文档库 最新最全的文档下载
当前位置:文档库 › FLOTHERM教程

FLOTHERM教程

练习题 7: 响应面和优化

本练习通过指导用户完成如下任务,细化电子机箱模型:

1.定义开孔位置和开孔率(free area ratio)的研究参数

2.创建响应面,以确定最佳外形和理解设计的敏感性

Tutorial 7 – Response Surfaces and Optimization

本练习将研究改变进口通风位置和开孔率下热

性能的敏感性,为了非热设计方面的原因,我

们假定需要进一步减小开孔面积。

同时也注意到,模型采用了简化的主板和电源

模块,以加速求解,使求解时间控制在培训可

接受的范围内,并且,不影响我们研究详细

模型的参数和优化。

如果Tutorial 6没有被导入,先要导入

( Load),并另存为 Tutorial 7.

输入标题(Title)为“Optimize Venting”

Tutorial 7 – Response Surfaces and Optimization

我们首先要做的是将进风口的高度改为 50

mm,以减小空气流入的面积

首先,调整机箱(Chassis)的High X壁面上

孔(Hole)的高度为50 mm.

在项目管理(Project Manager)窗口中右击

HighX壁面上的孔(Hole),进入

Construction 菜单,将尺寸中238 mm 改为50

mm,点击OK 退出

在出现的网格改变信息窗口中点击‘No’

Tutorial 7 – Response Surfaces and Optimization

接着,改变多孔板(Perforated Plate)尺寸,

使之和孔的大小一致

右击 ‘High X Perf’,进入Construction 菜单

改变尺寸238 mm 为 50 mm.

我们还需要改变定义孔的方式,使后面的练习

时可以简单地设定参数的变化

In the在右图的对话框中,将覆盖

(Coverage)设置从间距(Pitch)设定改为开

孔率(Free Area Ratio)

设置开孔率(Free Area Ratio )为 0.95.

现在,我们在优化模块(Command Center)中

可以定义一个变量(the Free Area Ratio) ,不需

要定义两个变量(X-Pitch and Y-Pitch).

Tutorial 7 – Response Surfaces and Optimization

在绘图板( Drawing Board)窗口中, 检查一下

确保多孔板(Perforated Plate)和开孔

(Hole)在相同的位置。如果位置不对,使

用对齐( Align )工具使他们对齐

接着,我们将主板和电源模块更换为之前的简

化模型

首先,在项目管理(Project Manager)窗口

中,选择失效(de-activated)的‘PSU’组件,

点击将其激活(activate)

Tutorial 7 – Response Surfaces and Optimization

接着,打开库管理( Library Manager ),找到先前创建的Intro_Library 文件夹

将 ‘Electronics’ 立方体拖到根组件(Root Assembly )下

模型中现在是主板和电源模块的简化模型。将详细模型移到库管理(Library Manager )中。

将 ‘Electronics’ 组件拖到库管理(Library Manager )的‘Intro_Library’文件夹中

将‘power_supply_asm’ 组件拖到库管理

(Library Manager )的‘Intro_Library’文件夹中

按住CTRL 键,选择 ‘Electronics’和 ‘power_supply_asm’组件,点击删除 (Delete )键

按上面步骤操作后,项目管理(Project Manager )窗口的显示应该如右图所示

关闭库管理(Library Manager ),进行下一步骤的设置

Tutorial 7 – Response Surfaces and Optimization

点击项目管理(Project Manager )窗口中的图

标,打开优化模块(Command Center )窗口

在优化模块(Command Center )窗口下方有五个按钮,默认输入变量(Input Variables )是激活状态

输入变量(Input Variables )项目用来定义可以变化的参数

需要设置的第一个输入变量(Input Variable )是机箱上进风口的位置( location )

输入变量(Input Variable )项中,展开根组件(Root Assembly )节点,在树中找到‘Chassis’

展开 ‘Chassis’ 节点,再展开 ‘Wall (High X)’ 节点

展开‘Hole’ 节点,再展开‘Absolute Location’ 节点

双击‘Y Location’,表示这个参数作为输入变量( Input Variable )

Tutorial 7 – Response Surfaces and Optimization

这个输入变量选中后,观察右侧屏幕中的选项

选择设计参数(Design Parameter )选项,输入:

最小值(Minimum Value )= 6 mm 最大值(Maximum Value )= 194 mm

点击‘Apply Variation’.

这样会给优化模块定义一个参数的变化范围,以从中找出最优解。

备注: 在基础模型中,这个值是6mm. 该值在表中显示为‘Scenario 0’

列出的当前值(‘Current Values’ )在开始优化时才会被改变

现一个信息窗口:

这表示多孔板和孔的原点开始时是在不同位

Tutorial 7 – Response Surfaces and Optimization

第三个也是最后一个变量是多孔板

(Perforated Plate )的开孔率(free area ratio )

在参数数据‘High-X Perf’的文件夹中,双击 ‘Perf Plate Free Area Ratio’.

选择设计参数(Design Parameter ),输入: Minimum Value = 0.25 Maximum Value = 0.95

点击‘Apply Variation’.

回顾一下,现在我们有两个独立的变量(孔的位置和X High Perf 多孔板的开孔率). 我们也定义了多孔板X High Perf 的位置始终等于孔的位置。

Tutorial 7 – Response Surfaces and Optimization 当然,我们可以定义其他感兴趣的参数

使用之前的步骤, 激活下面参数作为输出变量

( Output Variables) (但是,不要将他们包含

在代价函数(Cost Function)中).

?风扇静压(Static Pressure on the Fan)

?电源的温度监控点(The Temperature of

the ‘PSU Heat’ Monitor Point)

Tutorial 7 – Response Surfaces and Optimization

点击下面相应的按钮,进入到‘Scenario Table’

每一列代表一个FloTHERM 方案,目前只有一个。

上面蓝色部分是输入变量,以及各个方案下的数值

下面浅褐色部分是输出变量,多出的一行用于显示代价函数(Cost Function )值.

我们用实验设计(Design of Experiments )方法,在设计空间中形成两个独立变量不同的组合

在顶层菜单中使用Edit/Design Experiments

改变实验设计数量(Number of Experiments to Design )为 15 ,点击‘Design’,生成不同的方案。 输入15可以增加求解面的覆盖率。

Tutorial 7 – Response Surfaces and Optimization

现在方案列表(Scenario Table )中有16 列, 每一列是多孔板位置和开孔率(free area ratio )的不同组合

点击 图标 (在优化模块窗口(Command Center )中),开始计算所有定义的方案

一旦所有模型都初始化完成 (这需要花费一段时间,直到所有‘Pending Initialization’都变成了 ‘Queueing’) ,点击图形输入(Graphical Input )按钮,再点击不同方案( various

scenarios ),观察多孔板的变化。提示:提前在项目管理窗口中选中多孔板,可以看到红色显示的多孔板

备注 that 你可以在网络的其他机器上安装特别的volunteering 软件,优化模块(Command Center )可以自动探测到这些机器,并分配不同方案让其计算

*需要额外的求解权限(Additional solver licenses required )*.

Tutorial 7 – Response Surfaces and Optimization

当所有模拟都完成后,点击优化(Optimize)

图标

对话框将显示输入参数的信息汇总

我们希望优化模块(Command Center)生成预

估的之前定义过的所有输出变量(Output

Variables)的响应面(response surfaces),该

响应面是输入变量的函数( Input

Variables)。完成后,优化模块(Command

Center)马上就会用这些响应面预测可以减小

代价函数值(Cost Function)的孔位置和开孔

率的最优组合

为了实现这个功能,设置优化类型

(Optimization Type)为‘Response Surface

From All’,点击优化(Optimize)按钮

Tutorial 7 – Response Surfaces and Optimization

完成后,在方案列表(Scenario Table )的最右侧就会出现新的列 。如果屏幕上看不见,移动下方的滑条。

新的列显示了响应面优化(RSO Optimum )方案,这会显示基于前面响应面的最优解。

该列同样可以显示所有输出变量(Output Variables )和代价函数( Cost Function )的预估值.

预估优化结果同样重要的是可以看出对输入变量(Input Variables )变化的敏感性。下面,我们用响应面的图形处理来研究这个问题。 进入Chart\3D RSO Results Viewer.

默认显示代价函数(Cost Function )的响应面 , 用左键选择视图。视觉上可以明显看到代价函数的最小值在哪儿,同样重要的是可以看到,如果我们远离最优的孔位置时,代价函数会快速上升,不仅如此,当开孔率大于0.7时,响应面是比较平的。这些信息对于热设计者是非常有用的

Tutorial 7 – Response Surfaces and Optimization

现在,我们看看其他输出变量(Output Variables )的响应面

首先,关闭代价函数(Cost Function )图(点击右上角的 ‘X’).

然后, 进入Window\Responses ,激活 ‘PSU Heat : Temperature’视图

旋转视图,观察并得出结论:孔位置的最大值处是电源(PSU )热性能最好的

接着,进入Window\Responses ,激活

‘109P0812A202 (80x80x32) : Static Pressure’ 视图.

使用Window\Tile Auto Layout 在屏幕上同时显示两个视图

哪个输入变量(Input Variable )对风扇静压(Fan Static Pressure )影响最大呢?

完成后,在响应面视图中使用File\Close 关闭窗口

Tutorial 7 – Response Surfaces and Optimization

视窗左侧有两个滑动条,上面一个控制孔位置,但此例子中这个是多余的,因为 右侧所有视图均以孔位置(Hole Location )作为 X 轴。第二个滑动条控制‘High X Perf’ 上开孔率这个输入变量( Input Variable ). (如果您看不全所有开孔率数据,使用鼠标调整一下窗口大小).

首先,使用 Window\Auto Tile Layout 按序排列各视图

然后,使用‘High X Perf’ 开孔率滑动条自动改变开孔率,观察左侧视图的变化。您也可以直接输入希望的数值 ,而不用滑动条

使用这些视图,寻找如下问题的答案:

? 电子立方体目标表面温度低于80 C 的情况下,如果开孔率是0.6,孔的位置多少可以接受?

? 如果开孔率是0.5呢?

? 如果开孔率是0.4,电源(PSU )温度最糟的是哪个方案?

? 如果我们设计孔位置是50 mm ,开孔率是 0.4, 我们得到的风扇静压是多少?电源温度呢?电子立方体表面温度呢?

Tutorial 7 – Response Surfaces and Optimization

下面, 我们使用优化模块(Command Center )定义一个新的变量,使之用于下一个练习题

点击最右侧列的顶部,选择该列,然后右击列的顶部选择 Insert After.

在新的列中,双击孔位置(Hole Location )数值,输入50 mm. 按Enter 键应用

在新的列中,双击‘High X Perf’的开孔率,输入0.4 ,按Enter 键应用

点击新列的顶部 选择该列,然后右击选择Save As.

输入‘Tutorial 8’作为新项目名称,点击OK 保

我们可以保存各个方案作为 FloTHERM 模型,用于模型的修改或者我们感兴趣的想进行进一步的后处理

关闭优化模块(Command Center )窗口,保存FloTHERM 项目

END TUTORIAL 7

flotherm散热学习中文教程

Tutorial 1 FLOTHERM V6 Introductory Training Course 练习题 1: FLOTHERM软件的基本操作 本练习通过创建一个非常简单的算例让用户对Flotherm软件的操作有一个基本的了解。本练习逐步指导用户完成安放在钢板的热模块的创建,具体步骤如下 1.创建和保存一个新的项目 2.创建实体 3.定义网格、求解 4.分析结果 Page 1 FLOTHERM/China/1/06 V6 Issue 1.0 Tutorial 1 FLOTHERM V6 Introductory Training Course 1: FLOTHERM软件的基本操作练习题

]/ Flomerics/FLOTHERM 6.1/ FLOTHERM 6.1[从开始/程序 FLOTHERM或用桌面快捷键启动以下简Project Manager( 出现彩斑屏幕,接着项目管理窗口会自动打开。PM称) Page 2 FLOTHERM/China/1/06 V6 Issue 1.0 Tutorial 1 FLOTHERM V6 Introductory Training Course 练习题1: FLOTHERM软件的基本操作 ,下拉菜'(项目)单击项目管理窗口(PM)的顶部菜单条'Project另存为).单, 选择‘Save As'( 中键入右边)Name'(文本‘Project (项目名称)在顶部的数据框输入框中键 入)(‘Title'标题“项目名称Tutorial 1”,另外在”“First Flotherm Tutorial

打开输入框让用户输入项目相关注)(备注,点击按钮‘Notes'释,如:在下面 我们可以用改变的日志区分建模过程,现日期) 把当前的日期加入文本区。'在,只要点击按钮 ‘Date( ,右键点击,在下拉菜单中选) ) (系统(System移动鼠标到‘' )。(择‘Location'安置 中‘我们需要设定模型所包含的区域尺寸,保持Position'(位置) 改为:尺寸'‘各项为零,另外将Size()X = 0.07 m Y = 0.40 m Z = 0.30 m Page 3 FLOTHERM/China/1/06 V6 Issue 1.0 Tutorial 1 FLOTHERM V6 Introductory Training Course 软件的基本操作练习题1: FLOTHERM 项目管理窗口,然后点击'(根组件)root 单击选中‘assembly 立方(Palette),然后点击(PM)顶部新部件图标() 打开调色板

flotherm散热学习(中文教程)

练习题 1: FLOTHERM软件的基本操作 本练习通过创建一个非常简单的算例让用户对Flotherm软件的操作有一个基本的了解。本练习逐步指导用户完成安放在钢板的热模块的创建,具体步骤如下 1.创建和保存一个新的项目 2.创建实体 3.定义网格、求解 4.分析结果

练习题 1: FLOTHERM软件的基本操作从[开始/程序/ Flomerics/FLOTHERM 6.1/ FLOTHERM 6.1] 启动FLOTHERM或用桌面快捷键 出现彩斑屏幕,接着项目管理窗口(Project Manager以下简 称PM)会自动打开。

练习题 1: FLOTHERM软件的基本操作 单击项目管理窗口(PM)的顶部菜单条’Project’(项目),下拉菜 单,选择‘Save As’(另存为). 在顶部的数据框(文本‘Project Name’(项目名称)右边)中键入 项目名称“Tutorial 1”,另外在‘Title’(标题)输入框中键入 “First Flotherm Tutorial” 点击按钮‘Notes’(备注),打开输入框让用户输入项目相关注 释,如:在下面我们可以用改变的日志区分建模过程,现 在,只要点击按钮‘Date’(日期) 把当前的日期加入文本区。 移动鼠标到‘System’(系统) () ,右键点击,在下拉菜单中选 择‘Location’(安置)。 我们需要设定模型所包含的区域尺寸,保持‘Position’(位置)中 各项为零,另外将‘Size’(尺寸)改为: X = 0.07 m Y = 0.40 m Z = 0.30 m

练习题 1: FLOTHERM软件的基本操作 单击选中‘root assembly’(根组件),然后点击项目管理窗口 (PM)顶部新部件图标() 打开调色板(Palette),然后点击立方 体(cuboid)图标()。 移动鼠标到项目管理窗口(PM)树状结构中新创建的立方体 (cuboid),右键点击,在下拉菜单中选择‘Location’(安置)。 在‘Name’(名称)输入框中键入“Large Plate”。

FLOTHERM教程

练习题 7: 响应面和优化 本练习通过指导用户完成如下任务,细化电子机箱模型: 1.定义开孔位置和开孔率(free area ratio)的研究参数 2.创建响应面,以确定最佳外形和理解设计的敏感性 Tutorial 7 – Response Surfaces and Optimization 本练习将研究改变进口通风位置和开孔率下热 性能的敏感性,为了非热设计方面的原因,我 们假定需要进一步减小开孔面积。 同时也注意到,模型采用了简化的主板和电源 模块,以加速求解,使求解时间控制在培训可 接受的范围内,并且,不影响我们研究详细 模型的参数和优化。 如果Tutorial 6没有被导入,先要导入 ( Load),并另存为 Tutorial 7. 输入标题(Title)为“Optimize Venting”

Tutorial 7 – Response Surfaces and Optimization 我们首先要做的是将进风口的高度改为 50 mm,以减小空气流入的面积 首先,调整机箱(Chassis)的High X壁面上 孔(Hole)的高度为50 mm. 在项目管理(Project Manager)窗口中右击 HighX壁面上的孔(Hole),进入 Construction 菜单,将尺寸中238 mm 改为50 mm,点击OK 退出 在出现的网格改变信息窗口中点击‘No’

Tutorial 7 – Response Surfaces and Optimization 接着,改变多孔板(Perforated Plate)尺寸, 使之和孔的大小一致 右击 ‘High X Perf’,进入Construction 菜单 改变尺寸238 mm 为 50 mm. 我们还需要改变定义孔的方式,使后面的练习 时可以简单地设定参数的变化 In the在右图的对话框中,将覆盖 (Coverage)设置从间距(Pitch)设定改为开 孔率(Free Area Ratio) 设置开孔率(Free Area Ratio )为 0.95. 现在,我们在优化模块(Command Center)中 可以定义一个变量(the Free Area Ratio) ,不需 要定义两个变量(X-Pitch and Y-Pitch).

相关文档