文档库 最新最全的文档下载
当前位置:文档库 › 有载调压抽头不匹配的变压器并联运行分析

有载调压抽头不匹配的变压器并联运行分析

有载调压抽头不匹配的变压器并联运行分析
有载调压抽头不匹配的变压器并联运行分析

有载调压抽头不匹配的变压器并联运行分析

简介:列举出工程建设中遇到的因有载调压抽头不匹配导致的变压器并联运行条件不满足的实例,对此进行有关环流和负荷失配率计算分析,比照有关导则的标准和条文,判断得出该工程满足并联运行条件,得出结论:对类似问题均需具体计算分析后再作出判断。

关键字:变压器、调压抽头、并联运行、环流

一、问题提出及背景

变压器并联运行可更灵活地满足用户的负荷需求及提高供电可靠性,变压器安装有载调压抽头以后可以方便进行电压调节,提高运行电压质量。因此大多数220kV变电站选用带有载调压抽头的主变压器,并按可在220kV,110kV两侧并联运行的条件设计。但由于各种原因,在工程建设中会出现不能完全满足有关导则要求的并联运行条件的情况,220kV阳江变电站扩建#3主变过程中便遇调压抽头不匹配而导致的类似的问题。现介绍如下:

220kV阳江变电站现运行两台主变(120+150MVA),主变额定电压比:220±8×1.25%/121/11kV,接线形式:Yn/yn0/d11,#1主变阻抗电压为:Uk1-2=14.8%,Uk1-3=24%,Uk2-3=8%;#2主变阻抗电压为:Uk1-2=14.1%,Uk1-3=24%,

Uk2-3=7.5%。在扩建#3主变工程中,业主选用的主变参数如下:容量180MVA,接线形式:Yn/yn0/d11,额定电压比:220±106×1.5%/121/11kV,阻抗电压Uk1-2=14%,Uk1-3=50%,Uk2-3=35%。可见,该主变调压抽头及阻抗电压与220kV阳江站既有#1、#2主变不匹配。

根据GB/T17468-1998《电力变压器选用导则》,变压器并联运行条件如下:a)相位关系要相同,即时钟序数要相同;b)电压和变压比要相同,允许偏差也相同(尽量满足电压比在允许偏差范围内),调压范围与每级电压相同;c)短路阻抗相同,尽量控制在允许偏差范围±10%以内,还应注意极限正分接位置短路阻抗与极限负分接位置短路阻抗要分别相同;d)容量比在0.5-2之间。

可见,220kV阳江变电站三台主变不满足上述b)点的主变并联运行条件。

该站的三台主变能否并联运行,需作进一步的计算分析。

二、环流计算及分析

1、计算条件

1)因#1、#3主变容量差最大,分别以#1、#3主变并联运行和三台主变并联运行为例进行环流计算;

2)不考虑抽头改变对短路电抗影响;

3)电压无功调节装置能自动调整主变的变比差最小;

4)忽略绕组电阻分量;

5)归算到220kV侧环流;

2、#1、#3主变并联运行的环流计算:

主变阻抗U k1-2折算为220kV侧的有名值

1)#1主变

X k1=U k1-2×U 2

/S1=0.148×220

2

÷120=59.69Ω

2)#2主变

X k2=U k1-2×U 2

/S2=0.141×220

2

÷150=45.50Ω

3)#3主变

X k3=U k1-2×U 2

/S3=0.14×220

2

÷180=37.64Ω

#1、#2、#3主变220kV侧的额定电流值:

I N3=180×103

÷√3÷220=472A

I N2=150×103

÷√3÷220=394A

I N1=120×103

÷√3÷220=315A

#1、#3主变并联运行环流计算电路图如下:

图1:#1、#3主变并联运行环流计算电路图假设220kV空载,121kV侧加额定线电压121kV,#1、#3主变220kV侧相电压为:

U E1=220×(1+△K1)÷√3kV

U E3=220×(1+△K3)÷√3kV

则环流:

△I=(U E1-U E3)÷(X k1+X k3)=220×103

×(△K1-△K3)

÷√3÷(X k1+X k3)A

环流参考正向为从#1主变通过220kV母线流入#3主变。

抽头位置合理匹配的情况下,按上述公式计算的环流值如下表:

表一:#1、#3主变并联运行环流计算结果表

按上表主变调压抽头位置匹配,最大环流可达到13.05A,考虑到主变调压抽头位于最低档的情况很少,可以忽略。则正常情况下,最大环流可达到9.79A。

3、三台主变并联运行时的环流计算

三台主变并联运行环流计算电路图如下:

图2:三台主变并联运行环流计算电路图由于#1、#2主变抽头电压一致,将#1、#2主变作戴维南等效电路

如下图,其中U E=U E1=U E2,

X E=X k1//X k2=25.82Ω.

图3:#1、#2主变作戴维南等效后和#3主变并联运行环流计算电路图

由电路图可得:

△I=(U E-U E3)÷(X E+X k3)=220×103

×(△K1-△K3)÷

√3÷(X E+X k3)A

△I1=△I×X k2÷(X k1+X k2)

△I2=△I×X k1÷(X k1+X k2)

环流参考正向为从#1、#2主变通过220kV母线流入#3主变。

抽头位置合理匹配的情况下,按上述公式计算的环流值如下表:

表二:三台主变并联运行环流计算结果表

按上表主变调压抽头匹配,最大环流可达到-20.02A,考虑到主变调压抽头位于最低档的情况很少,可以忽略。则正常情况下,最大环流#3主变可达到15.01A,#1主变6.5A,#2主变8.51A。

4、环流计算结果分析

1)#1、#3主变并联运行最大环流和额定电流的比值为

△I1%=△I/I N1=9.79÷315=3.1%

△I3%=△I/I N3=9.79÷315=2.1%

2)三台主变并联运行最大环流和额定电流的比值为

△I1%=△I1/I N1=6.5÷315=2.1%

△I2%=△I2/I N2=8.51÷394=2.16%

△I3%=△I3/I N3=15.01÷472=3.18%

3)最大环流时的主变输送满负荷情况下失配率

假设当三台主变无环流情况下,潮流方向从220kV母线流向主变,满负荷运行时#1主变的电流为315A,负荷功率因数Cosφ=0.8。则当变比不一致导致最大环流为-6.5A时,#1主变输送同样负荷时的电流为:

I1’2

=(315×Sinφ+6.5)

2

+(315×Cosφ)

2

=101724

I1’

=318.9A

或者当环流为6.5A时,#1主变输送同样负荷时的电流为:

I1’2

=(315×Sinφ-6.5)

2

+(315×Cosφ)

2

=96810

I1’

=311.14A

按上述方法可计算最大环流导致的#2、#3主变输送满负荷时电流的改变:

对应抽头位置#1(#2)主变:-3.75%,#3主变:-3.%时

I2’

=399.2A, I3

=463A

对应抽头位置#1(#2)主变:3.75%,#3主变:3.%时

I2’

=389A, I3

=481A

按(I ’

-I N)/I N*100%计算最大环流导致的主变输送负荷分

配失配率

最大环流时的主变输送满负荷情况下失配率表

GB/T13499-2002《电力变压器应用导则》第6点的相关条文:“不必对某些参数有少量失配的后果表示过多的担心。例如,对两台并联运行变压器没有必要准确地提出相同的分接电压。分接级通常是少到使错开的分接级能合理运行两台不同设计的变压器,若它们之间的相对负荷失配率一般不大于10%时,则认为是合理的。”

对220kV阳江站主变环流计算得到结果:#3主变最大环流可达到主变额定电流的3.2%,环流导致的主变输送负荷分配失配率为1.9%小于上述导则的10%合理要求,#1、#2主变的上述偏差值小于#3主变,所以环流对主变影响可以接受,#1、#2、#3主变可在220kV和110kV侧并联运行。但应确认电压无功自动调节装置能自动调整主变的变比差到最小。

三、结论

变压器并联运行是增强供电灵活性、提高供电可靠性和对用户不间断供电在运行上采用的一种很有效的手段。为满足并联运行条件应在设计阶段按GB/T17468-1998《电力变压器选用导则》的要求选择主变压器。但在实际工作中常遇到不能完全满足导则要求而需并联运行的情况,则应具体进行环流、负荷分配方面的计算,并权衡并联运行带来对主变设备的不利和运行上的好处,决定是否实施并联运行,或采取进一步的更换改造变压器的措施。

变压器有载调压开关异常的分析和处理

变压器有载调压开关异常的分析和处理 有载分接开关可以在变压器带有负载的运行状态下改变分接位置,达到不停电改变变压比调整运行电压的目的。它由分头选择器和切换开关两部分组成,由统一的电动操作机构控制和协调工作。分头选择器的作用是先在无载状态下变换选择分头,然后由切换开关进行有负载的切换。 有载分接开关异常运行或故障的处理 1、调压开关拒动 发生拒动时应检查以下内容: (1)操作是否正确。 不正确的操作有: ①操作方式选择开关(如远方或就地操作选择开关,手动或自动 选择开关等)位置不正确,应将它们置于正确位置上; ②操作超越极限位置(已在最高位继续调增.或已在最低位继续 调减),应向发令人报告,改正错误。 (2)操作回路直流电源是否正常。 如不正常应处理恢复电源。 (3)操作机构交流电源是否正常。 不正常的情况可能有: ①机构动力电源三相或两相无电压(断路器未合或熔断器断开), 电动机不能启动;

②操作动力电源有一相无电压,电动机两相受电引起过电流使电 源接触器跳闸; ③机构交流控制电源无电压,控制回路不能动作; ④操作交流电源三相相序错误,使电动机反向旋转,有关保护动作使电源接触器跳闸。如属这种情况,将三相电源中两相互换,调正电源相序即可重新操作。如属①②③情况应排除电源故障,然后再启动调 压; ⑤控制回路是否闭锁。 闭锁的可能原因:交流失压,三相失步,调整时间过长或其它,根据直流控制回路的设计而定。应根据设计回路图及出现的信号,查明 并排除引起闭锁的原因。 2、有载分接开关机械故障。 有载分接开关机械故障包括切换开关或分头选择器故障、操作机 构机械故障在内,是一种严重故障,可能产生以下情况: (1)分头选择器带负荷转换。这种情况与带负荷分合隔离开关相似,将使变压器本体主瓦斯继电器动作跳闸。 (2)切换开关拒动或切换不到位。如果切换开关在切换中途长时间停止在某一中间位置,会使过渡电阻因长期通电而过热,可能使切换开关瓦斯继电器动作,将变压器跳闸. (3)切换开关或分头选择器触头接触不良过热。 发生以上类似情况时,应及时申请将变压器退出运行,进行检修。

110kv正泰有载调压变压器说明书

110kv 马泰壕变电站设备型号说明 一、主变压器 额定容量:25/25MVA 额定电压:110/10.5Kv 分接范围:110±(8x1.25%)/10.5kV 额定电流:131.2/1374.6A 连接组别:YNd11 额定频率:50Hz 相数:3 冷却方式:ONAN [1、油浸自冷(ONAN); 2、油浸风冷(ONAF); 3、强迫油循环风冷(OFAF); 4、强迫油循环水冷(OFWF); 5、强迫导向油循环风冷(ODAF); 6、强迫导向油循环水冷ODWF) ]。 绝缘水平:h.v.线路端子 LI/AC 480/200KV h.v.中性点端子 LI/AC 325/140KV l.v. 线路端子 LI/AC 75/35KV 二、主变试验项目 1、电压比测量及联结组别标号检定;(变比测试仪) 2、绕组电阻测量;(电阻测试仪) 3、绝缘电阻、电容、介损测量、外施耐压试验; 4、空载电流、空载损耗; 5、负载损耗、阻抗电压测量; 6、雷电冲击试验; 7、感应耐压试验; 8、声级测定; 9、空载电流电压谐波; 10、零序阻抗; 11、油试验、密封试验、有载分接开关试验; 三、主变使用说明 1、安装及装配注意事项 1.1装水银温度计、温度指示控制器,在安装的同时要将温度计座内注入变压器油,油量要能完全侵泡温包,以保证温度计反应准确。 1.2有密封胶条的法兰安装时,螺栓要均匀施力,使得密封条均匀受力。 1.3变压器注油时所有放气塞必须打开,冒油是再密封好。 1.4注入变压器油后,将散热器、气体继电器、套管(密封式套管除外)、观察窗、高压套管 一次侧额定电压110KV 额定容量25000 损耗等级10 有载调压 三相

80922126752:有载调压变压器调压特性分

有载调压变压器调压特性分析 兴义供电局黄昌虎【562400】 摘要:文中对有载调压变压器的调压原理进行了详细分析,并对有载调压变压器的负调压特性和正调压特性进行了探讨。 关键词:有载调压变压器;调压特性;正调压效应;负调压效应 Abstract : In this paper, on-load tap-changing transformer voltage regulating principle is analyzed in detail, and the on-load tap-changing transformer negative pressure regulating characteristics and positive voltage characteristics were discussed. Key word : On-load transformer ; voltage characteristic; positive pressure regulating effect; negative pressure regulating effect 引言 电力系统为了将运行电压维持在一个合理的水平,采取了诸多调整电压的措施,其中由于有载调压变压器(OLTC)分接头比无载调压变压器分接头的调节范围大,具有调压无需测直流电阻,可以随着电网电压变化而自动有载调压等优点,因此通过有载调压变压器调整电压的方法得到了越来越广泛的应用。我国《电力系统技术导则》规定:对110kV及以下系统,宜考虑至少有一级电压的变压器采用有载调压方式。从国外来情况来看,无论对于哪一级电压的网络供电变压器,各国电力系统普遍都采用了有载调压方式,一些系统还采用了按母线电压自动调节的方式,也就是说利用有载调压变压器分接头自动调整系统电压在许多国家已经广泛使用,在我国也有逐渐推广使用的趋势。但是改变变压器变比调节电压是有条件的,这个条件就是:必须维持系统的无功功率平衡。离开这个条件,非但不能起到调压的作用,在严重情况下还可能引起系统电压的全面崩溃,使系统解裂,招致灾难性的后果。 1 有载调压变压器调压与负荷恢复 在讨论OLTC调压与负荷恢复得关系时由于OLTC为响应较慢的设备,因此,在研究OLTC 恢复负荷的特性时,快速响应的发电机和异步电动机就可以用它们的静态方程式来代替,这样就只要考虑OLTC的动态过程。 如图-1所示简单系统,图中为一台发电机通过输电线路对一台OLTC供电的情况。在图中用串联漏阻抗的理想变压来表示OLTC。为简单起见,忽略变压器绕组的铜损和铁损,与

变压器有载调压的原理

变压器有载调压的原理: 变压器的高压绕组终端区隔一些线匝就抽出一个接头,电源接在不同的抽头上,高压绕组的实际线匝数就不同,而低压绕组的线匝数是固定的,这样,变化的高压绕组匝数和不变的低压绕组匝数就构成了不同的变比,根据变压器变压的原理,低压绕组就可以随高压绕组接不同的抽头而变出不同的电压;高压绕组的抽头可以在线圈的电源侧,也可以在中心点侧,这都能不能改变其基本原理。所以220KV以下的变压器抽头一般设在电源侧,更高电压的变压器抽头就设在高压绕组的中心点侧了; 变压器一般都带抽头,以便现场根据实际电压来调整电压值。但是无载调压占多数,主要是一般地区的电压变化不是那么频繁和幅度那么大,可以不用时时调整;但是有些地方对于电压要求比较严,有些地方的电压常常变化,就得使用有载调压了。 有载调压就是将上述绕组抽头都接在有灭弧能力的开关上,在外部通过远方控制手的或自动调节电源好这些抽头的连接,从而达到随时调整低压绕组输出电压的目的。调整时,这些开关先与需要的那个抽头接上,然后断开原来接通的抽头,因为有电压好运行电流的存在,所以跳开的开关与我们使用的其他电源开关一样,要灭弧后断开。 什么情况下不允许调整变压器有载调压装置的分接头? (1)变压器过负荷运行时(特殊情况除外); (2)有载调压装置的轻瓦斯动作报警时; (3)有载调压装置的油耐压不合格或油标中无油时; (4)调压次数超过规定时;

(5)调压装置发生异常时。 500kV变压器也是用的有载调压?厉害! 单从有功潮流方向还不能确切判断如何调整,还得看无功方向,我仅凭经验简单说明一下,但还得进行深层分析,以500kV侧CT为参考点: 第一相限:即有功、无功由500kV流向220kV,500侧电压高说明500kV侧无功过剩,可根据电网运行数据计算需方的无功需量,这种情况一般来讲,调底有载开关档位起不到多大作用,应降低500kV侧系统(发电机无功出力)或投电抗器来实现; 第二相限:即有功由220流向500,无功由500流向220,500侧电压高还是说明500kV侧无功过剩,调节方式同上; 第三相限:即有功、无功均由220流向500,这种情况一般不会导致500kV 过压,除非220侧电压超得太多,也可以调高有载开关档位(类似升压变);第四相限:即有功由500流向220,无功由220流向500,说明220侧无功过剩,也可以调高有载开关档位,或投电抗器或降低220侧系统无功; 有载开关调节都很困难,500kV一般都由电容、电抗器来调节或调发电机AVR,很方便。 以上内容仅为鄙人观点,若有错误,尽请谅解,能力有限,请多指教。 主变压器的有载调压开关操作规程 6.1??110kV主变使用的ZY-I-III300/110-±8有载调压分接开关是镶入型的,具有单独油箱和小油枕的开关。 6.2 有载分接开关的油温不得高于100℃,不低于-25℃。触头中各单触头的接触电阻不大于 500μΩ。 6.3 检修后及新安装的有载调压开关投入使用前,必须进行下述程序进行操作试验检查。 1. 投入使用前必须熟悉使用说明书的各项要求,先手动操作后电动操作。 2. 操作试验:在电动机控制回路施加电压之前,检查供给电源的额定值是否与所要求的数值一致。检查电动机的电源相序是否正确,若电源相序错,则断路器跳闸后再扣不上,或者断路器再扣后机构

有载调压变压器

变压器配置有载调压分接头,降低了变压器运行的可靠性。1982年,国际大电网会议变压器委员会提出过一份报告,特别指出了带负荷调节电压的分接头,不仅自身不可靠,同时还增加了变压器整体设计的复杂性。此外,有载调压变压器由于带负荷调整电压,不可避免地产生电弧,其积聚游离变压器油使有载调压变压器中的瓦斯冒出,有时还会引起误动作或误发信号。因此,大容量变压器配置了有载调压分接头,的确给变压器的可靠运行造成了一定的影响。 加大投资及运行费用 变压器配置了有载调压分接头后,体积上要比同容量的变压器大,不仅增加了变压器的投资,同时也增加了运行维护费用,另一方面在检修调压箱时,停电所需时间也较长。例如,一台SCZ-800/10型10 kV干式有载调压变压器约30万元,而一台SC-800/10型10 kV无载调压变压器才约20 万元,增加了投资约1/3。一台110 kV,40 MVA有载调压主变压器约155万元,比相同容量无载调压变压器的设计更为复杂,价格也相对较高。另外,频繁动作有载分接开关及其传动机构也增加了运行管理及维护费用。 编辑本段采用相应的技术对策 有载调压变压器虽存在一些不足,但只要我们在电网规划时进行全面的综合考虑,在系统受到扰动时合理调度,就能扬长避短,发挥其积极作用。下面是笔者对应用有载调压变压器的几点建议:a) 对供电变压器,为提高用户供电质量,减低线损,宜采用有载调压方式。由于有载调压变压器无法改变系统的无功需求平衡状态,为避免

引发电网电压崩溃,系统应有足够的无功容量。对电网及无功功率规划设计时,应进行综合考虑,提高网络电压强度。系统无功功率能分层分区就地平衡,优化配置并保持足够的事故备用容量,避免有载调压变压器动作引发电压崩溃,造成大面积停电。b) 系统出现大扰动,引发电压大幅度下降时,调度员应及时采取措施,闭锁有载调压,并切除部分负荷,消除系统有功和无功缺额,或在系统中设置电压降低自动减负荷装置,抵消变压器控制产生的负面影响,快速动作,限制局部扰动发展为全网或主网事故。c) 根据《电力系统技术导则》规定,除了在电网电压可能有较大变化的220 kV及以上的降压变压器及联络变压器(例如接于出力变化大的电厂或接于时而为送端,时而为受端蹈线等)时,可采用带负荷调压方式外,一般不宜采用带负荷调压方式。d) 对高电压大容量变压器(包括升压变压器和联络变压器),为提高本身的可靠性,防止谐振过电压,也应尽可能不用分接头,必要时也仅用调节范围不大的无载调压方式,在变压器内采用氧化锌避雷器作吸收过电压保护。e) 对两台并联运行的有载调压变压器,容许在85%变压器额定负荷电流及以下的情况时进行分接头变换操作,对85%以上的情况应闭锁分接头变换。另外,必须设置可靠的失步保护,确保两台变压器同步切换。f) 严格执行“电力系统电压和无功电力管理条例”。对变压器分接头,按照其电压管理范围,分级管理。各级电力调度部门应根据负荷及潮流的变化,准确下达调整有载调压变压器分接头动作命令,以改善电压

主变压器结构、各部件作用

运行培训教案 主变压器结构、各部件作用 运行部 二〇一〇年八月

主变压器结构、各部件作用 一、变压器的基本结构与分类 变压器是一种改变交流电源的电压、电流而不改变频率的静止电气设备,它具有两个(或几个)绕组,在相同频率下,通过电磁感应将一个系统的交流电压和电流转换为另一个(或几个)系统的交流电压和电流而借以传送电能的电气设备。通常,它所连接的至少两个系统的交流电压和电流值是不相同的。 由此可见,变压器是一种通过电磁感应而工作的交流电气设备。主变压器系统由线圈、铁芯、主变油箱、变压器油、调压装置、瓦斯继电器、油枕及油位计、压力释放器、测温装置、冷却系统、潜油泵等组成。另外,主变压器还安装了气相色谱在线监测装置,每周对变压器油进行溶解气体检测,以便判断设备运行状况。 变压器的分类有多种方法:按用途不同可分为电力变压器、工业用变压器及其他特种用途的专用变压器;按绕组与铁芯的冷却介质不同可分为油浸式变压器与干式变压器;按铁芯的结构型式不同可分为心式变压器与壳式变压器;按调压方式不同可分为无励磁调压变压器与有载调压变压器;按相数不同可分为三相变压器与单相变压器;按铁芯柱上的绕组数不同可分为双绕组变压器与多绕组变压器;按不同电压的绕组间是否有电的连接可分为独立绕组变压器与自耦变压器等等。 二、变压器的各部件作用 我厂500kV主变压器由日本三菱公司生产,共19台(一台备用)型号为SUW的单相、双卷、油浸式水冷无载分接升压壳式变压器组,三台单相变压器以Y0/△—11型接线组成与发电机组成单元接线,额定容量3×214MVA,额定电压550/18kV,无载分接范围550—4×%,阻抗电压15%。高压侧出线经高压套管与SF6绝缘封闭母线联接,变压器中性点三相经穿墙套管联接在 B 相主变室经电缆接地;变压器的冷却方式为强迫油循环水冷(ODWF);每台单相变压器共三组冷却器,运行方式为两台优先、一台备用。主变压器高压侧中性点直接接地方式,低压侧经软连接辫与离相封闭母线联接,高压侧通过SF6管道母线与500kV电缆联接。 表1.主变压器主要参数

有载调压变压器工作原理及注意事项

有载调压变压器工作原理及注意事项 北极星电力网技术频道作者: 2012-1-16 15:00:59 (阅572次) 所属频道: 电网关键词: 有载调压变压器 有载调压变压器可根据系统运行情况,在带负荷的条件下随时切换分接头开关,保证电压质量,而且分接头数目多、调节范围比较大,采用有载调压变压器时,可以根据最大负荷和最小负荷时分接头电压来分别选择各自合适的分接头。这样就能缩小二次(侧)电压的变化幅度,甚至改变电压变化的趋势。 为了防止可动触头在切换过程中产生电弧使变压器绝缘油劣化,甚至烧毁有载分接开关,调压绕组通过并联触头Q1、Q2与高压主绕组串联。可在带负荷的情况下进行分接头的切换。在可动触头Q1、Q2回路接入接触器KM1、KM2的工作触头并放在单独的油箱里。在调节分接头时,先断开接触器KM1,将可动触头Q1切换到另一分接头上,然后接通KM1。另 一可动触头Q2也采用同样的步骤,移到这个相邻的分接头上,这样进行移动,直到Q1和 Q2都接到所选定的分接头位置为止。当切换过程中Q1、Q2分别接在相邻的两个分接头位置时,电抗器L限制了回路中流过的环流大小。110kV及以上电压等级变压器的调压绕组 放在中性点侧,使调节装置处于较低电位。 1、有载分接开关运行一年或切换2000~4000次后,应取切换开关油箱中的抽样进行工频耐压试验(不低于30KV),试验应合格,否则更换合格变压器绝缘油。 2、新投入的分接开关,在切换5000次后,应将切换开关吊出检查,以后可按实际情况确定检查周期。 3、运行中的分接开关动作5000次后或绝缘油的击穿电压低于25kV时,应更换切换开关油箱的绝缘油。 4、为了防止分接开关在严重过负荷或系统短路时进行切换,宜在有载分接开关控制回 路中加装电流闭锁装置,其整定值不超过变压器额定电流的1.5倍。 5、电动操作机构应经常保持良好状态,有载分接开关配备的瓦斯保护及防爆装置均应 运行正常。当保护装置动作时应查明原因。 6、分接开关的切换开关箱应严格密封,不得渗漏。如发现其油位升高异常或满油位, 说明变压器与有载分接开关切换箱窜油。应保持变压器油位高于分接开关的油位,防止开关箱体油渗入变压器本体,影响其绝缘油质,并及时安排停电处理。电工之家 在变压器有载分接开关操作过程中,应遵守如下规定:

变压器的有载调压分接开关档位设置

变压器的有载调压分接开关设“9A 9B 9C”档是为什么 这是个极性转换点,9A、9C是不同两个极性的两端,9B是实际的9档。但是在实际上,他们三个是连接在一起的,故称为9A/9B/9C,只是由于极性打的位置不同而已。 这是个极性转换点,9A、9C是不同两个极性的两端,9B是实际的9档。但是在实际上,他们三个是连接在一起的,故称为9A/9B/9C,只是由于极性打的位置不同而已。 没什么区别在8 9 10 档之间切换的时候在9A 9C之间不作停留因为有载调压是在有电的情况下A B C三相同时进行分接头的改变 好像在那里看过,A,C档只是自动调档时的过渡档,比如从8到9,就先到9A再到9B,实际的9档是9B。 就是又在分接开关调压过程中需要转换调压线圈极性,到9A,9C时做过渡。 你的有载调压变压器高压侧是(230±8*1.25%)kV吗?它有16个分抽头位置,一个主抽头位置。就是17个档位,9B就是主抽头位置,即高压侧电压等级是230kV. 我认为设置极性说到底就是为了节省线圈,减小调压装置的体积。 以前只听说A C是过度档,还真没问过为什么这样,求问,为什么设置极性转换 变压器有载调压开关的内部结构如何,为什么测量直流电阻时,其阻值会以额定当位为中心,上下对称呢? 内部结构:以常见的10kV/0.4kV配电变压器上用的为例,底座上一端固定有电动机,另一端像个横着放的笼子,内有转轴与电机相连,如果是7档调压的,笼子上就有7根绝缘横窄条,沿圆周分布,每根条上有三个定触头,接到高压三相线圈的同一档位的分接头上,转轴为三相的中性点。转轴上固定有三相的三个动触头,每个动触头包括一个主触头和一个辅助触头,主触头与转轴相联结,主辅触头之间接有过渡电阻,在调压转换分接头时,利用过渡电阻构成相邻两个分接头间的桥接,使负载电流不会间断,并限制桥接回路的电流,使主触头脱离定触头时电弧容易熄灭。如果分7档调压,通常可以把第4档作为额定电压档,其上下各有3档,如果每档调压为5%,那么高压每相线圈的7个分接头之间的电压也是各相差5%,其匝数也是额定匝数的5%,由于这些匝数的长度基本相同,导线是一样的,其直流电阻也基本相同了,按额定档位的相直流电阻来说,上下档位的值就是对称的了。就说这些吧。

ABB主变有载调压开关机构 二次 原理的研究与分析

ABB主变有载调压开关机构二次 原理的研究与分析 ABB主变有载调压开关机构二次原理图大多数都为英文版,且大多 设计图纸仅对其升降停回路进行简单注释,本文对该原理进行研究和阐述,并对控制部分进行较详的分析,提出分配的观点,对具体的应用具有参考的价值。 1有载调压开关的相关说明 ABB有载调压开关共分为17档,中间档为9B档。9A至9C档为触头换向时滑过的档位,中间档只停留在9B档而不会停留在9A和9C档。ABB将从1档滑行向 17档称为降档(或?档),反之,称为升档(或?档)。 有载调压开关档位触头滑行时不希望停留在两档中间,ABB图纸将这种情况称为滑档不到位(滑档运转中),并通过凸轮开关的行程接点识别有载开关处于哪种状态:滑档运转中或滑档到位。 有载调压开关允许由于某种原因暂时停留在滑档不到位的状态,但当处于滑档不到位有载调压开关重新获取电源时,电动机构将向着到位的方向自保持进行滑档,这种自保持的驱动力来自凸轮开关的行程接点,是不依赖于电磁的自保持。 有载调压开关不允许同时接受升降两个方向的调档任务。因为这种情况将有可能造成电机回路的相间短路。调档回路中必须设计有升降档的互排斥接点。 有载调压开关电机电源空开配有脱扣线圈。就地急停、远方急停、超时急停都接到该脱扣线圈使电机电源空开脱扣,从而切断电机电动回路,但不切断调档的控制回路。 有载调压开关不允许同时连续进行调档任务,调档必须一级一级的进行。因为调档把手的意外粘死或调档命令未返回造成的连续误调档,导致电压过调节。. 主变过负荷时将闭锁有载调压。闭锁接点取自主变保护的常闭接点。该闭锁接点只闭锁调档的启动回路,即闭锁远方及就地调档,而不会去闭锁调档的保持回路。2机构二次元件 F2:控制回路电源开关。可切断控制回路远方就地启动电源、零线端及自保持电源。启动电源和自保持电源可以是不同来源的交流电源。 K2:降档接触器。 K3:升档接触器。 K1:步控接触器。控制档位调节时一档一档的进行,防止因就地或远方的接点粘

变压器的压力释放阀、变压器有载调压开关的瓦斯(气体)继电器、变压器本体瓦斯(气体)继电器的作用

变压器的压力释放阀、变压器有载调压开关的瓦斯(气体)继电器、变压器本体瓦斯(气体)继电器的作用分别是什么? 我在变压器瓦斯保护?回答过瓦斯继电器的问题。 变压器的压力释放阀是变压器非电量保护的安全装置。 压力释放阀是用来保护油浸电气设备的装置。即在变压器油箱内部发生故障时,油箱内的油被分解、气化,产生大量气体,油箱内压力急剧升高,此压力如不及时释放,将造成变压器油箱变形、甚至爆裂。安装压力释放阀可使变压器在油箱内部发生故障、压力升高至压力释放阀的开启压力时,压力释放阀在2ms内迅速开启,使变压器油箱内的压力很快降低。当压力降到关闭压力值时,压力释放阀便可靠关闭,使变压器油箱内永远保持正压,有效地防止外部空气、水份及其他杂项进入油箱。 变压器瓦斯保护: 工作原理 瓦斯保护是变压器内部故障的主要保护元件,对变压器匝间和层间短路、铁芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,其强烈程度随故障的严重程度不同而不同。瓦斯保护就是利用反应气体状态的瓦斯继电器(又称气体继电器)来保护变压器内部故障的。 在瓦斯保护继电器内,上部是一个密封的浮筒,下部是一块金属档板,两者都装有密封的水银接点。浮筒和档板可以围绕各自的轴旋转。在正常运行时,继电器内充满油,浮筒浸在油内,处于上浮位置,水银接点断开;档板则由于本身重量而下垂,其水银接点也是断开的。当变压器内部发生轻微故障时,气体产生的速度较缓慢,气体上升至储油柜途中首先积存于瓦斯继电器的上部空间,使油面下降,浮筒随之下降而使水银接点闭合,接通延时信号,这就是所谓的“轻瓦斯”;当变压器内部发生严重故障时,则产生强烈的瓦斯气体,油箱内压力瞬时突增,产生很大的油流向油枕方向冲击,因油流冲击档板,档板克服弹簧的阻力,带动磁铁向干簧触点方向移动,使水银触点闭合,接通跳闸回路,使断路器跳闸,这就是所谓的“重瓦斯”。重瓦斯动作,立即切断与变压器连接的所有电源,从而避免事故扩大,起到保护变压器的作用。 瓦斯继电器有浮筒式、档板式、开口杯式等不同型号。目前大多采用QJ-80型继电器,其信号回路接上开口杯,跳闸回路接下档板。所谓瓦斯保护信号动作,即指因各种原因造成继电器内上开口杯的信号回路接点闭合,光字牌灯亮。 保护范围 瓦斯保护是变压器的主要保护,它可以反映油箱内的一切故障。包括:油箱内的多相短路、绕组匝间短路、绕组与铁芯或与外壳间的短路、铁芯故障、油面下降或漏油、分接开关接触不良或导线焊接不良等。瓦斯保护动作迅速、灵敏可靠而且结构简单。但是它不能反映油箱外部电路(如引出线上)的故障,所以不能作为保护变压器内部故障的唯一保护装置。另外,瓦斯保护也易在一些外界因素(如地震)的干扰下误动作。 变压器有载调压开关的瓦斯继电器与主变的瓦斯继电器作用相同、安装位置不

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

变压器的有载调压方法

(1)穿靴式改造方法: 所谓穿靴是将主变压器高配电柜压三相线圈的中性点打开,分别串联补偿器的调压线圈,并 将主变压器低压侧与补偿变压器的励磁线圈并联,实现有载调压。其调压是根据电压叠加原理,由调压补偿器借助于有载调压开关,维持主变高压侧线圈的电压在额定电压范围以内。 在这种调压方式中,补偿器运行时仅承受中性点或N级调压Σ△U1的电压,绝缘水平要求低, 当变压器中性点处于大电流接地方式运行时,其绝缘水平仅为35kV就够了(我们按40kV设计 制造),也可按运行方式设计更高的绝缘水平。此方法只要单独制造一台中性点调压变压器, 改造费用低,对主变压器中性点引出的现场改造仅需一个工作日便可完工,如果结合主变压 器大修同时进行,基本上不增加大修工期。 穿靴方式适用于电压波动范围已超出无励磁调压的范围,亦即无励磁调压开关档位在最高档 或最低档时也不能达到电压合格的要求。我们采用的中性点有载调压变压器,可实现±12%U1N 的宽范围调压,若与主变原无励磁开关配合,可更方便地上下移动调压区间(无励磁调压范围),以满足实际调压需要,并提高主变压器的出力。同时,根据实际情况确定调压范围来配置中 性点有载调压变压器,其容量配置如表1所示,各种电压等级的变压器均适合改造。我们完 成了4台主变的改造任务,所列各项都已改造过。但此方法要增加一台变压器的占地面积, 一次接线稍微复杂一些,但从整个改造工期及节约投资来看,不失为一种比较经济合理的改 造方案。 (2)背包式改造方法: 所谓背包是在变压器无励磁调压范围能够满足本地区供电电压波动需要的情况下,更经济适 用的一种改造方法。即解除原无励磁分接开关上的分接引线,拆除开关,加装一台跨接式的 或线性的有载调压开关,将原分接引线引至有载调压开关上,实现有载调压这种改造方法也 只需1个大修周期,本体改造(揭罩或吊芯)只需1天,与芯体检查同步进行,钟罩(桶壳)或 油箱也同时改造完毕。其改造关键是必须在一天时间内,保证芯体不受潮的情况下完成改造 工作,否则就会延长停电时间,增加改造费用。同时由于原变压器不可能留出改造时的引线 通道,所以还要采取相应措施来保证各种类型变压器绝缘距离以符合要求,并且还要注意方 便今后的检修工作(即吊罩、吊芯方式不变)。对此我们做了大量工作,配备了相应的设备, 对改造的每一环节进行研究,制定出了一整套切实可行的施工方案。用此方法我们已改造了 5台次,均达到预期目的,确实是一种经济简便的改造方法。 武汉中试高测电气有限公司,国家电网指定品牌—官方网站:https://www.wendangku.net/doc/7f4859239.html, https://www.wendangku.net/doc/7f4859239.html,

变压器有载调压技术方法分析

变压器有载调压技术方法分析 摘要:目前,在我国社会经济的快速发展进程中,对电力的需求量开始随之增大,电力工程建设项目越来越多。对于电力系统来说,在运行期间保持电力的安全与稳定是衡量电力运行情况的重要标准,而电力变压器则是确保电力安全与稳定的关键性技术,有载调压技术可以很好地调节电压系统,确保电力系统正常稳定运行。本文将通过介绍传统有载调压变压器和新型电力变压器有载调压技术,从几个方面来深入分析变压器有载调压技术的发展情况和相关的技术方法。 关键词:变压器;有载调压;电力 引言:变压器有载调压技术被广泛应用在配电系统中,在发电厂的启动变压器中也得到了很好的应用。其基本原理主要是从变压器某一侧的线圈中引出若干分接头,在有载分接开关的作用下和不切断负荷电流的情况下,由一分接头切换到另一分接头,来变换有效匝数,从而达到调节电压的目的。传统的有载调压变压器是采用机械式调压分接开关,本身存在较多问题,比如速度慢、容易产生电弧等。而我国现阶段所普遍使用的机械式调压分接开关,对于改善调压开关的特性,提高变压器有载调压的安全性与稳定性具有十分重要的意义。 一、传统有载调压变压器 传统变压器有载调压装置采用机械式有载分接开关,在选择好分接头后,转换开关从左至右(或从右至左)切换。机械式开关的动作(包括其驱动齿轮)容易导致操作性事故,降低了变压器的可靠性。机械开关在动作时,会产生一定的电弧,使开关的触点逐渐烧蚀,在操作一定次数后,必须更换触头,而且电弧的产生会导致变压器油质下降,造成变压器绕组的绝缘水平下降,导致匝间短路或相间短路。据统计,1990年全国110-500kV变压器事故中,有载调压分接开关的事故和故障分别占变压器各种总故障的18%和12.5%,500kV变压器的57次故障中有载分接开关故障约占25%,事故和故障率高,而且有上升的趋势。由于机械式开关的动作时间长,一般为5s,因此,传统有载调压变压器只用于稳态的电压调节。 二、新型电力变压器有载调压技术 因传统电力变压器有载调压技术存在各种问题,所以新型电力调压器有载调压技术便应运而生,现阶段对新型有载调压技术的研究和应用主要表现在以下几个方面。针对传统的机械式有载调压技术进行改进和完善,在不改变常规的机械式有载分接开关的基础上增加电子开关电路,从而形成了改良后的机械式调压变压器。除了保持传统的选择器、切换开关、电动机构等结构外,还增加了过渡电阻和晶闸管,该项技术可以很好的增强转换器的安全性和稳定性,从而最大程度的避免了安全事故的发生。另外一种新型电力变压器有载调压技术是晶闸管开关型调压变压器,此种变压器主要采用晶闸管作为连接开关来实现转换过程,所以其对晶闸管的质量和性能要求也相对较高,在成本花费上也并不占优势。不过该有载调压技术具有很好的自我检查和故障报警功能,所以相比较其它技术来说安全性和稳定性较高,运行速度也较快,因此具有很好的发展前景。 三、电力变压器有载调压技术发展概况 1.电力变压器有载调压技术发展现状 在电力系统中普遍采用变压器来调节电压,它可以有效的提高系统电压的质量与供电的可靠性。因此,电力变压器有载调压技术是电力系统研究中的一个重点,也是需要突破的一个难点。当前电力变压器有载调压技术已经广泛地应用到

sz1150kva有载调压变压器介绍19

SZ11-3150KV A有载调压电力变压器,在使用过程中对节约型有载调压变压器质量可靠,经济指标合理,符合国家GB1094-1996《电力变压器》GB/T6451-1999《三相油浸式电力变压器技术参数和要求》。铁芯采用优质硅钢片、生产工艺先进;绕组和油道结构设计合理,机械强度高和抗短路能力强,外型美观大方。 SZ11-3150KV A变压器技术参数: ------------------------------------------------------------------------ 额定容量(KVA )额定电 压(KV) 短 路 阻 抗 (%) 联 结 组 标 号 空载 损耗 (KW) 负载 损耗 (KW) 空载 电流 (%) 质量(Kg) 外型尺寸(长* 宽* 高)(L*W*H,mm) 轨距 (mm)高 压 低 压 油器身 总 体 1000 3 5 3 8 . 5 6. 3 10 .5 6.5 Y,d 11 1.79 11.5 5 1.1 1400 2420 48 50 2575*1600*289 5 1070 1250 2.14 14.8 1.0 1460 2540 51 10 2575*1600*307 5 1600 2.55 17.3 0.9 1600 3100 61 50 2650*1910*300 2000 2.8 20.0 0.77 1560 3400 65 00 3950*1870*290 2500 3.3 22.5 0.77 1690 3900 72 90 3010*1800*300 3150 7 4.0 26.0 0.72 2380 4500 85 40 3745*2110*286 5 4000 4.8 30.0 0.72 2480 4820 94 70 4120*2120*320 5000 5.8 34.2 0.66 2700 6500 11 45 3040*2300*350 6300 7.5 7.1 39.0 0.66 3050 7800 13 20 3200*2420*360 1475 SZ11-3150KVA10~35KV三相有载调压变压器简介

变压器有载调压系统的发展现状和存在问题

变压器有载调压系统的发展现状和存在问题 发表时间:2017-03-28T10:26:23.010Z 来源:《电力设备》2017年第2期作者:侯志鹏 [导读] 本文分析了电力变压器的有载调压方法,研究变压器有载调压系统的发展现状和存在问题分析。 (晋能清洁能源光伏工程有限责任公司山西省太原市 030006) 摘要:电力变压器有载调压器在配电系统中已经被广泛的应用,越来越多的配电系统安装有载调压器,说明其在配电系统中具有重要的作用。本文分析了电力变压器的有载调压方法,研究变压器有载调压系统的发展现状和存在问题分析,对其现在及将来的发展作更加充分的了解。 关键词:电力变压器;有载调压;技术分析 1 变压器有载调压系统的介绍 电力变压器有载调压技术的定义是能够在带负荷的条件下调节变比的变压器。在电力系统中供电的可靠性和供电的质量一直都是电气研究的主要内容。衡量电能质量最重要的技术指标就是电压的稳定性,电压波动直接影响着电网的安全和经济运行。电网的每一个节点电压是随着负荷变化的,在电能的传输过程中电压损耗和功率损耗是不可避免的,离电源越远的节点,其电压偏差和功率的损耗越相同的电压下,电气设备的使用效率和使用寿命受实际运行屯压与额定电压的差值大小的影响,电网运行在非额定位时,不利影响的程度与电压偏差值的大小有关。电力系统普遍釆用了有载调压的手段,以此保证用电设备的使用效率并且延长其使用寿命,保证电力系统的稳定运行。釆用有载自动调压技术是稳定电力系统电压最有效的方法,即在变压器的一次侧或二次侧上接入有载分接开关(,通过的切换,改变调压绕组的工作状态,在带负荷运行的情况下改变了变压器的变比,以此达到电压调节的目的。在切换的过程中需要用到复杂的机械构件和电动部件,所以变压器在带负荷调压的过程中,机械触头的每一次接触和分离都会产生较大电弧,可能使触头烧毁,从而影响变压器的绝缘特性。有载分接开关由于存在机械传动部分,导致其调压响应时间长,动作速度,无法进行动态的有载调压,而且机械传动部分的故障率非常高,并且维护量大。有载调压的时刻不能准确控制,是因为机械开关存在的电动机构时期动作时间是分散性的,而且在调压过程在可能出现过渡过程,不利于电网的安全运行。故实现有载调压的无弧化是保证系统稳定运行和设备安全的必要措施。 2 变压器有载调压系统的发展现状 目前,变压器有载调压系统的研究主要分为无弧有载调压开关和有弧有载调压开关,但是国内对于无弧有载调压开关的了解并不深入,还处在其摸索阶段。现阶段无弧有载调压技术大致分为两种:机械开关与晶闹管配合调压的有载调压方式;另一种是直接用晶闹管替代有载分接开关的无触点有载调压技术。 基于晶闹管辅助传统的调压方案的优点是在机械关的切换时并没有电流通过电流,晶闹管开关承担切换过程中的电流,避免了电弧产生,少变压器维护的工作量可以相对减少,但是相比与单纯的机械式,这种开关的结构与控制更为复杂,出现故障后,需要非常高的技术进行修理,难以达到这种技术高度。 电力系统中有载调压变压器对于提高系统电压质量和供电可靠性方面具有重要的作用。但传统的有载调压变压器是由机械式有载分接开关调整其分接头和相关的电动部件完成的,分接开关带负荷切换时产生较大的电弧,容易烧蚀触头造成油污染,影响变压器的绝缘特性和使用寿命。电动操作机构容易出现故障,据有关数据统计,其故障率约占分接开关故障的,维护工作量大,制约了变压器有载调压作用的发挥。基于有载调压变压器在电力系统安全经济运行中的关键地位,一直以来都倍受该领域专家的关注,有载调压技术更是处于不断地探索和改进过程中。 同时,在实际情况下,大多数用电设备都允许有一定的电压偏移,允许的电压偏移是根据用电设备对电压偏移的敏感性和电压偏移对用电设备所造成后果的严重性而定。从技术上和经济上综合考虑供电和用电两个方面的情况,确定了反映整体利益的合理的允许电压偏移标准,各类用户的允许电压偏移在正常状况下为 35kv及以上电压供电的负荷士5% 10kv及以下电压供电的负荷士7% 低压照明负荷 +5%~--10% 农村电网一 +7.5%~-10% 在事故状况下,允许在上述基础上再增加5%,但正偏移最大不能超过+10%。 3 变压器有载调压系统的存在问题 无弧有载调压对于解决有载调压变压器中遇到的问题具有重要的帮助作用,但是由于技术与其他方面的种种限制,都没有进行深入的研究。虽然自二十世纪年代以来,国内外许多学者都想到利用电力电子器件的无弧断流特性来改善有载调压变压器的分接头转换过程,并进行了多方面的研究和探索,提出了多种方案,但由于工作的可靠性和制造成本问题,一直没有得到批量生产,在实际应用中也未得到最终认可。 电力电子技术的发展,给无弧有载调压方案改进带来了新的可能性。目前国内对有载调压开关的研究并不多,有载分接开关实现快速无弧化是这一领域的必然趋势,无弧调压开关技术正处于试验和摸索阶段。有效改善传统有载调压变压器在配电网络中的应用现状,关键是消除机械式有载调压开关进行分接头切换时所产生的电弧烧蚀触头问题。迄今为止,无弧调压的设计思想大体分两种,一种是完全取消机械式触头的大功率晶闸管实现有载调压,一种是机械触头与晶闸管相结合的混合式有载调压。国内提出的混合式调压方案中有一种是晶闸管辅助机械开关无弧有载调压,采用机械式开关与电力电子开关相结合的混合式调压,以电力电子开关为辅助,只在切换时使用晶闸管,正常运行时仍使用机械开关。该方案的优点是切换过程中机械开关的切换不会切断电流,避免了电弧产生,可有效延长机械开关的使用寿命。但是正常运行时的机械开关回路中始终串有电阻,造成大量能量损耗,而且开关结构与控制比单纯的机械式结构更为复杂,容易出现故障。所提出的一种完全取消机械和电动机构的电力电子式有载调压方案`,采用固态继电器电压过零触发和电流过零自动关闭的快速调节技术,每两个分接头间都串有两个固态继电器,并且取消了过渡电阻,切换动作迅速,无电弧产生。但是调压回路中的任何固态继电器的提前导通或延时关断都可能造成分接间短路或产生大的环流在选择最小变比时,通路中需要很多个固态继电器串联导通,很难保证变压器调压过程中的协调可靠控制。 相对来说,国外对无弧有载调压开关的研究起步较早,并提出了多种设计方案,但有的方案还处在试验阶段,有的因为在实际的应用

有载调压变压器在电力系统中的应用技术简介

有载调压变压器在电力系统中的应用技 术简介 摘要:通过分析有载调压变压器的优缺点后,提出有载调压变压器在 电力系统中应用的技术对策。 一、有载调压变压器的优点 1、保持电压稳定变压器存在阻抗,在功率传输中,将产生电压降,并随着用户侧负荷的变化而变化。系统电压的波动加上用户侧负荷的变化将引起电压较大的变动。在实现无功功率就地平衡的前提下,当电压变动超过定值时,有载调压变压器在一定的延时后会动作,对电压进行调整,并保持电压的稳定。 2、保证电压质量供电变压器的任务是直接向负荷中心供应电力,一次侧直接接到主电压网(220 kV及以上)或接到地区供电电网(35~110 kV)。这类变压器不但向负荷提供有功功率,也往往同时提供无功功率,而且一般短路阻抗也较大。随着地区负荷变化,如果没有配置有载调压变压器,供电母线电压将随之变化。因此,我国《电力系统技术导则(试行)》规定了“对110 kV及以下变压器,宜考虑至少有一级电压的变压器采用带负载调压方式”。因此,对直接向供电中心供电的有载调压变压器,在实现无功功率分区就地平衡的前提下,随着地区负荷增减变化,配合无功补偿设备并联电容器及低压电抗器的投切,调整分接头,以便随时保证对用户的供电电压质量。

3、主变压器的改造至1998年底,珠海电力局的3座220 kV变电站有6台主变压器已改造成有载调压变压器,加上22座110 kV变电站的有载调压变压器,合计有载调压变压器39台,市区变电站全部为有载调压变压器。1997年,斗门供电局已对3台主变压器进行了有载调压变压器的改造,并计划在1999年底把余下的主变压器改造或更换成有载调压变压器。进一步保证10 kV配网电压质量,为争创一流供电企业奠定了坚实的基础。此外,有载调压变压器可以保持电网运行在较高的电压水平,优化了无功功率,从而降低了线损,提 高了电网经济效益。 二、有载调压变压器的缺点 1、不能改变无功需求平衡状态当系统无功功率缺额时,负荷的电压特性可以使系统在较低电压下保持稳定运行,但如果无功功率缺额较大时,为保持电压水平,有载调压变压器动作,电压暂时上升,将无功功率缺额全部转嫁到主网,从而使主网电压逐渐下降,严重时可能引发系统电压崩溃。因为这个原因,世界上有几次大停电事故:例如1983年12月27日的瑞典大停电事故;1987年7月23日的日本东京电力系统停电事故。这几次大事故都造成了极大的损失。瑞典大停电事故使南部系统全停电,停电负荷11 400 MW,占整个系统负荷的67%,电网全部恢复时间用了7 h以上,事故损失2~3亿瑞典克郎,约3 000~5 000万美元。日本东京大停电事故停电8 168 MW,影响用户280万户,停电时间最长达3 h 21 min,两个500 kV变电

相关文档