文档库 最新最全的文档下载
当前位置:文档库 › 斯伦贝谢-高级完井技术

斯伦贝谢-高级完井技术

斯伦贝谢旋转导向系统 Power-V 使用介绍

斯伦贝谢旋转导向系统Power-V 使用介绍 1 Power-V 简介和应用范围 Power-V是斯伦贝谢旋转导向系统PowerDrive家族中的一员。所谓旋转导向系统,是指让钻柱在旋转钻进过程中实现过去只有传统泥浆马达才能实现的准确增斜、稳斜、降斜或者纠方位功能,但相对于泥浆马达,PowerDrive有非常明显的优点。 旋转导向系统广泛用于使用泥浆马达进行滑动钻进时比较困难的深井、大斜度井、大位移井、水平井、分枝井(包括鱼刺井),以及易发生粘卡的情况。 2 旋转导向系统PowerDrive的优点 ⑴反映和降低了所钻井段的真正狗腿度,使井眼更加平滑。用泥浆马达打30m井段,滑动钻进15m,转动钻进15m,井斜角增加4°,得到平均狗腿度4°/30m。实际上,转钻15m井斜角几乎没有变化,这15m的实际狗腿度是零;而4°的井斜角变化是由滑钻15m产生的,这15m的实际狗腿度是 8°/30m。而用Power-V在同一设置下打出的每米都是同样均匀和平滑的,减少了井眼轨迹的不均匀度,从而减少了在起下钻和钻进过程中钻具实际所受的拉力和扭矩,减少了以后下套管和起下完井管串的难度。 ⑵使用Power-V钻出的井径很规则。使用传统泥浆马达在滑动井段的井径扩大很多,而转动井段的井径基本不扩大。这种井径的忽大忽小是井下事故的隐患,也不利于固井时水泥量的计算。 ⑶由于Power-V钻具组合中的所有部分都在不停的旋转,大大降低了卡钻的机会。使用传统泥浆马达在滑动钻进时除钻头外,其它钻具始终贴在下井壁上,容易造成卡钻。 ⑷在钻进过程中,由于Power-V组合中的所有钻具都在旋转,这有利于岩屑的搬移,大大减少了形成岩屑床的机会,从而更好的清洁井眼。这对于大斜度井、大位移井、水平井意义很大。 ⑸由于Power-V钻具组合一直在旋转,特别有利于水平井、大斜度井和3000m以下深井中钻压的传递,可以使用更高的钻压和转盘转速,有利于提高机械钻速。使用泥浆马达在大井斜的长裸眼段滑动钻进时送钻特别困难,经常是上部的钻杆已经被压弯了,而钻压还没有传递到钻头上,还常常引发随钻震击器下击,损害钻头寿命。 3 Power-V 组成部分和工作原理简介 Power-V主要有两个组成部分,它们分别是上端的Control Unit

Petrochina Annual Meeting 8May 2012

斯伦贝谢金地伟业中石油服务汇报
柏险峰 斯伦贝谢金地伟业油田技术( 斯伦贝谢金地伟业油田技术(山东) 山东)公司

汇报内 容
斯伦贝谢金地伟业公司简介 斯伦贝谢金地伟业运行能力介绍 斯伦贝谢金地伟业在中石油的服务表现
2

公司概况
成立于2000年,初期主要业务为研发制造及销售 井眼轨迹测量仪器 公司位于山东省黄河三角洲地区的东营市开发区 目前主要业务
定向井,水平井钻井工程服务 o 随钻测量,随钻测井服务 o 研制,生产及销售MWD/LWD及电子单多点仪器
o
为国内最大规模民营专业定向井、水平井钻井、随钻测量及随钻测井 服务公司 2009年和斯伦贝谢合作成立合资公司,引入更先进的斯伦贝谢仪器装备、 研发技术,管理经验,提升公司仪器品牌 结合斯伦贝谢技术装备领先优势,为国内油田客户提供本地化服务
3

合资后的持续改进
成立合资公司后,斯伦贝谢金地伟业保留了原公司的基础架构和运作 模式,注重本地人才的培养,对自产设备的更新改造。增强本地化服 务的基础 斯伦贝谢引入先进的仪器装备、研发制造技术,管理经验,提升公司 品牌
注入主要管理人员 o 注入管理及作业流程 o 注入设备
o o
建立合资公司与斯伦贝谢的紧密联系
组织结构图 2012.1.1
4

资质与荣誉
公司的技术开发能力自 2005年开始被东营市及 山东省认可为高新技术 企业 公司实行现代化、规范 化的管理,已于2001年 顺利通过了 ISO9001:2000质量管 理体系认证及健康,安 全与环境体系认证 公司多次荣获客户颁发 良好业绩与表现证明 逐渐纳入斯伦贝谢运作 体系
5

斯伦贝谢公司基本专利布局及其发展

COMPANY STRATEGY 公司战略 专利权具有严格的地域性,要使一项新发明技术获得多国专利保护,就必须将该发明创造向多个国家申请专利。同一项发明创造在多个国家申请专利而产生的一组内容相同或基本相同的文件出版物,称为一个专利族。在每一专利族中,向第一国申请专利的文件出版物称为基本专利。目前,全球范围内约2/3的专利申请是申请人为了在多个国家和地区获得专利保护,就基本专利的技术内容向多个国家和地区进行专利申请。 全世界每年90%~95%的发明创造成果能在专利文献中查到,基本专利申请状况真实体现了企业技术发展重点和技术实力,是研究企业技术发展策略的重要手段。 在2007年《财富》世界500强企业排名中,斯伦贝谢(Schlumberger )公司在油气设备和服务领域利 润排名第一,营业收入排名第二。本文以德温特专利数据库(Derwent Innovations Index,DII)申请日截至2007年底的数据为依据,通过对申请日分布、申请人分布、德温特专利分布等展开分析,同时结合企业的市场表现、科研投入等信息,探讨斯伦贝谢公司基本专利策略,希望相关企业能够从中得到启示与借鉴。 一、斯伦贝谢公司 基本专利布局和特点分析 截至2007年底,斯伦贝谢公司拥有的基本专利数为3397件,其上游基本专利拥有量占世界石油上游基本专利的3.4%。检索结果显示,斯伦贝谢公司基本专利具有以下特点。 斯伦贝谢公司基本专利布局及其发展趋势 张运东 李春新 赵 星* (中国石油集团经济技术研究院) * 本文合作者还包括万勇、张丽。 摘 要 斯伦贝谢公司是全球最大的跨国石油技术服务公司,截至2007年底,该公司在石油上游主要技术领域拥有基本专利3397件,占全球石油上游基本专利的3.4%。其中在测井领域,该公司基本专 利拥有量占全球测井基本专利的16.8%;在美国和英国的分支机构申请的基本专利占公司基本专利的 65.5%。斯伦贝谢公司基本专利的11.9%是与其他机构或企业合作申请的,共同申请是该公司专利申请 的重要方式之一。斯伦贝谢公司的专利申请以市场为导向进行重点布局。欧洲和北美既是该公司的市场重点,也是专利申请的重点地区。1996年以来,斯伦贝谢公司对科研的投入不断增加,对科研成果的知识产权保护力度不断加强,其基本专利年均增长率达到21%,在钻井、采油、测井、物探领域的基本专利申请量几乎每年都上一个新台阶。其中,钻井领域技术研发重点为旋转钻井井控设备;测井领域研发重点为电测井、随钻测井和声波测井;采油领域的研发重点为完井/增产。 关键词 斯伦贝谢 基本专利 布局 技术研发 发展策略

国内随钻测井解释

1国内随钻测井解释现状及发展 在国内现有的技术条件下,开展大斜度井和水平井测井资料的可视化解释能在很大程度上提高测井解释识别地质目标的精度,通过实时解释、实时地质导向有助于提高钻井精度、降低钻井成本、及时发现油气层。 未来的勘探地质目标将更加复杂,以地质导向为核心的定向钻井技术的应用会越来越多。伴随新的随钻测井仪器的出现,应该有新的集成度高的配套解释评价软件,以充分挖掘新的随钻测井资料中包含的信息,使测井资料的应用从目前的单井和多井评价发展为油气藏综合解释评价。因此,定向钻井技术的发展及钻井自动化程度的提高必将使随钻测井技术的应用领域更加关泛。 2 提高薄油层钻遇率 提高薄油层水平井油层钻遇率必须加强方案研究及现场调整、实施两方面研究。方案设计包括对油层的构造、沉积相、储层物性、电性特征、油气显示特征综合研究。现场调整、实施包括对定向工具的认识及现场地质资料综合分析、重新调整轨迹后而实施的设计。 一口水平井的实施是一个系统工程,包括地质、钻井工程两方面的因素。地质设计及现场提出的方案要充分考虑工程的可行性。只有加强综合研究,根据油藏的变化情况及时调整轨迹,才能提高油层钻遇率。 目前,在石油、天然气等钻井勘探开发技术领域,水平井作业中,使用随钻测井工具、随钻测量工具和现场综合录井工具。随钻测量工具、随钻测井工具位于离钻头不远的地方,在钻机钻进的同时获取地层的各种资料和井眼轨迹资料,包括井斜、方位、自然伽马、深浅侧向电阻率等。现场综合录井工具获取钻时、岩屑、荧光、气测录井等,这样利用随钻测量工具、随钻测井工具测得的钻井参数、地层参数和现场综合录井资料推导出目的层实际海拔深度和钻头在目的层中实际位置,并及时调整钻头轨迹,使之顺着目的层沿层钻进,尽量提高砂岩钻遇率。

LandingtheBigone-打捞的艺术-斯伦贝谢

Landing the Big one - 打捞的艺术
司钻通常将遗留在井下的工具及设备称为“落鱼” 。实际上,这 些物体被错误地遗失于地表以下几千英尺。 自油田开发早期, 从井筒 移除这些物体对司钻而言一直是一个极大的挑战。
Enos Johnson
美国新墨西哥州 Hobbs
Jimmy Land Mark Lee
在油田上,落鱼指留在井筒并且阻 碍后续作业的任何物体。这个定义广义 上涵盖了各种钻井、测井和生产设备, 包括钻头、钻柱、测井工具、手动工具 或可能会丢失、损坏、卡住或遗落于井 眼中的任何其他废弃物。当废弃物或硬 件阻塞了后续作业的通路,这些落物必 须首先通过称为打捞的作业从井眼中移 除。 打捞这个词起源于早期的绳式顿钻 钻井时代,这种方式通过连接着弹簧钻 杆上的缆绳上下反复升降一个比较重的 钻头去凿开岩石,以钻出新井筒。当缆 绳断裂时,司钻在弹簧钻杆上挂一段新 缆绳,下入一个临时准备的大钩,试图 从井底收回断裂的缆绳和钻头。从事地 下废弃物回收工艺的专家被称为落鱼打 捞者。多年来,他们的工作已经备受追 捧,并且打捞工艺已经填补了油井服务 业的空白。 所有设备都可能会故障、遇卡、待 在一口井生命周期内的任何时间都可能 需要打捞作业。钻井阶段,大多数打捞 工作是意想不到的,通常是由机械故障 或钻柱遇卡造成的。卡钻也可能在电缆 测井、试井作业期间发生。随后,在完 包括射孔枪遇卡、过早坐封封隔器或砾 石充填筛管失败。井投产后,在修井、
弃井过程中, 打捞作业可能被规划为 修井、 更换或回收井下设备及管柱整 个过程的有机组成。 在许多油田, 修 井过程需要清洗或收回常年产油而 砂塞的油管, 因此在作业一开始就需 要实施打捞工作。 弃井过程中, 作业 公司们封堵油井前, 往往试图打捞井 下管柱、 泵和完井设备。 甚至打捞设 备也可能遇卡, 那么就需要改进原打 捞策略。 似乎油田上没有哪项作业能 免除打捞的可能性。 从上世纪 90 年代中期以来的统 计结果表明, 打捞作业占全球钻井成 本的 25%[1]。如今,采用其他更具成 本效益的选择常可避免或规避打捞。 例如, 现代钻井技术如旋转导向, 通 过影响用于决定是否要打捞, 是否购 买称之为落鱼的被卡设备, 是否侧钻 或是否弃井(J&A)的经济性评价, 实现了打捞策略的转变。 每次打捞情形均是独一无二的: 连续油管或电缆, 且每次情况都面临 不同的环境和问题, 落鱼回收的解决 方案必须与之相匹配。 在这个范围宽 泛的话题中, 本文主要讨论在钻井过 程中采用的打捞技术; 对这些技术进 续油管、 电缆测井及修井应用。 本文 概述了可能导致设备落井的常见过
美国德克萨斯州休斯顿
Robert Robertson
挪威斯塔万格
《油田新新术》 (2012/2013 冬季刊) :24 卷,第 4 期。 ?斯伦贝谢 2013 年版权所有。 在本文编写过程中得到以下人员的帮助,谨表谢 意:挪威斯塔万格的 Torodd Solheim 及美国休斯顿 的 Eric Wilshusen。 FPIT 为斯伦贝谢公司商标。
更换或需要从井筒回收。从钻井到弃井, 计划内或计划外、裸眼井或套管井、
井阶段,各种各样的问题可能阻碍作业, 行了各种改进, 以适用于套管井、 连
26
油田新技术

随钻测井技术

第8卷第4期断 块 油 气 田 FAUL T-BLOCK OIL&G AS FIFLD2001年7月随钻测井技术 布志虹1 任干能2 陈 乐2 (11中原油田分公司勘探事业部 21中原石油勘探局地质录井处) 摘 要 随钻测井是一种新型的测井技术,它能够在钻开地层的同时实时测量地层信息。 本文介绍了斯伦贝谢公司最新的随钻测井技术,并通过对其新技术的分析,提出了在重点探井文古2井进行随钻测井的建议及方法。 关键词 随钻测量 随钻测井 随钻测量工具 引言 在钻井过程中同时进行的测井称之为随钻测井。 随钻测井系统中随钻测井的井下仪器的安装与常规测井的仪器基本相同,所不同的是各仪器单元均安装在钻铤中,这些钻铤必须能够适应正常的泥浆循环。 用随钻测井系统进行随钻测井作业比电缆测井作业简单。首先在地面把各种随钻测井仪器刻度好,然后把他们对接起来进行整体检验,再把随钻测井仪接在钻杆的底部,最后接上底部钻具总成和钻头,至此,就可以进行钻井和随钻测井作业了。 1 数据记录方式Ξ 随钻测井有2种记录方式,一是地面记录,即将井下实时测得的数据信号通过钻井液脉冲传送到地面进行处理记录;二是井下存储,待起钻时将数据体起出。这里仅介绍地面记录的方法。 在随钻测量仪中设计有一个十分重要的系统即钻井液脉冲遥测系统,该系统的作用是把各传感器采集的信号实时传送到地面。目前在随钻测量系统中主要使用连续钻井液脉冲进行遥测传输,它在井下用一个旋转阀在钻井液柱中产生连续压力波,这个旋转阀称为解制器。在井下改变波的相位(即调频),并在地面检测这些相位变化,就可以把信号连续地传输到地面。 来自各传感器的模拟信号首先被转换成二进制数。每一个二进制数则由一个具有适当的二进制位数的字来表示,每个字所含有的二进制位数的多少(即字长的大小)视测量结果所需的精度而定,如果所传输的信号对精度的要求不高,可用一个字长较小的字表示这个二进制数;反之,则需用一个字长较大的字表示。目前随钻测量系统中采用的字长一般为8位,即每个字含有8个二进制位,这是一个最优化方案,既满足了各测量信号对精度的要求,又能在单位时间里传送较多的二进制数到地面。 这些字由一系列的“0”和“1”组成,由调制器把它调制成代表这些字的钻井液脉冲发送到地面。调制器调制信号是一帧一帧地调制的,每一帧由16个字组成,其中15个字长为8位的字用于传输测量信号,一个字长为10位的字是用来标识一帧的起始位置的帧同步字。 最后,压力信号由安装在立管中的压力传感器检测出,由调制器调制并传送到地面。这些压力信号被送到地面计算机系统,由计算机系统调解后被还原成各传感器的测量信号值,并与其所对应的时间和深度一起存入数据库。这些测量信号和及其处理结果就可以实时地显示在荧光屏上或打印在绘图纸上。 在钻井液遥测系统的数据传输率和字长一定的情况下,系统在单位时间内向地面传送的二进 22Ξ收稿日期 2001-02-15 第一作者简介 布志虹,女,1962年生,高级工程师, 1982年毕业于江汉石油学院测井专业,现在中原油田分公司勘探事业部从事勘探管理工作,地址(457001):河南省濮阳市,电话:(0393)4822513。

SLB随钻测井技术及应用

随钻测井(LWD)技术及应用 WZ11-1 N
宋菊 随钻测量技术 Apr-16-2009
1 Initials 4/18/2009

主要内容
随钻测井简介 VISION Scope 作业要点
环境随钻测井影响
2 Initials 4/18/2009

随钻测井仪器
振共磁核
电缆测井仪器
CMR
proVISION sonicVISION StethoScope TeleScope
随钻测井可以实现 的测井项目
侧向电阻率 电磁波传播电阻率
DSI
PeriScope seismicVISION
geoVISION Xceed/Vortex
3 Initials 4/18/2009
谱获俘、马格西、规常
EcoScope
试测力压层地 像成率阻电 率阻电向侧
波声
MDT
岩性密度 光电指数 中子孔隙度
PEx
元素俘获,自然伽马 声波 地层压力 俘获截面 核磁 地层界面 图像
AIT ECS
HRLS
随钻测井能够完成几乎全部测井项目
FMI
97%以上的随钻测井不再需要重复电缆测井 以上的随钻测井不再需要重复电缆测井

传达独立的地层评价
电缆测井 随钻测井
97%以上的随钻测井不需要重复 相同项目的电缆测井
4 Initials 4/18/2009

随钻测井的价值
决策
决策/ 决策/ 产量
储层增产地质导向
增 值 方 向
地层产能和渗透性
储层产能 储层评价
R Φ R Φ R Φ MR,
孔隙度, 饱和度, 岩性, 孔隙度 饱和度 岩性 流体
西格马
实 时 数 据 构造
随钻测井服务 Φ
地 元 地层元素 地 元 地 元
Rt Rxo
孔 密度 隙 光电 度 指数
ΦISO
向 导 质 质 质 质 地 地 地 地
流度 流 流 流
e e e Perm
V
地层信息
Sc op e
实时测井 EcoScope
GVR (RAB) ARC ADN
马 伽马 伽马 伽马能谱
pe co riS Pe e op Sc tho Ste
N ISIO ProV
Sonic VISION
Te le
测量工具
实时可视化
感应 电阻 率
侧向 电阻 率
试 试 试 测试 力 力 力 压力 层 层 层 地层
振 振 振 共振 核 核磁
测 测 测 测 探 探 探 探 界 界 界 界 边 层 地 地 地 地
西格马
中子
密度
波 声波 声波 声波
成像
遥 测
实时解释
LWD测量的项目 测量的项目
测量项目
5 Initials 4/18/2009

压裂泵阀箱 制造标准

前言 压裂车用于石油油井的压裂,陶粒砂、压裂液等介质通过液力端产生高压使地层瞬 间开裂,同时介质渗入裂缝中使原油溢出,液力端总成是压裂车上一重要易损件是石油 油井维护和提高油产量的重要设备。 本标准结合了国外(斯伦贝谢,哈里伯顿公司的技术规范,具体阐述了液力端相关 的加工技术,有利于该类产品的技术指导。 一、压裂泵阀箱锻件: 1.(斯伦贝谢;N14,规范号506562000、N22,规范号507643000) 哈里伯顿:4330V改型,规范号D0030175-C版,包括锻造要求,化学性能,机械性能等 要求。 2. 4330V改型钢阀箱锻件热处理:70.94191-D版。 3. 关键部位湿磁粉探伤:70.94154-G版。 4. 标准部位湿磁粉探伤检验:70.94158-J版。 5. 阀箱预应力:278.87558-O版。 二、加工流程: 1.粗铣面—超声波探伤--粗加工—热处理—抛丸清理—渗透探伤---精加工--- 磁粉探伤---试压---内腔喷丸处理---外形抛丸---(内腔淡化处理)--磁粉探伤—三坐 标检测—装配—油漆—包装。 三、液力端阀箱规格型号: 1. TG06---300泵-3.75”。TI06---300-4”、3ZB70-295----300-4.5”TH06---300-5”。 2. HT400- 3.375”. HT400-4”,HT400- 4.5”. 3. TWS600S-2.5”,TWS600S-3”,TWS600S-3.5”,TWS600S-4”TWS600S- 4.5”. 4. QWS1000S-3”,QWS1000S-3.5”. 5. TWS SPM2000-4.5”,TWS SPM2000-5”,QWS SPM2000-4”,QWS SPM2000-4.5”, QWS SPM2000-5”. 6. GD2250SGWS-4.5”GD2250SGWS-5”GD2500SGWS-4”GD2500SGWS-4.5”GD300-4.5” 7.5ZB2500-4”,5ZB2500-4.5”,5ZB2800-3.75”,5ZB2800-4”,5ZB2800-4.5”,5ZB2800-5” 8. OPI1800-4”,OPI1800-4.5”,OPI1800-5”. 9. RR1500-4”,RR1500-3.75”. 10. JMAC2250-4.5”Y型,FMC2700-4” 四、动力端: 300泵, 600S, 5ZB2500, 5ZB2800, 五、井下工具,井口保护器。内喷丸设备等。

斯伦贝谢的数字化转型经验

与贝克休斯强调独立的数字化业务板块和全产业链覆盖、侧重设备运营不同,斯伦贝谢的数字化转型,一是强调数据、管理系统和硬件设备的有效组合,以实现更高水平的技术一体化,重心在上游勘探开发生产的各个专业领域;二是强调数字技术赋能生产作业,提高作业效率、减少非生产时间、降低综合成本。 在组织架构方面,斯伦贝谢油藏描述、钻井、卡麦龙和生产四大业务集团负责搭建四个专业领域技术平台,将各业务集团内部的硬件设备、软件应用程序、专业领域知识和数字化技术组合在一起,向客户提供无缝衔接的一体化产品和服务。 斯伦贝谢软件一体化解决方案部门是数字化技术和软件开发的主体,成立35年来推出了大量专业应用程序、信息管理系统和IT设备,过去5年加速吸收数字化技术最新成果。2014年,斯伦贝谢在美国加州门罗公园建立斯伦贝谢软件技术创新中心;2016年,美国得州舒格兰工业互联网中心开始侧重云计算、大数据分析、工业物联网、自动化、网络安全领域的平台架构和基础设施架构研发;2017年,位于美国马萨诸塞州剑桥市的斯伦贝谢道尔研究所(Schlumberger-Doll Research Center)设立机器人部门,支持系统自动化业务。 2017年,斯伦贝谢将整个公司的技术研发与设备制造力量重组为勘探与开发、建井、非常规完井、生产管理四个专业领域技术平台(基本上与四大业务集团对应),首先完成各个专业领域内部的研发一体化,推动数字化技术与硬件设备制造、软件开发和专业领域知识一起为专业领域技术系统服务,实现从单个技术创新到技术系统创新的转变。与此同时,斯伦贝谢推出DELFI勘探开发认知环境(DELFI Cognitive E&P Environment),为四个专业领域技术平台提供数字化技术支持;逐步建立数字化硬件框架,为硬件设备提供一套清晰的设计准则,使硬件设备产品能够更好地发挥数字化技术优势。DELFI环境和数字化硬件框架作为统一职能管理平台的一部分,支持各“业务—地域”单元的生产经营。 01专注上游业务专业领域内部创新 斯伦贝谢数字化转型的特点是分步骤的小范围整合,具体表现在业务集团内部努力将彼此独立的数字化技术、硬件设备、软件应用程序和专业领域知识有机组合成一体化专业领域技术系统,即勘探与开发、建井、非常规完井、生产管理四个专业领域技术平台。斯伦贝谢认为精心设计的平台架构既能够促进各个产品和服务共同提高系统绩效,又能够利用全部数据推动系统的持续改进,还能够不断提高系统的自动化水平。

国外随钻测井发展历程

国外随钻测井发展历程 提高服务质量,降低服务成本是工程技术服务努力追求的目标,就此而言, 随钻测井相对于电缆测井具有多方面的优势。随钻测井资料是在泥浆滤液侵入地层之前或侵入很浅时测得的,更真实地反映原状地层的地质特征,可提高地层评价精度。随钻测井在钻井的同时完成测井作业,减少了井场钻机占用时间,从钻井-测井一体化服务的整体上节省成本。在某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险大以致不能进行作业时,随钻测井是唯一可用的测井技术。因此,随钻测井既提高了地层评价测井数据的质量,又减少了钻井在用时间,降低成本。 在过去的近20年里, 随钻测井技术快速发展, 目前已具备对应电缆测井的所有技术,包括比较完善的电、声、核测井系列,以及随钻核磁、随钻压力等等。同时, 全球随钻测井业务不断增长, 已成为油田工程技术服务的主体技术之一,其业务收入和工作量大幅增加。可以预期, 随着石油勘探开发向复杂储集层纵深发展, 随钻测井技术将更趋完善, 电缆测井市场份额将更多地被随钻测井所取代。 一、随钻测井发展历程 随钻测井技术的发展可追溯到1930年前后,当时电缆测井技术开始出现和发展。20世纪30年代早期,Dallas地球物理公司的J.C.Karaher用一段长4-5英尺的绝缘线将钻头与钻柱绝缘,在每根钻杆内嵌入绝缘棒,用一根导线在绝缘 棒中间穿过,通向地面,通过这根导线传输信号。 用这种方法得到了令人鼓舞的结果,测量到连续 的电阻率曲线。1938年采集到第一条LWD电阻率 曲线[1],这是用电连接方式传输数据的第一条 LWD曲线(图1)。 20世纪40年代和50年代仅有的几个专利文 献表明,许多发明家和研究组织继续致力于实时 的、可靠的随钻测量系统的研究,遗憾的是,LWD 数据传输技术的发展非常缓慢,技术上很难突破。 在测井技术发展开始的50年时间里,在石油工业

一井双泵的安装程序设计

一井双泵的安装程序设计 装备电泵分公司

目录 第一张-------------------------------------------------------- 2简述 第二章-------------------------------------------------------- 2 1.Y型换向阀--------------------------------------------------------- 2 2.用Y型换向阀并联的双泵机组效果图----------------------------------- 3 3. 导流罩------------------------------------------------------------- 5第三章 1.机组数据------------------------------------------------------------------------------------------------- 5 2. 双电潜泵安装程序设计-------------------------------------------------------------------------------- 7 第四章 1.电缆下放程序设计-------------------------------------------------------------- 9 2.电缆的保护---------------------------------------------------------------------------------------------- 9 3.小扁电缆保护器--------------------------------------------------------- 10 4.电泵机组手铐----------------------------------------------------------------------------------------- 10 第五章作业中的关键点 1.封隔器的电缆连接------------------------------------------------------------------------------------- 11 2.安装电缆保护罩---------------------------------------------------------------------------------------- 12 3.油管挂处的电缆连接--------------------------------------------------------------------------------- 12 4.单井作业时间长、作业难度大---------------------------------------------------------------------- 12 小结---------------------------------------------------------- 13

斯伦贝谢公司新一代测井仪器—Scanner家族

斯伦贝谢公司新一代测井仪器—Scanner家族斯伦贝谢公司新一代测井仪器Scanner家族于2006年正式投入油田服务,其家族成员包括MR Scanner、Rt Scanner- Scanner 、Sonic Scanner、 Flow Scanner、Isolation Scanner。各种仪器已在油田投入使用,取得了很好的效果,为研究疑难储层提供了重要手段。我们将该家族各仪器的性能逐一介绍如下:1.新型核磁共振测井仪MR Scanner 斯伦贝谢公司2006年新推出了Scanner家族的成员—核磁共振仪器MR Scanner,该仪器采用偏心梯度设计,具有多种探测深度、测量结果不受井眼条件的影响、能进行流体表征等特点。在低阻、低对比度储层的评价中具有较大优势。 MR Scanner 测井仪的主要优点包括:测量结果不受储层破坏带的影响;可以通过径向剖面来识别流体及环境的影响;可以应用到井眼不规则或者薄的泥饼储层评价中;降低了钻井时间。 MR Scanner仪器的主要特性 偏心,梯度设计; 多种探测深度,最深可达4 in, 而且测量结果不受井眼大小及形状的影响; 纵向分辨率为7.5 ft; 最大测速可达 3600 ft/h; 具有良好的油气表征能力; 可以得到不同探测深度下的横向弛豫时间(T2)、纵向弛豫时间(T1)以及扩散分布。 2.三分量感应测井仪Rt Scanner Rt Scanner仪器可以同时测量纵向和横向电阻率以及地层倾角和方位角的信息。它能够提供多种探测深度上的三维测井信息。通过这些信息增强了储层的含烃和含水饱和度解释模型的精度,使计算的结果更符合地层实际情况。尤其是在薄层,各向异性或断层中的计算结果将更加准确。 该仪器具有六个三维的芯片,每一个芯片上面都安装了三个定位线圈以测量不同深度地层的纵向电阻率Rt和横向电阻率Rh。在每两个线圈之间都安装了三个单轴接收器用以完全表征从三维芯片上传递到井眼中的信号。除了测量电阻率之外,Rt Scanner仪器还可以用来测量地层的倾角和方位角以进行构造解释。 除了能够提供高质量的电阻率和地层构造信息之外, Rt Scanner仪器还能

随钻声波测井技术综述

随钻声波测井技术综述 随钻测井的研究从20世纪30年代开始研究,在1978年研究出第一套具有商业价值的随钻测井仪器。在那以后,随钻测井在国外取得迅速发展并获得广泛应用,我国对随钻测井的重视达到了前所未有的程度。随钻声波测井也是如此。 1发展随钻测井的意义和随钻声波测井发展现状 随钻测井(LWD)是近年来迅速崛起的先进技术。它集钻井技术,测井技术和油藏描述等技术于一体,在钻井的同时完成测井作业,减少了钻机占用井场的时间,从钻井测井一体化中节省成本[1]。跟常规电缆测井相比,除了节省成本外,随钻测井有如下优势:(1)从测量信息上讲,随钻测井是在泥浆尚未侵入或者侵入不深时测量地层信息,泥饼和冲洗带尚未形成,所测得到的曲线更加准确,更能反映原始地层的真实信息,如声波时差等。(2)从对钻井的指导作用来讲,随钻测井可以提前检测到超压地层,以指导钻井泥浆的配制,提高钻井安全系数。它也可以根据测井信息,分析出有利的含油气方向,确定钻井方向,增强地质导向功能。(3)从适应环境上讲,在大斜度井,水平井或特殊地质环境(如膨胀粘土和高压地层),电缆测井困难或者风险大以致不能进行作业时,随钻测井可以取而代之。目前在海上,几乎所有钻井活动都采用随钻技术[2]。 正因为这些优点,作为随钻测井的重要组成部分的随钻声波测井近年来也获得了巨大的发展。总体而言,国外无论在随钻声波测井的基础理论研究方面还是在仪器研发方面都比较成熟,而国内近年来也对随钻声波测井的相关难题进行了大量的工作。 具体而言,从上世纪90年代起,贝克休斯、哈里伯顿、斯伦贝谢三大公司就率先开始了随钻声波测井的研究,并逐渐占领随钻测井的国际市场份额。APX随钻声波测井仪,CLSS随钻声波测井仪,sonicVISION随钻声波测井仪的相继出现,更加巩固了他们的垄断地位。在国内,鞠晓东,闫向宏[等人在随钻测井数据降噪[3],存储[4],压缩[5],传输特性[6]和电源设计[7]等方面做出了大量的工作。车小花[7],苏远大[8]等人对隔声体设计的隔声效果和机械强度分析进行了数值模拟和实验。此外,唐小明,乔文孝,王海澜等人在随钻声波测井基础理论研究方面做了许多有益的探索。 2随钻声波测井仪工作原理和技术性能 目前国际上主要的随钻声波测井仪有贝克休斯的APX,哈里伯顿的CLSS和斯伦贝谢的sonicVISION。以贝克休斯的APX测井仪为例,介绍一下仪器工作原理和结构。 APX测井仪的结构如下图1所示。从右到左由上部短节,声源电子线路部分,全向声源,声波隔离器,接收器阵列,接收器电子线路部分,下部短节等组成,全长9.82m (32.3ft),其中声波测量点到底部短节的距离为 2.83m(9.3ft),最短源距为 3.26m (10.7ft)。 其工作原理为:位于钻铤上部的声源发射器以最佳频率向井眼周围地层发射声能脉冲,在沿井壁及周围地层向下传播的过程中被阵列接收器接收到首播信号,接收信号后,系统首先用先进的嵌入式技术,将接收到的声波模拟信号转换成数字信号,并采用有限元等方法将数字信号转换为声波时差(data)值。最后将原始声波波形数据和预处理的声波波形数据存储在精心设计的高速存储器内或者以实时方式通过钻井液脉冲遥测技术传输到地面[9]。

斯伦贝谢POWER-V

【机械仪表】 斯伦贝谢旋转导向系统 Power-V 简介 1 Power-V 简介和应用范围 Power-V是斯伦贝谢旋转导向系统PowerDrive家族中的一员。所谓旋转导向系统,是指让钻柱在旋转钻进过程中实现过去只有传统泥浆马达才能实现的准确增斜、稳斜、降斜或者纠方位功能,但相对于泥浆马达,PowerDrive有非常明显的优点。 旋转导向系统广泛用于使用泥浆马达进行滑动钻进时比较困难的深井、大斜度井、大位移井、水平井、分枝井(包括鱼刺井),以及易发生粘卡的情况。 2 旋转导向系统PowerDrive的优点 ⑴反映和降低了所钻井段的真正狗腿度,使井眼更加平滑。用泥浆马达打30m井段,滑动钻进15m,转动钻进15m,井斜角增加4°,得到平均狗腿度4°/30m。实际上,转钻15m井斜角几乎没有变化,这15m的实际狗腿度是零;而4°的井斜角变化是由滑钻15m产生的,这15m的实际狗腿度是8°/30m。而用Power-V在同一设置下打出的每米都是同样均匀和平滑的,减少了井眼轨迹的不均匀度,从而减少了在起下钻和钻进过程中钻具实际所受的拉力和扭矩,减少了以后下套管和起下完井管串的难度。 ⑵使用Power-V钻出的井径很规则。使用传统泥浆马达在滑动井段的井径扩大很多,而转动井段的井径基本不扩大。这种井径的忽大忽小是井下事故的隐患,也不利于固井时水泥量的计算。 ⑶由于Power-V钻具组合中的所有部分都在不停的旋转,大大降低了卡钻的机会。使用传统泥浆马达在滑动钻进时除钻头外,其它钻具始终贴在下井壁上,容易造成卡钻。 ⑷在钻进过程中,由于Power-V组合中的所有钻具都在旋转,这有利于岩屑的搬移,大大减少了形成岩屑床的机会,从而更好的清洁井眼。这对于大斜度井、大位移井、水平井意义很大。 ⑸由于Power-V钻具组合一直在旋转,特别有利于水平井、大斜度井和3000m以下深井中钻压的传递,可以使用更高的钻压和转盘转速,有利于提高机械钻速。使用泥浆马达在大井斜的长裸眼段滑动钻进时送钻特别困难,经常是上部的钻杆已经被压弯了,而钻压还没有传递到钻头上,还常常引发随钻震击器下击,损害钻头寿命。 3 Power-V 组成部分和工作原理简介 Power-V主要有两个组成部分,它们分别是上端的Control Unit (电子控制部分,简称CU) 和下端的Bias Unit (机械部分,简称BU)。在两者中间还有一个辅助部分Extension Sub(加长短接,简称ES) 3.1 电子控制部分CU CU是Power-V的指挥中枢,它内部有泥浆驱动的发电机,还有陀螺、钻柱转速传感器、流量变化传感器、震动传感器、温度传感器以及电池控制的时钟等等。它可以独立于外面的钻铤而旋转或者静止不转。 工作原理:开泵后,发电机发电,陀螺测量到井底的井斜角和方位角(即高边),然后按照地面工程师的要求把其内部的电子控制部分固定在某一个方位上(即高边工具面角),从而实现无论钻柱如何旋转,CU内部的控制轴始终对准在需要的方位上,这个方位加上一个校对值后就是地面

贝克休斯随钻测井技术介绍

贝克休斯随钻测井技术介绍
贝克休斯随钻测井 技术介绍
1
随钻测量(MWD)
旋转倾斜角
– 旋转钻井过程中的井眼倾斜角
旋转方位角
– 旋转钻井过程中的井眼方位角
方向原始数据
– 用于对钻柱轴向磁场干扰进行修正
振动粘滑动态
– 轴向振动 – 横向振动 – 粘滑振动
2
3
2008年5月28日
1

贝克休斯随钻测井技术介绍
高速数据传输 (aXcelerate)
原始信号的形状清晰且容易 确定 泵噪音和反射作用导致到达 地表传感器的信号失真 对泵噪音的消除使得对井下 脉冲发生器信号的识别成为 可能 动态优先级提升(DPP)算 法可消除反射作用和表面噪 音 对信号进行最终过滤,并采 用自适应相关器恢复井下脉 冲发生器的原始信号
4
高速数据传输 (aXcelerate)
3比特/秒的实时数据 密度具有足够分辨率 能确保图像重要特征 的识别 增加至6比特/秒的数 据密度可产生清晰的 图像,可确保特征识 别以及实时倾角选择
5
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Gamma 伽马射线 Ray
6
2008年5月28日
2

贝克休斯随钻测井技术介绍
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率 Resistivity
MPRTEQ
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
7
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Density & 密度与孔 Porosity 隙度
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
8
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
9
2008年5月28日
3

测井新技术进展综述

测井技术作为认识和识别油气层的重要手段,是石油十大学科之一。现代测井是当代石油工业中技术含量最多的产业部门之一,测井学是测井学科的理论基础,发展测井的前沿技术必须要有测井学科作指导。 二十一世纪,测井技术要在石油与天然气工业的三个领域寻求发展和提供服务:开发测井技术、海洋测井技术和天然气测井技术。目前,测井技术已经取得了“三个突破、两个进展”,测井技术的三个突破是:成像测井技术、核磁测井技术、随钻测井技术。测井技术的两个进展是:组件式地层动态测试器技术、测井解释工作站技术。“三个突破、两个进展”代表了目前世界测井技术的发展方向。为了赶超世界先进水平,我国也要开展“三个突破、两个进展” 的研究。 一、对测井技术的需求 目前我国油气资源发展对测井关键技术的需求主要有如下三个方面:复杂地质条件的需求、油气开采的需求、工程上的需求。 1)复杂地质条件的需求我国石油储量近90%来自陆相沉积为主的砂岩油藏,天然气储量大部分来自非砂岩气藏,地质条件十分复杂。油田总体规模小,储层条件差,类型多,岩性复杂,储层非均质性严重,物性变化大,薄层、薄互层及低孔低渗储层普遍存在。这些迫切需要深探测、高分辩率的测井仪器和方法,开发有针对性、适应性强的配套测井技术。 2)油气开采的需求目前国内注水开发的储量已占可采储量的90%以上,受注水影响的产量已占总产量的80%,综合含水85%以上。油田经多年注水后,地下油气层岩性、物性、含油(水)性、电声特性等都发生了较大的变化,识别水淹层、确定剩余油饱和度及其分布、多相流监测、计算剩余油(气)层产量等方面的要求十分迫切。 3)工程上的需求钻井地质导向、地层压力预测、地应力分析、固井质量检测、套管损坏检测、酸化压裂等增产激励措施效果检测等都需要新的测量方法。 二、测井技术现状 我国国内测井技术发展措施及道路主要有两条:一方面走引进、改造和仿制的路子;另一方面进行自主研究和开发。下面分别总结一下我国测井技术各个部分的现状: 1)勘探井测井技术现状测井装备以MAXIS-500、ECLIPS-5700及EXCELL-2000系统为主;常规探井测井以高度集成化的组合测井平台为主;数据采集主要以国产数控测井装备为主;测井数据的应用从油气勘探发展到油气藏综合描述。 2)套管井测井技术现状目前,套管和油管内所使用的测井方法主要有:微差井温、噪声测井、放射性示踪,连续转子流量计、集流式和水平转子流量计,流体识别、流体采样,井径测量、电磁测井、声测井径和套管电位,井眼声波电视、套管接箍、脉冲回声水泥结胶、径向微差井温、脉冲中子俘获、补偿中子,氯测井,伽马射线、自然伽马能谱、次生伽马能谱、声波、地层测试器等测井方法。测井结果的准确性取决于测井工艺水平、仪器的质量和科技人员对客观影响因素的校正。测井数据的应用发展到生产动态监测和工程问题整体描述与解决。 3)生产测井资料解释现状为了获得油藏描述和油藏动态监测准确的资料,许多公司都把生产测井资料和其它科学技术资料综合起来。不仅测得流体的流动剖面.而且要搞清流体流入特征,因此,生产测井资料将成为油藏描述和油藏动态监测最重要的基础。生产测井技术中一项最新的发展是产能测井,它建立了油藏分析与生产测井资料的关系。产能测井表明,生产流动剖面是评价完井效果的重要手段。产能测井曲线是裸眼井测井资料、地层压力数据、产液参数资料、射孔方案和井下套管设计方案的综合解释结果,其根本目的就是利用油层参数预测井眼流动剖面。生产测井流量剖面成为整个油层评价和动态监测的一个重要方法。 4)随钻测量及其地层评价的进展随钻测井(LWD)是随大斜度井、水平井以及海上钻井而发展起来的,在短短的十几年时间里,已成为日趋成熟的技术了。如今随钻测井已经拥有了

相关文档
相关文档 最新文档