速变形主要因为CF是模板类方法。容易跟丢这个比较好理解,前面分析了相关滤波是模板类方法,如果目标快速变形,那基于HOG的梯度模板肯定就跟不上了,如果快速变色,那基于CN的颜色模板肯定也就跟不上了。这个还和模型更新策略与更新速度有关,固定学习率的线性加权更新,如果学习率太大,部分或短暂遮挡和任何检测不准确,模型就会学习到背景信息,积累到一定程度模型跟着背景私奔了,一去不复返。如果学习率太小,目标已经变形了而模板还是那个模板,就会变得不认识目标。(举个例子,多年不见的同学,你很可能就认不出了,而经常见面的同学,即使变化很大你也认识,因为常见的同学在你大脑里面的模型在持续更新,而多年不见就是很久不更新) 快速运动主要是边界效应(Boundary Effets),而且边界效应产生的错误样本会造成分类器判别力不够强,下面分训练阶段和检测阶段分别讨论。 训练阶段,合成样本降低了判别能力。如果不加余弦窗,那么移位样本是长这样的: 除了那个最原始样本,其他样本都是“合成”的,100*100的图像块,只有1-10000的样本是真实的,这样的样本集根本不能拿来训练。如果加了余弦窗,由于图像边缘像素值都是0,循环移位过程中只要目标保持完

整那这个样本就是合理的,只有目标中心接近边缘时,目标跨越边界的那些样本是错误的,这样虽不真实但合理的样本数量增加到了大约2-3(padding= 1),即使这样仍然有1-3(3000-10000)的样本是不合理的,这些样本会降低分类器的判别能力。再者,加余弦窗也不是“免费的”,余弦窗将图像块的边缘区域像素全部变成0,大量过滤掉分类器本来非常需要学习的背景信息,原本训练时判别器能看到的背景信息就非常有限,我们还加了个余弦窗挡住了背景,这样进一步降低了分类器的判别力(是不是上帝在我前遮住了帘。不是上帝,是余弦窗)。 检测阶段,相关滤波对快速运动的目标检测比较乏力。相关滤波训练的图像块和检测的图像块大小必须是一样的,这就是说你训练了一个100*100的滤波器,那你也只能检测100*100的区域,如果打算通过加更大的padding来扩展检测区域,那样除了扩展了复杂度,并不会有什么好处。目标运动可能是目标自身移动,或摄像机移动,按照目标在检测区域的位置分四种情况来看: 1、如果目标在中心附近,检测准确且成功。 2、如果目标移动到了边界附近但还没有出边界,加了余弦窗以后,部分目标像素会被过滤掉,这时候就没法保证这里的响应是全局最大的,而且,这时候的检测样本和训练过程中的那些不合理样本很像,所以很可能会失败。 3、如果目标的一部分已经移出了这个区域,而我们还要加余弦窗,很可能就过滤掉了仅存的目标像素,检测失败。 4、如果整个目标已经位移出了这个区域,那肯定就检测失败了。

全过程跟踪控制方案

全过程跟踪控制方案目录 第一章绪言部分 第一节项目造价咨询的难点要点分析 第二节投资控制方案编制依据 第二章造价咨询服务工作计划 第一节投资控制的目标计划 第二节预算编制的工作计划 第三节施工过程控制的工作计划 第四节结算审核的工作计划 第三章招标阶段造价咨询工作方案 第一节造价咨询的工作内容 第二节预算编制基本要求 第三节预算编制工作流程 第四节预算编制主要方法 第五节预算编制要点及注意事项 第四章施工阶段全过程投资跟踪控制方案 第一节造价咨询的工作内容 第二节施工阶段全过程投资控制流程 第三节施工阶段全过程投资控制内容 第四节投资跟踪控制总目标及主要节点目标 第五节全过程投资跟踪控制方案 第六节造价控制偏差分析方法及纠偏措施 第五章竣工结算审核工作方案 第一节造价咨询的工作内容 第二节结算审核工作要点 第三节结算审核工作流程 第四节结算审核主要方法

第五节结算审核风险与防范措施 第一章绪言部分 第一节项目造价咨询的难点要点分析 建设项目工程造价全过程投资跟踪控制是在新形势下产生的一项新的投资管理方式,也是工程造价由事后控制向事前、事中、事后的全过程控制的转变。投资跟踪控制作为现代投资管理一种重要方式,已经在大中型建设项目实施过程中被普遍实用,并且取得了明显的社会效益和经济效益。 1.预算阶段难点、要点分析 概预算编制有时时间紧、任务急、工程数量繁杂,难免多算、漏算、重复计算,这就要加强审核力度,提高概预算编制的准确性。 ①审核工程量、审核采用的定额单价、指标是否合适 a)根据设计图纸、设计说明、施工组织设计的要求审核工程量。 b)定额具有科学性、权威性、法令性,它的形式、内容任何人都必须严格执行。审核采用的定额名称、规格、计量单位、内容是否满足施工方法要求,套用定额不同,单价则不同。 c)定额包含内容是否与设计相符。如定额含筋率、混凝土标号等。 d)补充定额是否符合要求,计算是否正确。 ②审核材料价格 对材料价格、运杂费进行审核,材料价格是否包括运杂费,材料运输方法、措施是否符合实际,做到既要满足工程要求,又要努力降低费用。 ③其他费用 a)取费标准是否符合工程性质; b)费率计算是否正确; c)计算基数是否符合规定; d)价差调整是否符合规定。 2.结算阶段难点、要点分析 ①工程合同的不完全性决定了工程价款的不确定性 与一般货物购销合同不同,工程合同是一种典型的不完全性合约。由于工程本身的专业性、复杂性以及建设工程的契约商品性质,工程合同不可能对所有事

基于光流的运动目标检测跟踪快速算法

邮局订阅号:82-946120元/年技术创新 软件时空 《PLC 技术应用200例》 您的论文得到两院院士关注 基于光流的运动目标检测跟踪快速算法 The Fast Algorithm Based on Optical Flow for Tracking Moving Targets (装甲兵工程学院) 关兴来谢晓竹 GUAN Xing-lai XIE Xiao-zhu 摘要:采用光流算法对运动目标进行识别跟踪,其优点是能够适应复杂的背景条件,并且能保证目标分割的完整性,但现有的按照光流矢量对目标进行跟踪的算法有明显的局限性:运算量过大,并且不适用与运动特征复杂的目标。对现有算法进行改进,采用均值平滑算法和基于光流绝对值的区域分割算法,可以有效解决这两个问题。关键词:光流;运动目标;图像分割中图分类号:TP391.4文献标识码:A Abstract:Using optical flow algorithm for identification and tracking moving targets,the advantage is the ability to adapt to the com -plex background conditions,and can ensure the integrity of the target partition,but the existing target tracking algorithm based on op -tical flow vector has obvious limitations:excessive operation,and does not apply and movement characteristics of complex targets.Im -provements to existing algorithms,using the pyramid optical flow-based smoothing algorithm and the absolute value of the region seg -mentation algorithm can effectively solve these two problems.Key word:Optical flow;Kinetic target;Image segmentation 文章编号:1008-0570(2012)10-0421-03 图像序列中的运动目标检测跟踪是指在图像序列中将前景运动区域从背景中提取出来。图像序列中检测运动目标,主要有图像差分法(帧间差分和背景差分)、光流场的方法、统计模型的方法、运动能量的方法、小波变换的方法等。其中,光流场的方法是利用运动物体随时间变化在图像中表现为速度场的特性,根据一定的约束条件估算出运动所对应的光流,然后根据光流矢量对图像中的目标进行检测,将目标从背景中分割出来。与其它方法相比它的优点是可以避免分割目标不完整的情况,因此得到越来越广泛的应用。 但现有的基于光流算法同样存在以下缺陷: 一是求稠密光流算法过于复杂。图像金字塔法的计算过程过于复杂,求出图像的金字塔的计算量非常大,而且对金字塔的每层图像均需要重新求其光流值。因此,这种经典的求稠密光流的方法运算时间过长,实时性较差。 二是不能适用于特征复杂的运动目标。例如:一个人在走路时,其身体各个部位的光流矢量值是不同的。对此类目标,如果仅仅根据光流矢量判断分割目标,很容易出现错误分割的情况。 1基于光流的运动目标跟踪原理 基于光流的运动目标的检测跟踪流程包括求取稀疏光流,求取稠密光流和目标的分割标识等几个步骤。 目前,最常用的计算运动目标稀疏光流的算法是H-S 算法,此理论的前提是:运动目标的灰度在很短的间隔时间内保持不变;给定邻域内的速度向量场变化是缓慢的。算法具体原理如下: 首先是建立基本的光流约束方程,求稀疏光流。令 为时刻t 图像点(x,y)的灰度,u(x,y)和v(x,y)表示图像点(x,y)的水平和垂直移动速度,则可建立光流方程: (1) 其中,Jx 、Jy 和Jt 分别表示图像中像素灰度沿X,Y,T 方向的梯度。 由于给定邻域内的速度向量场变化是缓慢的,可利用这个条件来建立下面两个光流约束方程,即: (2)(3) HS 算法是将这两个方程与光流方程结合,通过解最小化问题得出下面两个迭代公式: (4)(5) 上面公式(4)(5),就是H-S 法求光流的迭代公式,一般情况下,需要迭代20次以上,才能求出精度较高的光流值。 通过H-S 算法计算的光流仅仅是稀疏光流,为了将整个目标的完整轮廓描绘出来,需要计算出目标的稠密光流。求稠密光流可采用图像金字塔法:图像金字塔是一系列以金字塔形状排列的分辨率逐步降低的图像集合。先使用金字塔上较低的分辨率图像来求其光流值,然后再逐步求较高分辨率的光流。在计算出稠密光流后,就可以将目标从背景中分割出来,实现对目标的检测和跟踪。 2对基于光流的目标跟踪算法的改 进 上面的算法存在计算复杂和无法跟踪复杂运动状态目标这两个缺陷,可通过对算法进行改进解决这两个问题。改进的思想是,不再将光流矢量做为分割目标的特征,而是将光流取绝对值,根据光流绝对值值的大小,按照基于区域分割的原理,设置相应的阈值,对运动目标进行分割,然后使用均值平滑算法,求出运 关兴来:工程师硕士研究生 421--

焊缝跟踪的实时跟踪控制算法

焊缝跟踪的控制算法 (一)理论模型 虚线 Y( t )为焊炬的跟踪调节曲线, 可视作系统执行机构的输出量,即 : ()()t Y t S t dt =? 传感器在焊缝坡口 B 点的偏移量e1(t )实际上是 R ( t )曲线上B 点相对于 Y( t )上 A 点的偏差量,即 1()()()()()t e t R t Y t R t S t dt τ τ-=--=-? 设焊接速度V ( mm/ s),则焊接点 A 滞后检测点B 时间为:V λ τ= (s ) 再设()S τ是焊炬从t τ-时刻到t 时刻的调节量,即: ()()t t S S t dt τ τ-=? 则焊炬行走 时间后与坡口中心的实际误差应为: ()1()()1()()t t e t e t S e t S t dt τ τ-=-=-? 理论上 ,只要知道机械系统的传递函数, ()S τS 便可 知道 ,但实际系统 的传输 函数 往往很难准确得到,因此△S 直接求解比较困难 焊接起始点 实际焊缝的坡口中心曲线 焊枪的跟踪曲线

(二)由模型得出的简易控制算法 实际的焊缝跟踪过程中,视觉系统提供的位置偏差是经过传感器经过一帧一帧的图像采 集后,再经过一系列的图像处理,最终得出位置偏差信息提供给控制器。因此,需做以下设定: (1) 位置请求指令发送时间间隔和执行机构调整时间间隔同步; (2) 在每次位置请求时,在上一调整周期内焊枪已完成所需的调整量; (3) λ为采样间隔点的整数倍。 设O 点为初始参考点,O 0为焊枪开始纠正起始点,从O 点到O 0点,视觉传感器只做图像采集,焊枪并不进行跟踪,这一段距离属于“盲区”。i e 为每次识别的坡口中心点与初始参考点之间的差值,i m 为每一步的焊枪实际跟踪量。 系统焊枪实时跟踪量m i 的算法为: 1 () i i i a i i a m e m ---=-∑ ( i=a ,a+1, ···,n ) 焊接方向

最大功率跟踪原理及控制方法

最大功率跟踪原理及控制方法 2.1最大功率跟踪原理 太阳能电池的输出特性如图一所示,从图中的P/V特性曲线可以看出,随着端电压的增加输出功率先增加后减小,说明存在一个端电压值,在其附近可获得最大功率,因此,在光伏发电系统中,要提高系统的整体效率,一个重要的途径就是实时调整光伏电池的工作点,使之始终工作在最大功率点附近,这一过程就称之为最大功率点跟踪-MPPT。 图一光伏电池的特性曲线 2.2 最大功率跟踪的控制方法 MPPT的控制方法:光伏系统中的最大功率点跟踪的控制方法很多,使用最多的是自寻优的方法,即系统不直接检测光照和温度,而是根据光伏电池本身的电压电流值来确定最大功率点。这种方法又叫做TMPPT(True Maximum Power Point Tracking)。在自寻优的算法中,最典型的是扰动观察法和增量电导法。本论文使用扰动观察法,扰动观察法主要根据光伏电池的P-V特性,通过扰动端电压来寻找MPPT,其原理是周期性地扰动太阳能电池的工作电压值( ),再比较其扰动前后的功率变化,若输出功率值增加,则表示扰动方向正确,可朝同一方向(+ )扰动;若输出功率值减小,则往相反(- )方向扰动。通过不断扰动使太阳能电池输出功率趋于最大,此时应有[8]。此过程是由微处理器即C8051F320控制完成的。 3、系统的总体结构 3.1系统的结构图 系统的结构图如图二所示。其中单片机要采集太阳能电池的输出电压和输出电流及蓄电池的充电电流和开路电压,通过一定的控制算法(即改变占空比),调节太阳能电池的输出电压和电流,从而实现太阳能电池在符合马斯曲线的条件下以最佳功率对蓄电池充电,系统的硬件主要由核心控制模块、采样模块、驱动模块、升压式DC/DC变换器模块组成。

Matlab实例之MeanShift的跟踪算法程序

MeanShiftCluster.m %testDistCluters clear clc profile on nPtsPerClust = 250; nClust = 3; totalNumPts = nPtsPerClust*nClust; m(:,1) = [1 1]'; m(:,2) = [-1 -1]'; m(:,3) = [1 -1]'; var = .6; bandwidth = .75; clustMed = []; %clustCent; x = var*randn(2,nPtsPerClust*nClust); %*** build the point set for i = 1:nClust x(:,1+(i-1)*nPtsPerClust:(i)*nPtsPerClust) = x(:,1+(i- 1)*nPtsPerClust:(i)*nPtsPerClust) + repmat(m(:,i),1,nPtsPerClust); end tic [clustCent,point2cluster,clustMembsCell] = MeanShiftCluster(x,bandwidth); toc

numClust = length(clustMembsCell); figure(10),clf,hold on cVec = 'bgrcmykbgrcmykbgrcmykbgrcmyk';%, cVec = [cVec cVec]; for k = 1:min(numClust,length(cVec)) myMembers = clustMembsCell{k}; myClustCen = clustCent(:,k); plot(x(1,myMembers),x(2,myMembers),[cVec(k) '.']) plot(myClustCen(1),myClustCen(2),'o','MarkerEdgeColor','k','MarkerFaceColor',cVec(k ), 'MarkerSize',10) end title(['no shifting, numClust:' int2str(numClust)]) testMeanShift.m %testDistCluters clear clc profile on nPtsPerClust = 250; nClust = 3; totalNumPts = nPtsPerClust*nClust; m(:,1) = [1 1]'; m(:,2) = [-1 -1]'; m(:,3) = [1 -1]'; var = .6; bandwidth = .75;

基于光流的运动目标检测跟踪快速算法

基于光流的运动目标检测跟踪快速算法 关兴来;谢晓竹 【期刊名称】《微计算机信息》 【年(卷),期】2012(000)010 【摘要】Using optical flow algorithm for identification and tracking moving targets, the advantage is the ability to adapt to the com- plex background conditions, and can ensure the integrity of the target partition, but the existing target tracking algorithm based on op- tical flow vector has obvious limitations: excessive operation, and does not apply and movement characteristics of complex targets. Im- provements to existing algorithms, using the pyramid optical flow-based smoothing algorithm and the absolute value of the region seg- mentation algorithm can effectively solve these two problems.%采用光流算法对运动目标进行识别跟踪,其优点是能够适应复杂的背景条件,并且能保证目标分割的完整性,但现有的。按照光流矢量对目标进行跟踪的算法有明显的局限性:运算量过大,并且不适用与运动特征复杂的目标。对现有算法进行改进.采用均值平滑算法和基于光流绝对值的区域分割算法,可以有效解决这两个问题。 【总页数】3页(421-423) 【关键词】光流;运动目标;图像分割 【作者】关兴来;谢晓竹 【作者单位】装甲兵工程学院;装甲兵工程学院

MeanShift算法

核函数也称“窗口函数”。一维空间用到的核函数有高斯(Gaussian)、余弦弧(Cosinus arch)、双指数(Double Exponential)、均匀(Uniform)、三角(Trangle)、依潘涅契科夫(Epanechikov)、双依潘涅契科夫(DoubleEpanechnikov)、及双权(Biweight)函数。图2.1给出了最常用的几个核函数

给定一组一维空间的n个数据点集合令该数据集合 的概率密度函数假设为f (x),核函数取值为,那么在数据点x处的密度估计可以按下式计算: 上式就是核密度估计的定义。其中,x为核函数要处理的数据的中心点,即数据集合相对于点x几何图形对称。核密度估计的含义可以理解为:核估计器在被估计点为中心的窗口内计算数据点加权的局部平均。或者:将在每个采样点为中心的局部函数的平均效果作为该采样点概率密度函数的估计值。

MeanShift实现: 1.选择窗的大小和初始位置. 2.计算此时窗口内的Mass Center. 3.调整窗口的中心到Mass Center. 4.重复2和3,直到窗口中心"会聚",即每次窗口移动的距离小于一定的阈值,或者迭代次数达到设定值。 meanshift算法思想其实很简单:利用概率密度的梯度爬升来寻找局部最优。它要做的就是输入一个在图像的范围,然后一直迭代(朝着重心迭代)直到满足你的要求为止。但是他是怎么用于做图像跟踪的呢?这是我自从学习meanshift以来,一直的困惑。而且网上也没有合理的解释。经过这几天的思考,和对反向投影的理解使得我对它的原理有了大致的认识。 在opencv中,进行meanshift其实很简单,输入一张图像(imgProb),再输入一个开始迭代的方框(windowIn)和一个迭代条件(criteria),输出的是迭代完成的位置(comp )。 这是函数原型: int cvMeanShift( const void* imgProb, CvRect windowIn,CvTermCriteria criteria, CvConnectedComp* comp ) 但是当它用于跟踪时,这张输入的图像就必须是反向投影图了。 为什么必须是反向投影图呢?首先我们要理解什么是反向投影图。 简单理解它其实实际上是一张概率密度图。经过反向投影时的输入是一个目标图像的直方图(也可以认为是目标图像),还一个输入是当前图像就是你要跟踪的全图,输出大小与全图一样大,它上像素点表征着一种概率,就是全图上这个点是目标图像一部分的概率。如果这个点越亮,就说明这个点属于物体的概率越大。现在我们明白了这原来是一张概率图了。当用meanshift跟踪时,输入的原来是这样一幅图像,那也不难怪它可以进行跟踪了。 半自动跟踪思路:输入视频,用画笔圈出要跟踪的目标,然后对物体跟踪。用过opencv的都知道,这其实是camshiftdemo的工作过程。 第一步:选中物体,记录你输入的方框和物体。 第二步:求出视频中有关物体的反向投影图。

聚类算法Kmeans与梯度算法Meanshift

Kmeans与Meanshift、EM算法的关系 Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量。K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度。),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean 选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。PS:两种Kmeans的计算方法是不同的。 Vector quantization也称矢量量化:指一个向量用一个符号K来代替。比如有10000个数据,用Kmeans 聚成100类即最有表征数据意义的向量,使得数据得到了压缩,以后加入的数据都是用数据的类别来表示存储,节约了空间,这是有损数据压缩。数据压缩是数据聚类的一个重要应用,也是数据挖掘的主要方法。 混合高斯模型是一系列不同的高斯模型分量的线性组合。在最大似然函数求极值时,直接求导存在奇异点的问题,即有时一个分量只有一个样本点,无法估计其协方差,导致其似然函数趋于无穷,无法求解。另一个问题是,用代数法求得的解是不闭合的,即求解的参数依赖于参数本身的值,变成一个鸡生蛋,蛋生鸡的问题。这些问题看似无解,但是可以使用迭代的方法如EM,k均值等,预先设置一些参数,然后迭代求解。PS:也有用基于梯度的方法求解的。在求解混合模型时,有一个重要的概念即模型的可辨识性(如果无论样本的数量为多少都无法求出模型参数的唯一解,则称模型是不可辨识的),这是EM算法的前提。在实际应用时,由于EM算法的复杂度比K均值高,所以一般先用K均值大致收敛到一些点,然后用EM算法。EM算法求解混合模型的固然有效,但不能保证找到最大使然函数的最大值。 EM算法是求解具有隐变量的概率模型的最大似然函数的解的常用方法。当样本集是样本与隐变量一一对应时,数据集称为完整数据集,可以直接求解模型参数,但很多时候只知道样本,不知道其对应的隐变量,这是非完整数据集。所以求解模型参数的关键是隐变量的后验概率,由后验概率可以推出完整数据集用于求解参数。增量式的EM算法,每次只更新一个点,收敛速度更快。上述方法可以看成是无监督学习。 PS:EM是一个似然函数下界最大化解法,保证了解法的收敛性。 Opencv之KMEANS篇 Opencv中的K-means适用于数据预处理,但图像分割的消耗的时间太长并且效果不怎么好,使用空间信息后,图像的分割后受空间的影响很大(同一类的数据如果分布较远,不是高斯型的,就会错分),

相关文档