文档库 最新最全的文档下载
当前位置:文档库 › 单相逆变型设计与仿真

单相逆变型设计与仿真

单相逆变型设计与仿真
单相逆变型设计与仿真

单相逆变型设计与仿真

技术要求:

逆变器类型:单相

输出电压(单相电压):220V

输出功率:8KV A

输出频率:60HZ

功率因素:0.8~1

过载倍数:2

(1)、设计主电路参数,包括磁性原件结构参数。

(2)、给出控制策略,设计控制器参数。

(3)、建立仿真模型,给出仿真结果,对仿真结果进行分析。

单相逆变器电路: +

R L

E C

-

设计步骤: (1)、根据负载要求,计算输出电路参数。

(2)、根据输出电路输入端要求计算逆变电路参数。 (3)、根据逆变电路输出端要求计算输入端参数。 (4)、根据逆变电路输入端参数计算输入整流电路参数。 (5)、输入与输出之间有电流匹配或电气隔离时加变压器。

负载电路参数计算: 等值电路:

L

U

l

i c

i

R

i '

L i

2

T 2D

4T

4D

负 载

1

T 1

D 3

T 3

D

C

'

R

'

L

1、负载电阻最小值:1= cos ?, Ω

==

05.62

P

V

R ,

0.8

= cos ?,

Ω

=?=

=

5625.7cos 2

2

?

S V

P

V

R ,

2、负载电感最小值:无功功率KVA

P P Q L

8.46.0sin '=?=?=?

Ω

=?=

=

083.1010

8.4220

3

2

'2

0'L

L

Q

V Z

由'

'L

Z

L

ω= ,得

mH

f

Z L L 7595.2660

2083.102'

'

=??=

?=

ππ

3、滤波电容设计:滤波电感感抗:L

Z

L

ω=, 滤波电容容抗:C

Z

C

ω1

=

取滤波电容容抗等于负载电感感抗的2倍:

Ω

=?==166.20083.1022'

L C Z Z ,

计算电容:uF

Z f Z C

C

C

604.131166

.206021

211

=???=

??=

?=

ππω,

考虑实际,取130uF ,13个10uF ,250V 、50HZ 的电容, 则()Ω

=????=

??=

=

-414.2010

1306021

f 21C

1

6

ππωC

Z C 实

4、无隔离变压器时,逆变器输出电流计算(有效值,设计变压器,滤波电感时参考)

C

I i

U

L

U

?

R I 0

U

C

I

L I

i U

L

U

?

C

L I I -'

L

I

0 '

R I

U

'

L

I

纯阻性相量图:(1cos =?) 阻感性相量图:()8.0cos =?

○1 长期连续最大电流(极限值):

A

93.3741.2022005.6220I

I

2

22C

2

R

)(0=?

?

?

??+??? ??=

+=

长I

2 短期最大电流: A 52.7341.2022005.622022

2=??

?

??+??? ???=

纯阻性

A

22.5941.20220-083.10220

5625.722022

2

=?

?

? ??+??? ???=

阻感性

5、无隔离变压器时,逆变器输出电流峰值(选开关器件时参考): ○

1 长期连续电流峰值:

A

64.53A 93.372I 20)(=?=?=(长)

长OP I

2 短期最大电流:

A 97.10352.732I 20)(=?=?=A I OP (短)

作用:○1 减小输出电压中谐波电压(L 大),

○2 保证基波电压传输(L 小),

设计滤波器注意收下问题——逆变电路

1 滤波电路固有频率应远离输出电压中可能出现的谐波频率。

○2 LC 2

ω不应太大而接近1。

3 R

L

ω应该较小,(R 按最重负载时考虑)

(由于滤波电容C 对输出电流比较大,故优先考虑),

6.0=L ω时,mH

59.160

26.0f

26.0L =?=

?=

ππ,取mH 6.1。 Ω

=???=??==-622.010

6.160223

ππωL f L Z L ,

验证:固有频率HZ

LC

f 28.31210

130221219

=??==

π

()0393

.010

13026029

2

2

=????=-πωLC <<1

6、逆变电路输出电压,(滤波电路输入电压): ○

1 空载:

此时,A

i i

L C

78.10414

.20220==

= ()L C i i

V

Z i U L L L 71.6622.078.10=?=?=?

L

U

? 0 i U

U

故V

U U U

L i

29.21371.62200=-=?-=

U U i <,升压。

○2 满载1cos =?:

C

i

L i

L

U

?

i U

L

U

?

0 R

i

()C

U U 0

此时:o

C

C Z R R

Z 50

.16414

.2005.6arctan

arctan

11arctan ====θ

90-θ

θ

A

i

i i C

R L 96.37414.2022005.62202

222=??

? ??+??? ??=

+=

V

i Z U L L L 61.2396.37622.0=?=?=?

(

)V

U o

o

i 49.21450

.1690

cos 22061.232220

61.232

2

=-???-+=

3 满载阻感性:

C

I

i U L

U ?

0 R

I 0

U

C

L I I -'

L I

'

L

I

此时:o

C

C Z R R

Z 50

.16414

.2005.6arctan

arctan

11arctan ====θ

A

i i i C R L 96.37414.2022005.62202

2

2

2=??

? ??+??? ??=

+=

V

i Z U L L L 61.2396.37622.0=?=?=?

(

)V

U o

o

i 29.22150

.1690

cos 22061.232220

61.232

2

=+???-+=

4 过载纯阻性(R

R

i i 2

1'

=

):

C

i

L i

i U

L

U

?

θ θ+o

90

90-θ

θ L U ?

0 '

R i ()C U U 0

此时:o

C

C Z R R

Z 60

.15414

.2005.6arctan

arctan

11

arctan

====θ

A

i i i C R L 56.21414.202201.122202

22

2'=??

? ??+??? ??=

+=

V

i Z U L L L 41.1356.21622.0=?=?=?

(

)V

U o

o

i 78.21660

.1590

cos 22041.132220

41.132

2

=-???-+=

5 过载阻感性:

C

I

i U L

U

?

0 '

R

i 0

U

C

L I I -'

L I

'

L

I

此时:o

C

C Z R R

Z 60

.15414

.2005.6arctan

arctan

11arctan ====θ

A

i i i C R L 56.21414.202201.122202

2

2

2'=??

? ??+??? ??=

+=

V

i Z U L L L 41.1356.21622.0=?=?=?

(

)V U o

o

i 98.22360

.1590

cos 22041.132220

41.132

2

=+???-+=

7、逆变电路输出电压:

1 逆变电路: 单相全桥电路:E

E U

AB

707.02

==

θ θ+o

90

2 整流电路: C d U U U ?=?=35.134.22

V

E 7.4619.038035.1=??=

考虑到电路管压降、电阻、电感压降。取450V 。 考虑桥臂上下互补通断时需保留“死区”间隔,以及开头管压降影响:())(707.0set CE AB

U m E K U ?-?=,

2=m ,取()V

U set CE 3=。KHZ

f

K

6.9=,取s t μ5.3=?,

9328

.010

6.91

105.3210

6.91

23

6

3

=???-?=?-=

---T

t T K

()V

U

AB

813.292324509328.0707.0=?-??=,取290V

8、逆变电路和输出电路之间的电压匹配: 理想变压器:295

.198

.223290==

N

考虑变压器内阻、电压损耗等原因,N 略作调整: ()()

257

.105.1~01.1==

N

N 实,(取1.03)]

()()

()05.103.101-?=

实N I I I L L ,

()A 175.3004.1257

.193.371=?=长L I ()A

488.5804.1257

.152.73I L1=?=

mH

528.210

6.1257

.1L N L 3

2

2

1=??==-

9、根据开关压降电流选择开关保护: ()相T A I I =

()A 91.7323175.30I TP =?

?

=长

()A

27.14323488.58I TP =??

=短

()A

82.15391.7322=?=?=长TP T I I ,选150A ,经济性好。

()A

905.21427.1435.1I 5.1I TP T =?=?=短,选250A ,可靠性高。

10、开关器件的耐压:

主开关器件耐压,要根据所有情况下所承受的最高工作电

压考虑。

主开关器件承受最高电压时刻一般出现在输入电压最高、输出负载最轻的情况下:

空载:V

E 141.5911.13802max

=??=

额定电压选择实际工作情况的2倍(耐压): V

V CE 282.11822141.591=?=。取1200V 耐压水平的开关器件。

11、变压器的计算:

变压器除电气参数计算外,在实际加工制造前,还需要进

行各种机械结构参数计算,计算包括:变压器的额定功率、铁心截面面积、初级线圈电流、各线圈匝数、线圈所用导线直径和核算铁心窗口面积。 ○

1计算变压器的额定功率: 输出功率:??+++=4433222

I U I U I U S

输入功率:111

S I U =

近似值:η

2

1

S S

=

, η:变压器效率。

功率(V A )

<20 30~50 50~100 100~200 200以上 η

(%) 70~80

80~85

85~90

90~95

95以上

额定功率:()VA S S S 2

2

1+=

2计算初级电流:

1

11V S K

I = , ()1.21.1K ~取

K 由变压器空载电流大小决定的,经验系数、容量越小,K 越大。

○3 计算铁心净截面积(Sc )实际截面积('

C

S ):

经验公式:(

)2

cm

S K Sc

=

K 视硅钢片的质量而定,()5.1~0.1K 之间,质量越好,K 越小,考虑硅钢片之间的绝缘扯之间的绝缘和空隙,实际截面积大于计算值。 ()2

'

cm K Sc Sc C

=

,1

K

根据算出的'

Sc 求硅钢片舌宽a (有固定标准可查,手册

得到)

h :窗口高度

c :窗口宽度

a :舌宽

b :铁心厚度

c h

a

b

4 计算线圈匝数,确定每伏匝数: V

Sc B N f E m 8

10

44.4-????=

Sc

B f E

N N m ??=

=

-44.410

8

f :频率,

m

B :铁心磁通宽度(高斯)

N :匝数 初级:011

N U N ?=(匝)

次级:()022

10.1~05.1N U N

?=?(匝)

1.05~1.10,铜阻产生电压降而应增加匝数的系数 ○5 计算线圈导线直径: 导线电流:j d

j S I

??=

?=2

4

π

,j

为电流密度2

mm A

S :导线截面积(2

mm ) d :导线直经(2

mm )

()2

13

.14mm j

I j

I

d =?=

π

初级:j

I d 11

13

.1=

次级:j

I d

22

13

.1=

○6 检验铁心窗口面积: h 、c 可查表得到,线圈在框架两端共贸10%不绒线, 框架实际高度:()mm

h h

29.0'

-?=

毎层可绕匝数:()'

29.0n

P h

d

K h N

?-?=

,取整(取小)

'

n

d :导线连同绝缘层的有效直径

P K :绕制的稀疏系数,()15.1~05.1∈P K

每组线较所绕层数:)(取整n

N N D =

初线圈的总厚度:()

1'11

r d a D H

++=

a :层间绝缘,'1

d :实际直径,1

r :线圈间绝缘厚度。

()()2.1~1.1H 021???++=H H H 0H :框架厚度,

1.1~1.2:叠绕系数。

单相逆变器的数学模型:

r :考虑滤波电感L 的等效串联电阻,死区效应,开关管 导通压降,结跏电阻等逆变器中各种阻尼因素的综合

2T

2D

4T

4D

负 载

1T

1D

3T

3D

+ 1

U -

r

L

C

0U

0i

a

b

1i

等效电阻。

L、C:低通滤波器

d

U:直流电压

1

i:电感电流

1

U:滤波电路输入电压/逆变电路输出电压/输出电路输入电压

U:逆变器输出电压

i:负载电流,可看做系统的一个外部干扰输入量,即符合逆变电路多样化情况,又可以建立一个形式简单且

不依赖于负载类型的逆变器数学模型。

单相逆变器的控制策略:

单闭环控制:

闭环输出电压:PID

Ls

r+

1

cs

1

*

U+

-

-

i

1

i

U

()()()()()

()()()

S i

P d S i

P d i

P d S I K S K S

K rC LCS

r LS S U K S K S K rC LCS

K S K S

K U 02

3

02

3

2

11?++++++-

+++++++=

*

闭环系统特征方程:

()()()i P d S K S K S K rC LCS

D +++++=12

3

……○

1 闭环系统的动态响应性能取决于闭环极点在S 平面的分布位置。 高阶系统动态性能由对立导极点决定:

()

2

211r

r r r r j S ξωωξ-±?-=、

作主导极点:

r r n S ωξ--=3

极点的配置法则希望特征方程:

()()()()321r r r S S S S S S S D -?-?-=

(

)()r r r r n S S r S

ωξωωξ???+?+???+=22

2

……○

2 对比○

1、○2有: ()()

??

???????=-???+??=-????+=C L n K C L r n K rC

C L n K r r i r P r r d 32

21122ωξωξωξ

……

3 其中:3500

=r

ω

,10~5=n ,8.0=r

ξ

,Ω=1.0r

将以上数据以及mH L 6.1=,uF

C 130=代入○

3可得到: (其中n 取10)

??

?

??===5

.8249180944.40069758

.0i P d K K K

仿真:

仿真电路图及结果分析:1、未加脉冲前:

仿真结果:

基波主要在60HZ 处,谐波主要公布在0HZ 、110HZ 处,

THD=0.45%,与分析结果基本相符。

2、加了脉冲后:

仿真结果:

基波主要分布在60HZ处,谐波主要分布在480HZ、600HZ 处,但THD达到了1.28%。

3、加入PWM调制后:

仿真结果:

基波出现在60HZ 处,谐波出现在0HZ 、550HZ 处,加入PWM 调制后THD=0.12%,比没有加入PWM 调制前要好得多。

单相半桥无源逆变器设计

电气与电子信息工程学院计算机控制课程设计

单相半桥无源逆变电路设计设计题目:(专升本)班专业班级:电气工程及其自动化2010 学号: 2 勇姓名:朱 组人:严康孙希凯同黄松柏指导教师:南光群 2011/11/21 设计时间:2011/11/13~ 电力电子室设计地点:课程设计成绩评定表电力电子 学勇 2 姓名朱单相半桥无源逆变电路设计课程设计题 26 / 1

26 / 2 指导教师签字: 日20 12 月2011年 《电力电子课程设计》课程设计任务书 1学期2012 学年第~2011 2010电气工程及其自动化勇专业班级学生姓名:朱

专升本 工作部门:电气学院电气自动化教指导教师:南光群、黄松柏研室 一、课程设计题目: 单相桥式晶闸管整流电路设计1. 2. 三相半波晶闸管整流电路设计 3. 三相桥式晶闸管整流电路设计降压斩波电路设计 4. 升压斩波电路设计5. 单相半桥无源逆变电路设计6. 7. 单相桥式无源逆变电路设计单相交流调压电路设计8. 逆变器设计SPWM9. 三相桥式26 / 3 二、课程设计内容 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数; 3. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。

注:详细要求和技术指标见附录。 三、进度安排 1.时间安排 .执行要求2电力电子课程设计共9个选题,每组不得超过6人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。 四、基本要求 (1)参考毕业设计论文要求的格式书写,所有的内容一律打印;

大学毕设论文__单相正弦波逆变电源的设计

第1章概述 任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。传统的晶体管串联调整正弦波逆变电源是连续控制的线性正弦波逆变电源。这种传统正弦波逆变电源技术比较成熟,并且已有大量集成化的线性正弦波逆变电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点、但其通常都需要体积大且笨重的工频变压器与体积和重量都不得和很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右。另外,由于调整管上消耗较大的功率,所以需要采用大功率调节器整管并装有体积很大的散热器,很难满足现代电子设备发展的要求。在近半个多世纪的发展过程中,正弦波逆变电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛的应用,正弦波逆变电源技术进入快速发展期。 正弦波逆变电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。它的功耗小,效率高,正弦波逆变电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器,此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。因此正弦波逆变电源具有重量轻、体积小等优点。另外,于功耗小,机内温升低,提高了整机的稳定性和可靠性。而且其对电网的适应能力也有较大的提高,一般串联稳压电源允许电网波动范围为220V±10%,而正弦波逆变电源在电网电压在110~260V范围变化时,都可获得稳定的输出阻抗电压。正弦波逆变电源的高频化是电源技术发展的创新技术,高频化带来的效益是使正弦波逆变电源装置空前的小型化,并使正弦波逆变电源进入更广泛的领域,特别是在高新技术领域的应用,扒动了高新技术产品的小型化、轻便化。另外正弦波逆变电源的发展与应用在节约资源及保护环境方面都具

PWM 控制的单相逆变电路的设计及其研究

电力电子技术课程设计 班级 学号 姓名 电气工程及其自动化 二零一五年一月

目录 1 绪论 (2) 1.1 电力电子简介 (2) 1.2 课程设计的目的与要求 (2) 1.3 课程设计题目 (3) 1.4 仿真软件的使用 (3) 2 工作原理 (4) 2.1 逆变电路原理 (4) 2.1.1 电压型逆变电路 (4) 2.1.2 电流型逆变电路 (6) 2.2单相桥式PWM逆变电路的基本原理 (10) 2.2.1 单极调制法 (11) 2.2.2 双极调制法 (12) 3 电路的设计过程 (13) 3.1 逆变控制电路的设计 (13) 3.2 正弦波输出变压变频电源调制方式 (14) 3.2.1 正弦脉宽调制技术 (14) 3.2.2单极性调制方式 (15) 3.2.3 双极性调制方式 (15) 3.2.4 单极性倍频调制方式 (15) 3.3 3种调制方式下逆变器输出电压谐波分析 (16) 4 仿真实验与结果 (17) 4.1 单相桥式PWM逆变主电路原理图 (17) 4.2 仿真所得波形 (17) 5 仿真结果分析 (19) 6 心得体会 (20) 7 参考文献 (21)

1 绪论 1.1 电力电子简介 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外绝缘材料的缺陷也是一个问题。在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的4个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本次课程设计研究单相桥式PWM逆变电路,通过该电路实现逆变电源变压、变频输出。 1.2 课程设计的目的与要求 1. 进一步熟悉和掌握电力电子原器件的特性; 2. 进一步熟悉和掌握电力电子电路的拓扑结构和工作原理; 3. 掌握电力电子电路设计的基本方法和技术,掌握有关电路参数的计算方 法;

半桥逆变电路工作原理的分析

电子镇流器中半桥逆变电路工作原理的分析 陈传虞 引言 半桥逆变电路是电子镇流器和电子节能灯中最常用也是最基本的电路,正确地理解它的工作原理,将有助于我们合理地选择元器件如磁环变压器、扼流电感、启动电容等元件的参数,正确地安排三极管的驱动电路,以降低它的功耗与热量,提高整灯的可靠性。遗憾地是过去受观测仪器(如示波器)和测试手段的局限,我们无法观测到电路中关键点如三极管各个电极电流的正确波形(如文献4的电流i B 、i c 的起始波形就是错误的),因而无法作出符合实际情况的定量分析和判断,以至形成一些错误的概念。最近看到深爱公司叶文浩先生发表在中国照明电器(刊载于04年11、12期)的文章,受到不少启发,到欧普照明公司后,利用比较先进的示波器TDS5000,对电路关键点的电流和电压波形,进行了仔细的测试,感到认识上有所提高,澄清了过去不少胡塗概念,特撰写本文,抛砖引玉,与叶先生商榷,并就教于国内方家。 首先讨论半桥逆变电路的工原理,尽管这个电路是众所周知的,但人们对它的理解却并不十分正确,存在一些错误观念。因此,本文拟对它作较为仔细的探讨。讨论时以图1所示的基本电路作为讨论的出发点,后面所引用的元件名称及符号,均按图1所给出的为准。为支持和验证所提出的观点,文中給出了许多用示波器实际观测到的波形。 图1、半桥逆变电路的基本形式 一. 三极管如何由导通变为截止(以VT 2为例) 不论是用触发管DB 3还是由基极偏置电阻产生基极电流i B2(后者用在基极回路中带电容的半桥逆变电路中),两种触发方式中的哪一种,在接通电源后,都会由于i B2的出现而产生VT 2的集电极电流i c2,通过磁环变压器的正反馈,引起电压v BE2上升, i B2进一步增加, i c2也随之增加。出现以下的连锁反应: 2b i ↑ 2C i ↑ 2b ↑ 这种再生反馈的结果,产生了雪崩效应,三极管迅速导通并饱和(在半桥逆变电路正常工作期间, 三极管VT 1或VT 2如何由截止变成导通的原因,我们将在后面文章中加以讨论)。导通后的三极管可以看成闭合的开关,三极管的电流i c2不再受基极电流i B2控制,而仅由外电路元件的参数来确定。 在三极管开始导通的一段时间内,i c2增加,通过磁环变压器绕组间的正反馈使磁环绕组N 2上的感应电动势增加,v BE2及 i B2均增加,由图2知,i B2同磁环绕组N 2上的电压v N2触发 电流 通过T r N 3与N 2

单相半桥逆变电路

目录 摘要 (1) 第一章系统方案设计及原理 (2) 1.1、系统方案 (2) 1.2、系统工作原理 (2) 1.2.1、逆变电路的基本工作原理 (2) 1.2.2、单相半桥阻感负载逆变电路 (3) 1.2.3、单相半桥纯电阻负载逆变电路 (4) 1.3、IGBT的结构特点和工作原理 (4) 1.3.1、IGBT的结构特点 (4) 1.3.2、IGBT对驱动电路的要求 (6) 第二章硬件电路设计与参数计算 (7) 2.1、系统硬件连接 (7) 2.1.1、单相半桥无源逆变主电路如图下所示 (7) 2.2、整流电路设计方案 (8) 2.2.1、整流变压器的参数运算 (8) 2.2.2、整流变压器元件选择 (9) 2.2.3、整流电路保护元件的选用 (9) 2.3、驱动电路设计方案........................................................................... 错误!未定义书签。 2.3.1、IGBT驱动器的基本驱动性能.............................................. 错误!未定义书签。 2.3.2、驱动电路................................................................................ 错误!未定义书签。 2.4、触发电路设计方案........................................................................... 错误!未定义书签。第三章系统仿真.............................................................................................. 错误!未定义书签。 3.1、建立仿真模型................................................................................... 错误!未定义书签。 3.2、仿真结果分析................................................................................... 错误!未定义书签。第四章小结...................................................................................................... 错误!未定义书签。参考文献............................................................................................................ 错误!未定义书签。

单相正弦波变频电源自动化毕业设计(论文)

单相正弦波变频电源 摘要:本设计是通过模拟和数字的方法来产生SPWM信号。采用89C51单片机产生正弦波基波,采用NE555芯片产生高度线性等腰三角波载波。基波和载波通过高速电压比较器LM311比较产生与之对应的SPWM驱动信号。SPWM驱动信号经整形电路、死区电路、驱动功放隔离电路完成对全桥场效应管的开通和关断,从而完成将直流电压逆变成所需频率的正弦交流电。而调压电路采用前级DC-DC独立调压来实现,实现直流稳压。改变单片机正弦波输出频率来实现逆变输出SPWM 交流调频的功能。采用芯片AD637对输出电压、电流进行真有效值变换,经A/DTLC549变换后送单片机处理,实时对逆变输出进行监控,保证输出电压的稳定性。输出电压波形为正弦波,输出频率可变,能够测量和显示电源输出电压、电流、具有过流保护、过压保护电路、空载报警电路等。同时基于UC3845多路隔离反击式开关电源为系统供电。 在研究和设计的基础上制作了样机,完成了大部分的调试工作,达到了预期的目的。 关键词:升压;场效应管;检测电路;逆变

Abstract:The SPWM signal is produced by the way of analog and digita in the design.The fundamental wave is produced by 89C51 chip,and the sine t riangle carrier wave is produced by NE555 chip.SPWM drive signal is generated by the high-speed voltage comparator LM311. The turn-on and turn-off of mosfet are controlled by SPWM drive signal from the shaping circuit, the dead zone circuit, the power am plifier circuit to bring out the required frequency of the sinusoidal alternating current in DC/AC convertion.The voltage regulating circuit uses DC-DC independent voltage regulating to realize, Change the frequence of the sine wave that is the output of the MCU will realize the function of inverse output SPWM AC frequency modulation .Use AD637 to complete voltage and current true effective value transform and then send the result to A/DTLC549. Through AD exchange the output will be send to the MCU to be processed,according to the result to monitor the inverse output and to ensure the stability of the output voltage. The waveform of the output voltage is sine-wave,its frequence can be changed.The voltage and current of the Power source can be e over-current and over-voltage protection circuit, an o-load alarm circuit and smeasured and the result can be displayed on the LCD.The power source include tho on. At the same time use multi-channel isolate Counter type switch power as system power supply. On the basis of research and design,a prototype of principle is produced.the most of debugging of the whole system is completed. Keyword:boost;mosfet;detection circuit;inverter

单相逆变器的软件设计

单相逆变器的软件设计

摘要 随着电力电子技术的迅猛发展,逆变技术广泛应用于航空、航海等国防领域和电力系统,交通运输、邮电通信、工业控制等民用领域。特别是随着石油、煤和天然气等主要能源日益紧张,新能源的开发和利用越来越受到人们的重视。利用新能源的关键技术--逆变技术,能将蓄电池、太阳能电池和燃料电池等其他新能源转化的直流电能变换成交流电能与电网并网发电。因此,逆变技术在新能源的开发和利用领域有着至关重要的地位。理论联系实际,将书本上所学到的知识与实际设计结合起来,学习电力电子基本理论,掌握单相电压型逆变器的工作原理和SPWM原理,并进行详细的设计分析,掌握其控制方式及在电力系统中的重要作用。 关键词:逆变技术,单相电压型逆变器,SPWM原理

ABSTRACT With the rapid development of power electronics technology, the inverter technology is widely used in aviation, navigation and other fields of national defense and the electric power system, transportation, telecommunications, industrial control and other civilian areas. Especially with the oil, coal and natural gas and other major energy shortage, the development and utilization of new energy has been paid more and more attention. The key technology of new energy, inverter technology, the battery, DC can be converted into AC power grid connected power generation solar cell and fuel cell and other new energy conversion. Therefore, inverter technology plays a very important role in the field of new energy development and utilization. The theory with practice, apply on the books knowledge and practical design combine learning power electronics basic theory, master the working principle and the principle of SPWM single-phase voltage type inverter, and design a detailed analysis, palm Hold the control mode and the important role in the power system. Keywords: Inverter technology ,Single phase voltage source inverter ,SPWM principle

基本半桥逆变电路分析

节能灯产品节能灯产品基本半桥逆变电路分析基本半桥逆变电路分析 一、各元件的作用 FUSE 保险电阻:过电流和短路电流保护元件,抑制浪涌电流; L1,C1,C2:组成π型EMI 滤波器,减轻高频逆变电路产生的电磁干扰; D1,D2,D3,D4:组成桥式整流电路,将输入的交流变为直流; C3 滤波电容:将整流出的电压进行平滑滤波,使其接近直流电压; R1,C5:RC 积分电路,滤波后的电压经过R1对C5进行充电,提供DB3导通电压; DB3双向触发二极管:当 C5上的电压高于DB3的导通电压时,DB3导通, 向Q2的基极注入电流,使T2导通,电路起振后, DB3不再导通; D5:隔离启动电路和振荡电路,使振荡电流不会经过C5到地; R2,C4:C4为续流电容,R2为C4提供放电网络。当Q1和Q2在交替开关 的同时截止阶段,使灯丝有电流流过,C4通常为1000~3300pF ; R2,C4组成的放电网络同时避免两个三极管电流重叠,提供一个 死区时间。、

积分电容在启动时为触发管提供导通电压,电源电压经过R1对其进行充电,充电达到DB3的28V导通电压,下管导通. 移相电容,在上下管轮流导通工作过程当中,存在一个管子截止而另一个管子尚未导通的现象,而流过灯管的电流需要是连续的,利用电容电流可以突变的特性,把这一缺陷弥补上! 移相电容比较好!电容减小时电流滞后电压,三极管关断功耗加大,三极管打开时功耗减小,所谓电路呈感性;电容增加时电流超前电压,三极管关 断功耗减小,三极管打开时功耗增加,所谓电路呈容性.T5灯管管压 略高,启辉电容略小电路本身就接近中性,如果还是将移相电容容量 增加大会超成三极管滞后打开,三极管在因导通时有较高电压而产 生功耗!如T8T9灯管管压略低启辉电容略高,电路容易呈感性,如果 还是将移相电容容量减小会超成三极管超前打开,三极管在因关闭 时有较高电压而产生功耗!可能有朋友要说了,那我后面灯管的管压 和启辉电容选一定参数达到一定呈中性时就不是可以不用这个电 容了吗?那不行!我们这里讲的感容性是基波电流相对于矩形波电压 而言,矩形波内的高次谐波无法通过选频网络,经电感反势迭加到三 极管上,这样三极管有可能瞬态导通和关断时被硬性击穿!有时象 T5灯管不加移相电容时也没事,是因为管压过高时,高次谐波电流经 过高的管压强度大大减弱,三极管反而安全了!所以加一定容量的电 容也吸收了这些谐波,所以一定要加! 补充一点具体操作方法:用示 波器观看三极管的电流波形,调节该电容和磁环的参数就能使三极

单相半桥无源逆变器设计

电气与电子信息工程学院 计算机控制课程设计 设计题目:单相半桥无源逆变电路设计 专业班级:电气工程及其自动化2010(专升本)班 学号: 201020210128 姓名:朱勇 同组人:严康孙希凯 指导教师:南光群黄松柏 设计时间:2011/11/13~2011/11/21 设计地点:电力电子室

电力电子课程设计成绩评定表 姓名朱勇学号201020210128 课程设计题目:单相半桥无源逆变电路设计 课程设计答辩或质疑记录: 1、单相半桥无源逆变电路的原理是什么? 答:见图1.2。在一个周期内,电力晶体管T1和T2的基极信号各有半周正偏,半周反偏,且互补。若负载为阻感负载,设t2时刻以前,T1有驱动信号导通,T2截止。t2时刻关断的T1,同时给T2发出导通信号。由于感性负载中的电流i。不能立即改变方向,于是D2导通续流。t3时刻i。降至零,D2截止,T2导通,i。开始反向增大。在t4时刻关断T2,同时给T1发出导通信号,由于感性负载中的电流i。不能立即改变方向,D1先导通续流;t5时刻i。降至零,T1导通。 2、将直流电转换为交流电的电路称为逆变电路,根据交流电的用途可分为哪几类?答:有源逆变和无源逆变。 成绩评定依据: 课程设计考勤情况(20%): 课程设计答辩情况(30%): 完成设计任务及报告规范性(50%): 最终评定成绩(以优、良、中、及格、不及格评定) 指导教师签字: 2011年12 月20 日

《电力电子课程设计》课程设计任务书 2011 ~2012 学年第1学期 学生姓名:朱勇专业班级电气工程及其自动化2010专升本 指导教师:南光群、黄松柏工作部门:电气学院电气自动化教研室 一、课程设计题目: 1. 单相桥式晶闸管整流电路设计 2. 三相半波晶闸管整流电路设计 3. 三相桥式晶闸管整流电路设计 4. 降压斩波电路设计 5. 升压斩波电路设计 6. 单相半桥无源逆变电路设计 7. 单相桥式无源逆变电路设计 8. 单相交流调压电路设计 9. 三相桥式SPWM逆变器设计 二、课程设计内容 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数; 3. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。 注:详细要求和技术指标见附录。 三、进度安排 1.时间安排 序号内容学时安排(天) 1 方案论证和系统设计 1 2 主电路设计 1 3 保护电路设计 1 4 驱动电路设计 1

(完整版)单相光伏并网逆变器的研究40本科毕业设计41

单相光伏并网逆变器的研究

轮机工程学院

摘要 能源危机和环境问题的不断加剧,推动了清洁能源的发展进程。太阳能作为一种清洁无污染且可大规模开发利用的可再生能源,具有广阔应用前景。并且伴随“智能电网”理论的兴起,分布式电力系统正日益受到关注,光伏逆变系统作为分布式电力系统的一种重要形式,使得对该领域的研究具有重要的理论与现实意义。 论文在分析光伏逆变系统发展现状与研究热点的基础上,探讨了光伏逆变系统的主要关键技术,对直接影响光伏逆变系统的工作效率以及工作状态的最大功率点跟踪控制、光伏逆变器控制等技术进行了详细研究。 为研究光伏逆变系统,本文建立了一套完整的光伏逆变系统模型,主要包括光伏电池模块,前级DCDC变换器,后级DCAC逆变器,以及相应的控制模块。为了提高系统模型的准确性及稳定性,论文设计了一种输出电压随温度光照改变的光伏电池模型,提出了一种基于Boost 升压变换器的最大功率点跟踪(MPPT)控制策略,并且将正弦脉冲宽度调制技术(SPWM)应用于逆变器控制。最后在MatlabSimulink软件环境下搭建了光伏逆变系统的整体模型,完成系统性的实验验证。 经过仿真实验验证,所提出的光伏逆变系统设计方案正确可行,且输出达到了设计要求,为进一步实现并网功能提供了条件,具有较高的实用参考价值。 关键词:光伏电池;最大功率点跟踪;光伏逆变系统;正弦脉冲调制技术

ABSTRACT With intensify of the energy crisis and environmental problems, the development of clean energy . The solar energy because of its friendly-environmental advantage and renewable property. With the proposition of the Smart Grid, Distributed Power System . As an important form of Distributed Power System, photovoltaic inverter system is the key of the research in this field. This paper discusses the key techniques of photovoltaic inverter system on the basis of analysis of development and research techniques such as maximum power point tracking (MPPT) which work efficiency and work condition and technology of PV inverter. In order to research PV inverter system, this paper builds an integral model, including PV battery model and DCDC converter and DCAC single phase inverter as well as corresponding control models. In order to improve the validity and the stability of the system, the paper

小功率单相逆变电源毕业设计

德州职业技术学院 毕业设计(论文) (2012届毕业生) 题目小功率单相逆变电源的设计制作 指导教师张洪宝 系部电子与新能源工程技术系 专业应用电子技术 班级09级应用电子技术 学号 200902050124 姓名张艳霞 2011年 9月 19 日至 2011年 11月 18日共 9 周

该设计主要应用电力电子电路技术和开关电源电路技术有关知识。涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片KA7500B的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。 在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。 关键词:过热保护;过压保护;集成电路;振荡频率;脉宽调制

The main application of power electronic circuit design technology and switching power supply circuit technology knowledge. Involves analog integrated circuits, power supply integrated circuits, DC circuit, the switching regulator circuit theory, make full use of the chip KA7500B fixed frequency pulse width modulation circuit and FET (N-channel enhancement mode MOSFET) switching speed, no second breakdown, thermal stability, good benefits and the modular design of the circuit. The inverter main components: DC / DC circuit, input over-voltageprotection circuit, output over-voltage protection circuit, overheat protection circuit, DC / AC conversion circuit, oscillation circuit, full-bridge circuit. In the work of continuous output power of 150W, with a normal light work, output overvoltage protection, input over-voltage protection and thermal overload protection. The power of the relatively low manufacturing cost, practical, and a variety of portable electronic devices can be used as a common power supply. Keywords: thermal protection; over-voltage protection; integrated circuits; oscillation frequency; pulse width modulation

单相全桥和半桥无源逆变电路

单相全桥和半桥无源逆变电路 学生姓名: 学号: 学院: 信息与通信工程学院专业: 自动化题目: MOSFET单相桥式无源逆变电路设计 (纯电阻负载) 指导教师: 职称: 2011年12月31日 中北大学 课程设计任务书 11/12 学年第一学期 学院: 信息与通信工程学院专业: 自动化学生姓名: 学号: 课程设计 题目: MOSFET单相桥式无源逆变电路设计 (纯电阻负载) 起迄日期: 12月25日, 12月31日课程设计地点: 电气工 程系实验中心指导教师: 系主任: 下达任务书日期: 2011年 12月 25 日 课程设计任务书 1(设计目的: 1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资 料。 2)培养学生综合分析问题、发现问题和解决问题的能力。 3)培养学生运用知识的能力和工程设计的能力。 4)提高学生课程设计报告撰写水平。 2(设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 设计内容:

1、设计一个MOSFET单相桥式无源逆变电路(纯电阻负载) 设计要求: 1)输入直流电压:U=100V; d 2)输出功率:300W; 3)输出电压波形:1KHz方波。 2、设计MOSFET单相半桥无源逆变电路(纯电阻负载) 设计要求: 1)输入直流电压:U=100V; d 2)输出功率:300W; 3)输出电压波形:1KHz方波。 3(设计工作任务及工作量的要求〔包括课程设计说明书、图纸、实物样品 等〕: 设计工作任务及工作量的要求: 1)根据课程设计题目,收集相关资料、设计主电路和触发电路; 2)用Multisim等软件制作主电路和控制电路原理图; 3)撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理,完成元器件参数计算,元器件选型,说明控制电路的工作原理,用Multisim 或EWB等软件绘出主电路典型的输出波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明设计过程中遇到的问题和解决问题的方法,附参考资料。 课程设计任务书 4(主要参考文献: 1、樊立萍,王忠庆.电力电子技术.北京:北京大学出版社,2006 2、徐以荣,冷增祥.电力电子技术基础.南京:东南大学出版社,1999 3、王兆安,黄俊.电力电子技术.北京:机械工业出版社,2005 4、童诗白.模拟电子技术.北京:清华大学出版社, 2001

MOSFET单相桥式无源逆变电路设计

目录 MOSFET和电压型无源逆变电路简介 (1) 1.MOSFET简介 (1) 2.电压型无源逆变电路简介 (1) 主电路图设计和参数计算 (2) 1.主电路图设计 (2) 2.相关参数计算 (2) 驱动电路的设计和选型 (4) 1.驱动电路简介 (4) 2.驱动电路的选用 (4) 电路的过电压保护和过电流保护设计 (5) 1.过电压保护 (5) 2.过电流保护 (7) 3.保护电路的选择以及参数计算 (8) MATLAB仿真 (10) 1.主电路图以及参数设定 (10) 2.仿真结果 (14) 总结与体会 (15) 附录:电路图 (16)

一、MOSFET和电压型无源逆变电路的介绍 1.MOSFET简介 金属-氧化层半导体场效晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。MOSFET依照其“通道”的极性不同,可分为“N型”与“P型”的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW 的电力电子装置。 2.电压型无源逆变电路简介 把直流电变成交流电称为逆变。逆变电路分为三相和单相两大类。其中,单相逆变电路主要采用桥式接法。主要有:单相半桥和单相全桥逆变电路。而三相电压型逆变电路则是由三个单相逆变电路组成。 如果将逆变电路的交流侧接到交流电网上,把直流电逆变成同频率的交流电反送到电网去,称为有源逆变。 无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。它在交流电机变频调速、感应加热、不停电电源等方面应用十分广泛,是构成电力电子技术的重要内容。 电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

A单相逆变电源设计

题目:18KV A 单相逆变器设计与仿真 院系:电气与电子工程学院 专业年级:电气工程及其自动化2010级 姓名:郑海强 学号:1010200224 同组同学:钟祥锣王敢方骞 2013年11月20号

单相逆变器设计一.设计的内容及要求 0.8 1.0,滞后

方案简述 将直流电变成交流电的电路叫做逆变电路。根据交流侧接在电网和负载相接可分为有源逆变和无源逆变,所以本次设计的逆变器设计为无源逆变。换流是实现逆变的基础。通过控制开关器件的开通和关断,来控制电流通过的支路这是实现换流的方法。 直流侧是电压源的为电压型逆变器,直流侧是电流源的为电流型逆变器,综上本次设计为电压型无源逆变器。 三.主电路原理图及主要参数设计 3.1 主电路原理图如图1所示 图1 3.2输出电路和负载计算 3.2.1 负载侧参数设计计算 负载侧的电路结构图如图2所示,根据图2相关经计算结果如下:

图2 负载侧电路结构图 1. 负载电阻最小值: cos ?=1.0时,R=2o V /23 300/(1810)5o P =?W ; cos ?=0.8时,R=2 o V /(o P ?23cos )300/(18100.8) 6.25j =创=W 2. 负载电感最小值: 'L ='L Z /(2f π)=8.3/(2100p 创)=0.0132H μ 3. 滤波电容: 取滤波电容的容抗等于负载电感感抗的2倍,则: C =1/(2πf c Z )=1/(2?π′100′32)=95.92F μ 取电容为100F μ,将10个10F μ的AC 电容进行并联, c() Z 实= 1/(2πf C )=1/6(210010010)p -创创=15.9 W 4.滤波电抗L 的计算 选取主开关器件工作频率K f =N ?O f =32′100=3200Hz 由于移相原因,输出线电压的开关频率变为:2K f =6400HZ 取滤波电路固有谐振频率 'f =1/(2πK f /6=533.3Hz 则:L = 1/(42π2'f C )= 1/(4?2π?2533?100610-?)=880H μ 实选用 L=900uH 由此 特征阻抗 3.2.2 逆变电路输出电压 3 T Z =

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

三相半桥逆变和全桥逆变介绍和参数对比

半桥逆变和全桥逆变的介绍 一、典型的单相半桥电路图: ?半桥逆变电路有两个桥臂,每个桥臂有 一个IGBT 模块和一个反并联二极管组成。 ?在直流侧接有两个相互串联的足够大的 电容,两个电容的联结点是直流电源的中点。 ?负载联结在直流电源中点和两个 桥臂联结点之间。 对于三相半桥逆变,则由3套同样的 电路组合而成,每套电路的控制时序 不同。 二、典型的全桥逆变电路图: 全桥逆变电路可看成由两个 半桥电路组合而成,共4个桥臂, 桥臂1和4为一对,桥臂2和3为 另一对,成对桥臂同时导通, 两对交替各导通180° 三相逆变全桥电路示意图如下: + - R L a) U d i o u o V 1 V 2 VD 1 VD 2 U d 2 U d 2 + - C R L U d V 1 V 2 V 3 V 4 VD 1 VD 2 VD 3 VD 4 u o i o

半桥电路与全桥电路的区别如下: ①半桥电路由一个臂就可以形成正/负半波,每个逆变模块和其他臂上的功率管不发生任何关系。而全桥电路中是一个桥臂上的功率管和其它桥臂的功率模块同时导通,分时控制。 ②半桥电路的输出本身就是具有中线的三相四线制结构,一般采用高频调制脉冲进行控制,不用加输出变压器。而全桥电路必须有输出变压器。 ③半桥电路需要正负两组电池,直流电压高,需要单独的充电器,否则充电能力不足,而全桥电路只需一组电池,整流器具备大功率的充电能力。 ④半桥电路的每一组输出电压均需经过一个高频lc滤波器将脉宽调制波解调成正弦波,在解调过程中,每次谐波经电容器的低阻抗旁路到中线n,又由于三相输出电压在相位上互差120o,不能将高次谐波互相抵消,所以其中线n上具有不易消除的高次谐波。全桥逆变器必然需要一个工频隔离变压器,其原边与电容构成低通滤波将脉宽调制波解调成正弦波,高次谐波不会传递到负载侧。 半桥逆变电路特点 ●优点:简单,使用开关器件少,电路实现简单; ●缺点:输出交流电压幅值只有U d/2,直流侧需两电容器串联,工作时要注意两侧直流电压均衡,否则容易引起器件发生故障。 ?半桥逆变电路常用于几kW~十几kW以下的小功率UPS逆变电源 全桥逆变电路特点 ●优点是电压不高,输出功率大 ●缺点是使用的开关器件多,驱动较复杂,适用于大功率的逆变器 ?若逆变输出功率为数千瓦到数百千瓦,一般都采用IGBT等高频自关断器件. UPS输出隔离变压器的说明 相对半桥逆变器而言,全桥逆变器的开关电流减小了一半,因而在中大功率场合得到了广泛应用。在全桥逆变器中,为实现输入输出之间的电气隔离和得到合适的输出电压幅值,务必在输出端接有交流变压器,其作用如下: 1)降低零地电压,优化UPS末端配电; 2)滤除负载端谐波,提高供电质量; 如果不带隔离变压器,其输出零线存在高频电流,主要来自UPS整流器和高频逆变器脉动电流、负载的谐波干扰等,其干扰电压不仅数值高而且难以消除。采用隔离变压器则输出零地电压低,而且不存在高频分量,对于计算机网络的通信安全来讲,更加重要。 3)供电与负载隔离,增强过载短路保护能力,抗冲击能力强; 4)通交流阻直流,保护负载;

相关文档
相关文档 最新文档