文档库 最新最全的文档下载
当前位置:文档库 › 线性代数-3

线性代数-3

线性代数习题3答案(高等教育出版社)

习题3 1.11101134032αβγαβαβγ ===-+-设(,,),(,,),(,,),求和 1110111003231112011340015αβαβγ-=-=+-=+-=解:(,,)(,,)(,,) (,,)(,,)(,,)(,,) 1231232.32525131015104111αααααααααα -++=+===-设()()(),其中(,,,) (,,,),(,,,),求1231233251 32561 [32513210151054111] 6 1234ααααααααααα-++=+=+-=+--=解:因为()()(),所以(), 所以(,,,)(,,,)(,,,)(,,,) 123412343.12111111111111111111,,,βααααβαααα===--=--=--设有(,,,),(,,,),(,,,), (,,,),(,,,)试将表示成的线性组合。 123412341234123412341234 1211 5111 ,,,; 4444 5111 4444 x x x x x x x x x x x x x x x x x x x x βαααα+++=??+--=? ?-+-=??--+=?===-=-=+--解:因为线性方程组的解为 所以得: 1234.111112313) t ααα===设讨论下面向量组的线性的相关性 ()(,,),(,,),(,, 111 1235, 1355t t t t =-=≠解:因为所以,当时,向量组线性相关,当时线性无关。 . 323232.5213132321321的线性相关性, ,线性无关,讨论,,设αααααααααααα++++++ . 0)23()32()23(.0)32()32()32(332123211321213313223211=++++++++=++++++++ααααααααααααx x x x x x x x x x x x 整理得:解:设

考研数学线性代数讲义

1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按 行(列)展开定理以及AA*=A*A=|A|E. 2.若涉及到A.B是否可交换,即AB=BA,则立即联想到用逆矩阵的定 义去分析。 3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出 因子aA+bE再说。 4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。 5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。 6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。 8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 2010考研基础班线性代数 主讲:尤承业 第一讲基本概念 线性代数的主要的基本内容:线性方程组矩阵向量行列式等一.线性方程组的基本概念 线性方程组的一般形式为: 其中未知数的个数n和方程式的个数m不必相等. 线性方程组的解是一个n个数 C,2C, …, n C构成,它满足:当每个方程中 1 的未知数1x都用1C替代时都成为等式. 对线性方程组讨论的主要问题两个:

(1)判断解的情况. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. 如果两条直线是相交的则有一个解;如果两条直线是重合的则有无穷多个解;如果两条直线平行且不重合则无解。 (2)求解,特别是在有无穷多解时求通解. 齐次线性方程组: 021====n b b b 的线性方程组.0,0,…,0 总是齐次线性方程组的解,称为零解. 因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解). 二.矩阵和向量 1.基本概念 矩阵和向量都是描写事物形态的数量形式的发展. 矩阵由数排列成的矩形表格, 两边界以圆括号或方括号, m 行n 列的表格称为m ?n 矩阵. 这些数称为他的元素,位于第i 行j 列的元素称为(i,j)位元素. 5401 23-是一个2?3矩阵. 对于上面的线性方程组,称矩阵 mn m m n n a a a a a a a a a A 212222111211=和m mn m m n n b b b a a a a a a a a a A 21212222111211)(=β

线性代数第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解: ∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4 T T =-----=- ∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]T T T αα+=-+-= 2.设 12[2,5,1,3],[10,1,5,10],T T αα== 3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α 解: ∵ 1236325αααα=+- [6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24], T T T T =+--= ∴ [1,2,3,4].T α= 3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ====L 时, 11220m m k k k ααα+++=L 成立, 则向量组12,,m αααK 线性相关 解:不正确.如:[][]121,2,3,4T T αα==,虽然 12000,αα+=但12,αα线性无关。 (2) 如果存在m 个不全为零的数12,,,,m k k k L 使 11220,m m k k k ααα+++≠L 则向量组12,,,m αααL 线性无关。 解: 不正确. 如[][]11121,2,2,4,1,2,T T k αα====存在k 使 121220,,.αααα+≠但显然线性相关 (3) 如果向量组12,,,m αααL 线性无关,则其中任何一个向量都 不能由其余向量线性表出. 解: 正确。(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m αααL 线性相关,与题没矛盾。 (4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。 解:不正确。例如:[][][]1230,0,0,0,1,0,0,0,1,T T T ααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。 (5) 如果向量β可由向量123,,ααα线性表示,即: 112233,k k k βααα=++则表示系数 123,,k k k 不全为零。 解:不正确。例如:[][][]120,0,0,1,0,0,0,1,0,T T T βαα=== []31230,0,1,000T αβααα==++,表示系数全为0。 (6) 若向量12,αα线性相关,12,ββ线性无关,则1212,,,ααββ线性相关.

线性代数第3章

本章结构 0 m n m n A x b A x ????→?=? →???→?=? →→??6444444444447444444444448矩阵表示消元法 非齐次向量表示向量与向量组的线性组合 线性方程组 矩阵表示消元法 齐次向量表示向量组的线性相关性向量组的极大无关组、秩  齐次线性方程组 非齐次线性方程组 解的性质、基础解系、全部解 解的性质、全部解 常用方法:1????→????????→??????→初等行变换 初等行变换 初等行变换 非零首元上面元素消成零非零首元消成“”相应矩阵阶梯形简化阶梯行最简阶梯 1、矩阵A 化等价标准形 A ????→初等行变换 阶梯形,求出矩阵A 的秩r ,则标准形 r I O D O O ?? = ??? 2、求矩阵A 的逆 ()()1A I I A -→M M 3、消元法求线性方程组Ax b =的解 增广矩阵()A b M →行最简阶梯 4、求矩阵A 的秩 A →阶梯形 5、判断向量β能否由向量组12,,,s αααL 线性表示 以12,,,,s αααβL 为列向量的矩阵→行最简阶梯 6、求向量组12,,,s αααL 的秩和一个极大无关组,并将其它向量用该极大无关组线性表示 以12,,,s αααL 为列向量的矩阵→行最简阶梯 7、用基础解系表示(非)齐次线性方程组的全部解 增广矩阵()A b M →行最简阶梯 一、用消元法求解非齐次线性方程组m n A x b ?= 1、() A b M u u u u u u u u u u u u u u u r 初等行变换阶梯形矩阵,进而求出()r A 和(,)r A b 2、观察()r A 和(,)r A b 的关系:(1) ()(,)r A r A b ≠,方程组无解;(2) ()=(,)r A r A b ,方程组有解: ①、()=(,)r A r A b n =,方程组有唯一解; ②、()=(,)r A r A b n <,方程组有无穷多个解. 3、在有解的情况下,将阶梯形矩阵继续进行初等行变换,从最后一个非零首元开始将非零首元上面的元素消成零; 4、写出相应的同解方程组,令自由未知量取任意常数,可得方程组的全部解。 线性方程组m n A x b ?=有解?()=(,)r A r A b ,且

2014汤家凤线性代数辅导讲义

文都教育2014年考研数学春季基础班线性代数辅导讲义 主讲:汤家凤 第一讲 行列式 一、基本概念 定义1 逆序—设j i ,是一对不等的正整数,若j i >,则称),(j i 为一对逆序。 定义2 逆序数—设n i i i 21是n ,,2,1 的一个排列,该排列所含逆序总数称为该排列的逆序数,记为)(21n i i i τ,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。 定义3 行列式—称 nn n n n n a a a a a a a a a D 21 22221 11211 =称为n 阶行列式,规定 n n n nj j j j j j j j j a a a D 21212121) ()1(∑-= τ 。 定义 4 余子式与代数余子式—把行列式nn n n n n a a a a a a a a a D 21 2222111211 = 中元素ij a 所在的i 行元 素和j 列元素去掉,剩下的1-n 行和1-n 列元素按照元素原来的排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,称ij j i ij M A +-=)1(为元素ij a 的代数余子式。 二、几个特殊的高阶行列式 1、对角行列式—形如n a a a 0 000021称为对角行列式,n n a a a a a a 2121000 00 0=。 2、上(下)三角行列式—称 nn n n a a a a a a 222112 11及 nn n n a a a a a a 2 1 22 21 110 0为上(下)三角行列式, nn nn n n a a a a a a a a a 221122211211 0=, nn nn n n a a a a a a a a a 22112 1222111 0=。

线性代数第17讲

线性代数 第45讲 线性空间(1) ( 教材 p.130 -- P.133 ) 关键词:线性空间 §5.1 线性空间的概念 我们已经把平面和空间的几何向量推广到由有序数组定义的n 维向量,并把n 维向量的全体所构成的集合n R 叫做n 维向量空间. 这里要说明一点:由n 维行向量组成的空间与由n 维列向量组成的空 间在结构上是完全相同的,所以都记为n R . 但人们在讨论各种问题时,常常遇到各种不同的集合与运算(该集合元素未必是有序数组). 例如,讨论全体n m ? 矩阵所构成的集合,我们可以定义它们的加法和数乘,并且我们知道这些运算满足交换律、结合律、分配律等8条规律. 当抽去这些集合中对象(也称元素)的具体属性及定义运算的具体规则(例如函数的加法规则与向量的加法规则是完全不同的),我们考虑这些集合的结构:其对象的“线性运算”和它的“运算规律”,从而就可以建立一个数学模型:线性空间. 设V 是一个非空集合,其元素用字母 ,,,γβα表示;F 是 ,,μλ表示数域 F 中的数. (线性空间的定义)称非空集合V 是数域 F 上的线性空间, 如果集合V 具备下列两个条件: 1. F 中定义了加法运算, 即给出一个规则,使得对于任意V V ∈∈βα,, 由这个规则可唯一确定一个元素 ,V ∈+=βαγ γ

叫做元素α与 β的和. 这个加法运算须满足如下4条基本运算规律: )i ( .αββα+=+ (加法交换律) )i i ( ).()(γβαγβα++=++ (加法结合律) )i i i ( V 中有零元素,0 使αα0=+对任何元素V ∈α成立. )v i ( 对每个元素V ∈α,都有负元素)(α-存在,使+α0α=-)(. 2. F 中的数与V 中的元素之间定义了数乘运算, 即给出一个规则,使得对于任意指定的数F ∈λ及元素 ,V ∈α由这个规则可唯一确定一个元素 ,V ∈αλαλ叫做数λ与元素α的乘积. 这个数乘运算须满足如下4条基本运算规律: )v ( .1αα= )i v ( .)(βαβαλλλ+=+ )i i v ( .)(αααμλμλ+=+ )i i i v ( .)()(ααμλμλ= (简言之, 定义了线性运算, 且此运算满足8条法则的集合叫线性空间) 借用几何语言, 把线性空间V 的元素也称为向量. 线性空间又可称为向量空间. 把V 称为线性空间是因为它所具有“加法”与“数乘”运算,而这两种运算合称为线性运算. 实数域R 上的线性空间简称为实空间, 复数域C 上的线性空间简称为复空间. 我们主要讨论实空间. 在不做特殊说明时, 线性空间均指实线性空间. 我们把分量为数域F 中的数的全体n 维向量(有序数组)所构成的线性空间记作 n F . 当 F 为实数域时, 此n 维向量空间记作n R . 当 3,2,1=n 时,它就是直观的几何空间;当 3>n 时,n R 不再有. 数域 F 上的全体n m ?矩阵(即矩阵的元素均为F 中的数)关于矩阵加法及数乘矩阵的运算构成一个F 上的线性空间,记作 ).(F M n m ? (因:易知线性运算封闭,且满足8条规则) 当数域 F 为实数域R 时,此实线性空间记作).(R n m M ?

工程数学线性代数第五版答案(3)

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由

????? ??-=3121 23111012421301 402230) ,(B A ???? ? ??-------971820751610 402230421301 ~r ????? ? ?------5314 00251552000751610 4213 01 ~r ???? ? ? ?-----000000531400 751610421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由 ???? ? ??-????? ??---????? ??-=00 0000 110 20 1 110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示. 4. 已知向量组 A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ; B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由 ???? ??-???? ??-???? ??--=000001122010311112201122010311011111122010311) ,(~~r r A B , 知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.

线性代数第四版答案

第一章行列式 1.利用对角线法则计算下列三阶行列式: (1); 解 =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2); 解 =acb+bac+cba-bbb-aaa-ccc =3abc-a3-b3-c3. (3); 解 =bc2+ca2+ab2-ac2-ba2-cb2 =(a-b)(b-c)(c-a).

(4). 解 =x(x+y)y+yx(x+y)+(x+y)yx-y3-(x+y)3-x3 =3xy(x+y)-y3-3x2y-x3-y3-x3 =-2(x3+y3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解逆序数为4:41, 43, 42, 32. (3)3 4 2 1; 解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n-1) 2 4 ??? (2n); 解逆序数为: 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2)(n-1个)

(6)1 3 ???(2n-1) (2n) (2n-2) ??? 2.解逆序数为n(n-1) :

3 2(1个) 5 2, 5 4 (2个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2)(n-1个) 4 2(1个) 6 2, 6 4(2个) ?????? (2n)2, (2n)4, (2n)6,???, (2n)(2n-2)(n-1个) 3.写出四阶行列式中含有因子a11a23的项. 解含因子a11a23的项的一般形式为 (-1)t a11a23a3r a4s, 其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是 (-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44, (-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42. 4.计算下列各行列式: (1); 解

线性代数发展简史讲述讲解

华北水利水电学院 线性代数发展简史 课程名称:线性代数 专业班级:2012084 成员组成:201208420 联系方式:************ 2013年11月6日

摘要:线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 关键词:行列式,矩阵,,,, 正文:线性代数的发展简史 引言 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生

的动力和钥匙。行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750 年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。数学家Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论,数学家

线性代数试题及答案3培训讲学

线性代数试题及答案 3

线性代数习题和答案 第一部分 选择题 (共28分) 一、 单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四 个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 111221 22 =m , a a a a 13112321 =n ,则行列式 a a a a a a 111213212223 ++等于( D ) A. m+n B. -(m+n) C. n -m D. m -n 2.设矩阵A =100020003?? ?? ? ??,则 A -1等于( B ) A. 13000 12000 1?? ?? ?????? B 10 0012000 13?? ? ????? ?? C ??????? ? ?210 0010 0031 D 1 20 001300 01?? ? ???? ?? ? 3.设矩阵 A =312101214---?? ? ? ? ??,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是 ( B ) A. –6 B. 6 C. 2 D. –2 4.设A 是方阵,如有矩阵关系式AB =AC ,则必有( D ) A. A =0 B. B ≠C 时A =0 C. A ≠0时B =C D. |A |≠0时B =C 5.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( C ) A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( D ) A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0 B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs +βs )=0 C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs (αs -βs )=0 D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =0 7.设矩阵A 的秩为r ,则A 中( C ) A.所有r -1阶子式都不为0 B.所有r -1阶子式全为0 C.至少有一个r 阶子式不等于0 D.所有r 阶子式都不为0 8.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( A ) A.η1+η2是Ax=0的一个解 B.12 η1+12 η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解 9.设n 阶方阵A 不可逆,则必有( A )

线性代数第1讲数学归纳法

线性代数 第2讲 数学归纳法 ( 教材 p.5 --- P.7 ) 关键词:数学归纳法 数学归纳法 数学归纳法又称有限归纳法. 它是证明数学命题的一种常用方法. : 1=n 时,公式(1)的左边 = 1,右边 .1)11(12 1 =+??= 公式(1)成立. 现假设k n =时公式(1)已成立,即

.)1(2 1 321+=++++k k k 当1+=k n 时, .)1()321()1(321++++++=++++++k k k k 由归纳假设)(12 1 3+2+1+= ++k k k ,因此 ]1)1([)1(2 1 ) 2()1(2 1 )1()1(21 )1(321+++=++=+++= ++++++k k k k k k k k k 即当1+=k n 时,公式(1)也成立,因而命题得证. 现在,如果我们把公式(1)的左端记为)(1n S , 此时公式(1)可写为 ?n 321S 2222)n (2=++++= 结论是: )2(6 ) 12)(1(3212222)(2++= ++++=n n n n S n 公式(2)是如何想出来的?正确否?怎么证? 因为它涉及正整数n ,一般是用数学归纳法来回答此问题.

.304321,14321,521,112222222222=+++=++=+= 如果我们多算几项并列成下表: 3 17 3153133113937351:S S 204 1409155301451:S 36 28 21 15106 3 1: S 876 5 4 321:n )n (1)n (2)n (2)n (1 似乎可以看出有下面的规律: ,3 1 2) (1)(2+= n S S n n (这里只是对 8,,3,2,1 =n 成立)从而 )2(6 ) 12()1(312)(1)(2++=+= n n n S n S n n 8,,3,2,1 =n 是成立的. 但对任意正整数n 是否都成立? 2)对任何正整数n 都对. ) (2n S 知道了,能否利用归纳、类比的方法进一步探索出 )(3n S 与)(1n S 的联系呢?这就是由个别(或特殊)去发现 一般的思维方法. 先作如下观察: . )4321(1004321, )321(36321,)21(921,112 3 3 3 3 23332333+++==+++++==+++= =+= 似乎已经看出有如下十分有趣的规律: 虽然公式(3)当 定它对于一切正整数都对. 此时我们就会想到用数学归纳法来3)的正确性. 我们已验证(3)对4,3,2,1=n 成立. 设 k n =时公式(3)

线性代数公式大全

线性代数公式大全——最新修订 1、行列式 1. n 行列式共有2n 个元素..,展开后有!n 项.,可分解为2n 行列式... ; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解(即有无穷多个解); ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =只有有零解; ?n b R ?∈,Ax b =总有唯一解;

线性代数第三章(答案)

第三章 矩阵的初等变换与线性方程组 一、填空题 1、 设???? ?? ? ??=n n n n n n b a b a b a b a b a b a b a b a b a A 2 1 2221 212111,其中),,2,1(,0,0n i b a i i =≠≠,则=)(A R ____ 2、 设n 阶矩阵A 的各行元素之和均为零,且=)(A R n -1,则线性方程组AX =0 的通解为________ 3、 设四阶方阵的秩为2,其伴随矩阵的秩为_______ 4、 设?????? ? ??=---112 11 22 221 21n n n n n n a a a a a a a a a A ,??????? ??=n x x x X 21,???? ??? ??=111 B ,其中 ),,2,1,,(n j i j i a a j i =≠≠,则线性方程组B AX =的解是________ 5、 已知????? ? ?=10 0210 002 P ,??? ? ? ? ?=20 0020 001A ,则=-1001)(AP P ________ 6、 设A ,B 均为n 阶矩阵AB =0,且A +B=E,则=+)()(B R A R _________ 7、 设矩阵n m A ?的秩为r ,P 为m 阶可逆矩阵,则)(PA R =________ 8、 矩阵??? ?? ??--34031302 1201 的行最简形矩阵为___________ 9、 矩阵??? ? ? ? ?----17 4 03430 1320的行最简形矩阵为__________ 10、 从矩阵A 中划去一行得到矩阵B ,则)(______)(B R A R 从矩阵A 中增加一行得到矩阵B ,则)(______)(B R A R

线性代数3

试题六 一、单项选择题(每小题3分,共24分) 1、排列51432的逆序数为( )。 A、5 B、 6 C、7 D、8 2、01221 ≠--k k 的充分必要条件是( ) 。 (A )1-≠k (B )3≠k (C )31≠-≠k k 且 (D )31≠-≠k k 或 3、矩阵??? ? ??-0133的逆矩阵是( ) A 、???? ??-3310 B 、???? ??-3130 C 、???? ??-13110 D 、??? ? ??-01311 4、设n 元非齐次线性方程组AX=b 的系数矩阵的秩R (A )与增广矩阵的秩R (A , b )满足R (A )=R (A ,b )=n,则非齐次线性方程组有 ( ) A 、唯一解 B 、无解 C 、无穷多解 D 、无法判断 5、设矩阵)(,n m B A m n n m ≠??,则下列运算结果不为n 阶方阵的是( ) A、BA B、AB C、T BA )( D、T T B A 6、若矩阵B A r ~,则有( )。 A 、R(A)R(B) C 、R(A)=R(B) D 、无法判断 7、若方阵A 满足1-=A A T ,则A 为( ) A 、对称矩阵 B 、相似矩阵 C 、正交矩阵 D 、合同矩阵 8、设4321,,,αααα是一组n 维向量,其中321,,ααα线性相关,则( ) A 、321,,ααα中必有零向量 B 、21,αα必线性相关 C 、32,αα必线性无关 D 、4321,,,αααα必线性相关 二、填空题(每小题4分,共32分) 1、设对角矩阵A =diag(1,2,1,-4),则1-A = 2、设方程组???=+=+020221 21kx x x x 有非零解,则数k=

线性代数第八章习题解说课讲解

线性代数第八章习题 解

线性代数第八章习题解 习题八 1. 验证 1) 全体m n ?级的实矩阵的集合)(R M m n ?关于矩阵的加法和(实)数乘矩阵构成一线性空间. 2) 给定实数轴上一闭区间[a ,b ](a

线性代数习题三及答案

课程考试试卷(A )卷 一、填空题(本题总计16分,每小题2分) 1、排列的逆序数是 2、若 122 21 1211=a a a a ,则=1 6 0030 322 2112 11a a a a 3、设A 为三阶可逆阵,??? ? ? ??=-1230120011 A ,则=*A 4、若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 5、已知五阶行列式1 234532********* 14035 4321=D ,则=++++4544434241A A A A A 6、若n 元齐次线性方程组0Ax =的系数矩阵A 的秩为n-1 ,则其解空间的维数为 7、若()T k 11=α与()T 121-=β正交,则=k 8、若矩阵A 的特征值分别为1、-1、2 ,则2+-=A A E 二、选择题(本题总计20分,每小题2分) 1、 若齐次线性方程组??? ??=+++=+++=+++0 )1(0)1(0)1(321 321321x x x x x x x x x λλλ 有非零解,则λ的范围为( ) A.0≠λ B.3-≠λ C.0≠λ且3-≠λ D.0=λ且3-=λ 2、 设n 阶矩阵A 和B 满足AB=0,则( ) A.00==B A 或 B.00==B A 或 C.0B A =+ D.0=+B A 3、 设A 为三阶矩阵,*A 为A 的伴随矩阵, 且2 1 =A ,则=--*A A 2)3(1( ) A.2716- B.31- C.31 D.2716 4、 向量组r ααα,,,21 线性相关且秩为s ,则( )

A.s r = B.s r ≤ C.r s ≤ D.r s < 5、 设向量组A 能由向量组B 线性表示,则( ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 6、 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A ( ) A.8 B.8- C.34 D.3 4- 7、 若n 元非齐次线性方程组b Ax =的增广矩阵的秩()n R

线性代数例题讲解学习

线性代数例题[ 1]

行列式 例1:若1, 2, 3, 1, 2都是四维列向量,且四阶行列式「231 m,, 1 2 2 3|门,四阶行列式3 2 11 2等于多少? 例2:设A是n阶方阵,且A 0,则A中() (A) 必有一列元素全为零; (B) 必有两列元素成比例; (C )必有一列向量是其余列向量的线性组合; (D)任一列向量是其余列向量的线性组合. 例3:设A 佝?3 3,A j为a j的代数余子式,且A j a j,并且0,求 A. 例4:设四阶方阵A (a j)44,f (x) E A,其中E是n阶单位矩阵,求:(1) 4的系数;(2) 3的系数;(3)常数项. 例5:设A为n阶方阵,E是n阶单位矩阵,AA T E,A 0,计算 A E . 例6:设A,B为n阶正交矩阵,若 A B 0,证明A B是降秩矩阵.

1 0 0 例1:设A 10 1,证明当n 3时,恒有A n A n 2A E . 0 1 0 111 例2:设(1,2,3,4), (1,—, T, T),A,计算A . 2 3 4 例3:设三阶方阵A , B满足关系A 1BA 6A BA,且A 求B 1 例4:设A是三阶方阵,|A -,求(3A) 1 2A* 例5:证明:若实对称矩阵A满足条件A20,则A O 例6:设A E ',其中E是n阶单位矩阵,是n维非零列向量,证明: (1)A2 A的充要条件是’1 ; (2)当’1时,A是不可逆矩阵. 例7:已知n阶方阵A满足2A(A E) A3,求(E A) 1000 0100 1 例8:设A*,且ABA 1BA 1 3E,求B. 1010 0308 1 0 0 例9:设f (x)1x 2 x100 典 x ,A 0 0 0,求f(A), f (f (A)) 0 1 0 例10:设A,B是n阶方阵,且满足AB A B,证明:AB BA

线性代数的思想本质

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了! 多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合?* 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的?* 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗? * 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思?