文档库 最新最全的文档下载
当前位置:文档库 › 中考专题-重叠面积及动点问题

中考专题-重叠面积及动点问题

中考专题-重叠面积及动点问题
中考专题-重叠面积及动点问题

重叠面积及动点问题

作者:1999zxq QQ:283933556

1、已知△ABC中,∠B=90°,AB=8cm,BC=6cm,边长为2的正方形EFGH的EF边在

直线AB上且点F与点A重合,当正方形EFGH沿AB方向以每秒1cm的速度运动,设运动时间为t秒,正方形EFGH与△ABC重叠面积为S,求S与t的函数关系式,并写出自变量的取值范围。

(F)

2、如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A 后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F 运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t/秒(t>0),正方形EFGH与△ABC重叠部分面积为S.

(1)当时t=1时,正方形EFGH的边长是1.当t=3时,正方形EFGH的边长是4.(2)当0<t≤2时,求S与t的函数关系式;

3、如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF 为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;

(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;

(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.

4、如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从

B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B 以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.

(1)求证:△DHQ∽△ABC;

(2)求y关于x的函数解析式并求y的最大值;

(3)当x为何值时,△HDE为等腰三角形?

H

(第4题)

x

x 5、如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,BC =6,AD =3,∠DCB =30°.点E 、F 同时从B 点出发,沿射线BC 向右匀速移动.已知F 点移动速度是E 点移动速度的2倍,以EF 为一边在CB 的上方作等边△EFG .设E 点移动距离为x (x >0).

⑴△EFG 的边长是____(用含有x 的代数式表示),当x =2时,点G 的位置在_______; ⑵若△EFG 与梯形ABCD 重叠部分面积是y ,求 ①当0<x ≤2时,y 与x 之间的函数关系式; ②当2<x ≤6时,y 与x 之间的函数关系式;

⑶探求⑵中得到的函数y 在x 取含何值时,存在最大值,并求出最大值.

6、如图9,在直角坐标系xoy 中,O 是坐标原点,点A 在x 正半轴上,OA=312cm ,点B 在y 轴的正半轴上,OB=12cm ,动点P 从点O 开始沿OA 以32cm/s 的速度向点A 移动,动点Q 从点A 开始沿AB 以4cm/s 的速度向点B 移动,动点R 从点B 开始沿BO 以2cm/s 的速度向点O 移动.如果P 、Q 、R 分别从O 、A 、

B 同时移动,移动时间为t (0<t <6)s.

(1)求∠OAB 的度数.

(2)以OB 为直径的⊙O ‘与AB 交于点M ,当t 为何值时,PM 与⊙O ‘

相切? (3)写出△PQR 的面积S 随动点移动时间t 的函数关系式,并求s 的最小值及相应的t 值. (4)是否存在△APQ 为等腰三角形,若存在,求出相应的t 值,若不存在请说明理由.

7、如图1,在平面直角坐标系中,

已知点(0A ,点B 在x 正半轴上,且30ABO

∠.动点P 在线段AB 上从点A 向点B

t 秒.在x 轴上取两点M N ,作等边PMN △. (1)求直线AB 的解析式;

(2)求等边PMN △的边长(用t 的代数式表示),并求出当等边PMN △的顶点M 运动到与原点O 重合时t 的值; (3)如果取OB 的中点D ,以OD 为边在Rt AOB △内部作如图2所示的矩形ODCE ,点C 在线段AB 上.设等边PMN △和矩形ODCE 重叠部分的面积为S ,请求出当02t ≤≤秒时S 与t 的函数关系式,并求出S 的最大值.

8、(2012重庆)已知:如图,在直角梯形ABCD 中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E 为BC 边上一点,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧. (1)当正方形的顶点F 恰好落在对角线AC 上时,求BE 的长;

(2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFC 为正方形B′EFG,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B′EFG 的边EF 与AC 交于点M ,连接B′D,B′M,DM ,是否存在这样的t ,使△B′DM 是直角三角形?若存在,求出t 的值;若不存在,请说明理由;

(3)在(2)问的平移过程中,设正方形B′EFG 与△ADC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.

重叠面积及动点问题答案

(图1) (图2)

1、解:解:

).

108(162)5();

83

14

(4)4();314

38(6252783)3();

382(233)2();

20(83

122≤<-=≤<=≤<-+-=≤<-=≤<=t t S t S t t t S t t S t t S )(

2、解:(1)当时t=1时,则PE=1,PF=1, ∴正方形EFGH 的边长是2; 当t=3时,PE=1,PF=3, ∴正方形EFGH 的边长是4; (2):①当0<t≤

时,

S 与t 的函数关系式是y=2t×2t=4t 2

; ②当

<t≤时,

S 与t 的函数关系式是: y=4t 2

[2t ﹣(2﹣t )]×[2t ﹣(2﹣t )],

=﹣t 2

+11t ﹣3;

③当<t≤2时; S 与t 的函数关系式是:

y=(t+2)×(t+2)﹣(2﹣t )(2﹣t ), =3t ;

3、解:(1)当边FG 恰好经过点C 时,∠CFB=60°,BF=3﹣t ,在Rt △CBF 中,BC=2

tan ∠CFB=,即tan60=,解得BF=2,即3﹣t=2,t=1,∴当边FG 恰好经过点C 时,

t=1;

(2)当0≤t<1时,S=2t+4;

当1≤t<3时,S=﹣t2+3t+;

当3≤t<4时,S=﹣4t+20;

当4≤t<6时,S=t2﹣12t+36;

(3)存在.

理由如下:在Rt△ABC中,tan∠CAB==,

∴∠CAB=30°,又∵∠HEO=60°,∴∠HAE=∠AHE=30°,

∴AE=HE=3﹣t或t﹣3,

1)当AH=AO=3时,(如图②),过点E作EM⊥AH于M,则AM=AH=,在Rt△AME中,cos∠MAE═,即cos30°=,

∴AE=,即3﹣t=或t﹣3=,

∴t=3﹣或t=3+,

2)当HA=HO 时,(如图③)则∠HOA=∠HAO=30°, 又∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE , 又∵AE+EO=3,∴AE+2AE=3,AE=1, 即3﹣t=1或t ﹣3=1,∴t=2或t=4;

3)当OH=OA 时,(如图④),则∠OHA=∠OAH=30°, ∴∠HOB=60°=∠HEB ,∴点E 和点O 重合, ∴AE=3,即3﹣t=3或t ﹣3=3,t=6(舍去)或t=0;

综上所述,存在5个这样的t 值,使△AOH 是等腰三角形,即t=3﹣或t=3+或t=2或

t=2或t=0.

4、解:(1)∵A 、D 关于点Q 成中心对称,HQ ⊥AB ,

∴C HQD ∠=∠=90°,HD =HA , ∴A HDQ ∠=∠,…………………………………………………………………………3分

∴△DHQ ∽△ABC . ……………………………………………………………………1分

(图1)

C

(图2)

(2)①如图1,当5.20≤

ED =x 410-,QH =x A AQ 4

3

tan =

∠, 此时x x x x y 4

15

2343)410(212+-=?-=. …………………………………………3分

当45=x 时,最大值3275

=y .

②如图2,当55.2≤

ED =104-x ,QH =x A AQ 4

3

tan =

∠, 此时x x x x y 4

15

2343)104(212-=?-=. …………………………………………2分

当5=x 时,最大值4

75

=y .

∴y 与x 之间的函数解析式为?????≤<-≤<+-=).

55.2(415

2

3),

5.20(415

2322x x x x x x y

y 的最大值是4

75

.……………………………………………………………………1分 (3)①如图1,当5.20≤

若DE =DH ,∵DH =AH =x A QA 4

5

cos =∠, DE =x 410-,

∴x 410-=

x 45

,21

40=x . 显然ED =EH ,HD =HE 不可能; ……………………………………………………1分

②如图2,当55.2≤

x 45

,11

40=x ; …………………………………………1分 若HD =HE ,此时点D ,E 分别与点B ,A 重合,5=x ; ………………………1分

若ED =EH ,则△EDH ∽△HDA ,

∴AD DH DH ED =,x x x x 2454

5104=

-,103320=x . ……………………………………1分 ∴当x 的值为103

320

,

5,1140,2140时,△HDE 是等腰三角形. 5、解:⑴ x ,D 点;………………3分

⑵ ①当0<x ≤2时,△EFG 在梯形ABCD 内部,所以y =

4

3x 2

;………………6分

②分两种情况:

Ⅰ.当2<x <3时,如图1,点E 、点F 在线段BC 上, △EFG 与梯形ABCD 重叠部分为四边形EFNM ,

∵∠FNC =∠FCN =30°,∴FN =FC =6-2x.∴GN =3x -6. 由于在Rt △NMG 中,∠G =60°, 所以,此时 y =

43x 2-8

3(3x -6)2=2392398372-

+-x x .………………9分 Ⅱ.当3≤x ≤6时,如图2,点E 在线段BC 上,点F 在射线CH 上, △EFG 与梯形ABCD 重叠部分为△ECP , ∵EC =6-x, ∴y =

8

3(6-x )2=23

9233832+

-x x .………………11分 ⑶当0<x ≤2时,∵y =

4

3x 2

在x >0时,y 随x 增大而增大, ∴x =2时,y 最大=3; 当2<x <3时,∵y =2392398372-

+-x x 在x =718时,y 最大=7

3

9; 当3≤x ≤6时,∵y =2

3

9233832+

-x x 在x <6时,y 随x 增大而减小, ∴x =3时,y 最大=8

3

9.………………12分 综上所述:当x =

718时,y 最大=7

39.

6、解:(1)在Rt △AOB 中:

tan ∠OAB=

3

3

31212=

=OA OB ∴∠OAB=30°

(2)如图10,连接O ‘P ,O ‘M. 当PM 与⊙O ‘相切时,有∠PM O ‘=∠PO O ‘

=90°,

△PM O ‘≌△PO O ‘

B E F

C 图1

图2

x

x

由(1)知∠OBA=60°

∵O ‘M= O ‘

B

∴△O ‘

BM 是等边三角形

∴∠B O ‘

M=60°

可得∠O O ‘P=∠M O ‘

P=60°

∴OP= O O ‘·tan ∠O O ‘

P =6×tan60°=36 又∵OP=32t

∴32t=36,t=3

即:t=3时,PM 与⊙O ‘

相切.

(3)如图9,过点Q 作QE ⊥x 于点E ∵∠BAO=30°,AQ=4t ∴QE=

2

1

AQ=2t AE=AQ ·cos ∠OAB=4t ×

t 322

3

= ∴OE=OA-AE=312-32t

∴Q 点的坐标为(312-32t ,2t ) S △PQR = S △OAB -S △OPR -S △APQ -S △BRQ

=

)32312(22

1

2)32312(21)212(32213121221t t t t t t -?-?---??-?? =372336362

+-t t

=318)3(362+-t (60<<t ) 当t=3时,S △PQR 最小=318 (4)分三种情况:如图11.

1当AP=AQ 1=4t 时, ∵OP+AP=312 ∴32t+4t=312

∴t=

2

336+

或化简为t=312-18 ○

2当PQ 2=AQ 2=4t 时 过Q 2点作Q 2D ⊥x 轴于点D , ∴PA=2AD=2A Q 2·cosA=34t 即32t+34t =312 ∴t=2

3当PA=PQ 3时,过点P 作PH ⊥AB 于点H AH=PA ·cos30°=(312-32t )·2

3

=18-3t AQ 3=2AH=36-6t 得36-6t=4t , ∴t=3.6

综上所述,当t=2,t=3.6,t=312-18时,△APQ 是等腰三角形.

7、解:(1)直线AB

的解析式为:y x =+ (2)方法一,90AOB ∠=

,30ABO ∠=

,2AB OA ∴==

AP =

,BP ∴=,

PMN △是等边三角形,90MPB ∴∠= ,

tan PM PBM PB ∠=

,)83

PM t ∴=?

=-. 方法二,如图1,过P 分别作PQ y ⊥轴于Q ,PS x ⊥轴于S ,

可求得122AQ AP ==,

2

PS QO ==,

822PM t ??∴=÷=- ? ??

?, (图1)

当点M 与点O 重合时,

60BAO ∠= , 2AO AP ∴=.

∴=,

2t ∴=.

(3)①当01t ≤≤时,见图2. 设PN 交EC 于点H ,

重叠部分为直角梯形EONG , 作GH OB ⊥于H .

60GNH ∠=

,GH = 2HN ∴=, 8PM t =- , 162BM t ∴=-, 12OB = ,

(8)(16212)4ON t t t ∴=----=+, 422OH ON HN t t EG ∴=-=+-=+=,

1

(24)2

S t t ∴=+++?=+

S 随t 的增大而增大,

∴当1t =

时,S =最大

②当12t <<时,见图3. 设PM 交EC 于点I ,

交EO 于点F ,PN 交EC 于点G , 重叠部分为五边形OFIGN .

方法一,作GH OB ⊥于H

,FO = ,

)EF ∴==-,

22EI t ∴=-,

21

(22

FEI ONGE S S S t ∴=-=+--=-++△梯形方法二,由题意可得42MO t =-

,(42)OF t =-

PC =,4PI t =-,

再计算21

(42)2

FMO S t =

-△

2(8)4PMN S t =

-△

,2)4

PIG S t =-△ (图3)

2221(8))(42)442

PMN PIG FMO S S S S t t t ∴=--=

-----△△△

2=-++

0-< ,∴当32t =

时,S

有最大值,2

S =最大. ③当2t =时,6MP MN ==,即N 与D 重合,

设PM 交EC 于点I ,PD 交EC 于点G ,重叠部 分为等腰梯形IMNG ,见图4.

22

62S ==

综上所述:当01t ≤≤

时,S =+;

当12t <<

时,2

S =-++

当2t =

时,S =

2

>

S ∴

的最大值是

2

考点:相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形。 解答:解:(1)如图①, 设正方形BEFG 的边长为x , 则BE=FG=BG=x , ∵AB=3,BC=6, ∴AG=AB﹣BG=3﹣x , ∵GF∥BE, ∴△AGF∽△ABC, ∴, 即

解得:x=2,

(图4)

即BE=2;

(2)存在满足条件的t,

理由:如图②,过点D作DH⊥BC于H,

则BH=AD=2,DH=AB=3,

由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,

在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,∵EF∥AB,

∴△MEC∽△ABC,

∴,即,

∴ME=2﹣t,

在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,

过点M作MN⊥DH于N,

则MN=HE=t,NH=ME=2﹣t,

∴DN=DH﹣NH=3﹣(2﹣t)=t+1,

在Rt△DMN中,DM2=DN2+MN2=t2+t+1,

(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,

即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),

解得:t=,

(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,

即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),

解得:t1=﹣3+,t2=﹣3﹣(舍去),

∴t=﹣3+;

(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,

即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),

此方程无解,

综上所述,当t=或﹣3+时,△B′DM是直角三角形;

(3)①如图③,当F在CD上时,EF:DH=CE:CH,

即2:3=CE:4,

∴CE=,

∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,

∵ME=2﹣t,

∴FM=t,

当0≤t≤时,S=S△FMN=×t×t=t2,

②当G在AC上时,t=2,

∵EK=EC?tan∠DCB=EC?=(4﹣t)=3﹣t,

∴FK=2﹣EK=t﹣1,

∵NL=AD=,

∴FL=t﹣,

∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;

③如图⑤,当G在CD上时,B′C:CH=B′G:DH,

即B′C:4=2:3,

解得:B′C=,

∴EC=4﹣t=B′C﹣2=,

∴t=,

∵B′N=B′C=(6﹣t)=3﹣t,

∵GN=GB′﹣B′N=t﹣1,

∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t ﹣,

④如图⑥,当<t≤4时,

∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.

综上所述:

当0≤t≤时,S=t2,

当<t≤2时,S=﹣t2+t﹣;

当2<t≤时,S=﹣t2+2t﹣,

当<t≤4时,S=﹣t+.

重叠面积及动点问题

重叠面积及动点问题 1、已知△ABC中,∠B=90°,AB=8cm,BC=6cm,边长为2的正方形EFGH的EF边在 直线AB上且点F与点A重合,当正方形EFGH沿AB方向以每秒1cm的速度运动,设运动时间为t秒,正方形EFGH与△ABC重叠面积为S,求S与t的函数关系式,并写出自变量的取值范围。 (F) 2、如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t/秒(t>0),正方形EFGH与△ABC重叠部分面积为S. (1)当时t=1时,正方形EFGH的边长是1.当t=3时,正方形EFGH的边长是4.(2)当0<t≤2时,求S与t的函数关系式;

3、如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF 为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值; (2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围; (3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由. 4、如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从 B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B 以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y. (1)求证:△DHQ∽△ABC; (2)求y关于x的函数解析式并求y的最大值; (3)当x为何值时,△HDE为等腰三角形? H (第4题)

中考专题复习动点问题教学设计

中考专题复习《动点问题》教学设计 【学情分析】动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论【教学目标】知识与技能:1、利用特殊三角形的性质和定理解决动点问题;2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动);3、结合图形和题目,得出已知或能间接求出的数据。过程与方法:1、利用分类讨论的方法分析并解决问题;2、数形结合、方程思想的运用。情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。【教学重点】根据动点中的移动距离,找出等量列方程。【教学难点】1、两点同时运动时的距离变化;2、运动题型中的分类讨论【教学方法】教师引导、自主思考【教学过程】一、动点问题的近况:1、动态几何图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以

及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型----动点问题。所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。2、三年中考概况;近年来运动问题是以三角形或四边形为背景,用运动的观点来探究几何图形变化规律的问题.这类题的特点是:图形中的某些元素(如点、线段、角等)或整个图形按某种规律运动,图形的各个元素在运动变化过程中相互依存,相互制约.3、解题策略和方法:“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。解决动点问题的关键是“动中求静”.动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段

平面直角坐标系中面积动点问题

平面直角坐标系提升练习 热身题:如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动. (1)a= ,b= ,点B的坐标为; (2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标; (3)在移动过程中,当点P到x轴的距离为5个单位长度时, 求点P移动的时间. 题型一:已知面积求点的坐标 1.已知:A(0,1),B(2,0),C(4,3) … (1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积; (3)设点P在坐标轴上,且△ABP与△ABC的面积相等, 求点P的坐标. 2、已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0). (1)求△ABC的面积是多少 (2)若点A、C的位置不变,当点P在y轴上时,且S △ACP =2S △ABC ,求点P的坐标 / (3)若点B、C的位置不变,当点Q在x轴上时,且S △BCQ =2S △ABC ,求点Q的坐标

3、如图,在平面直角坐标系2、在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒). (1)直接写出点B和点C的坐标B(,)、C(,); (2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围; (3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S △APD =S ABOC ,若存在,请 求出t值,若不存在,请说明理由. 】 3、点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S. (1)用含x的式子表示S,写出x的取值范围; (2)当点P的横坐标为5时,△OPA的面积为多少 (3)当S=12时,求点P的坐标; (4)△OPA的面积能大于24吗为什么 { 4、如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0 (1)求a、b、c的值; (2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积; (3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等若存在,求出点P 的坐标,若不存在,请说明理由.

初中数学精华资料(一线名师整理)函数图象中的存在性问题—因动点产生的面积问题(4页)

x y A B C O 第24题图 函数图象中的存在性问题——因动点产生的面积问题 例33、.如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒. (1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及顶点C 的坐标; (3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由. 例34、如图,在平面直角坐标系xoy 中,等腰梯形OABC 的下底边OA 在x 轴的正半轴上,BC∥OA,OC=AB .tan∠BA0=43 ,点B 的坐标为(7,4). (1)求点A 、C 的坐标;(2)求经过点0、B 、C 的抛物线的解析式; (3)在第一象限内(2)中的抛物线上是否存在一点P ,使得经过点P 且 与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在, 请求出点P 的横坐标;若不存在,请说明理由.

例35、如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与 端点B 、C 不重合),过点D 作直线y =-1 2x +b 交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式; (2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. 例36、如图,已知直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式; (2)当BE 经过(1)中抛物线的顶点时,求CF 的长; (3)连结EF ,设△BEF 与△BFC 的面积之差为S ,问:当CF 为何值时S 最小,并求出这个最小值. 24.(2013普陀二模) 如图,抛物线c bx x y -+=2 经过直线 与坐标轴的两个交点A 、B ,此抛物线与x 轴的另 一个交点为C ,抛物线的顶点为D . ☆ 求此抛物线的解析式(4分); ☆ 点P 为抛物线上的一个动点,求使 第24题

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

初二动点问题(面积)

如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P 从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒. (1)求NC,MC的长(用t的代数式表示); (2)当t为何值时,四边形PCDQ构成平行四边形; (3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由; (4)探究:t为何值时,△PMC为等腰三角形. 分析: (1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM; 四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解; (3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC 面积的一半,由此可得出是否存在符合条件的t值. (4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论: ①当MP=MC时,那么PC=2NC,据此可求出t的值. ②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值. ③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值. 综上所述可得出符合条件的t的值. 解答: 解:(1)∵AQ=3-t ∴CN=4-(3-t)=1+t 在Rt△ABC中,AC2=AB2+BC2=32+42 ∴AC=5 在Rt△MNC中,cos∠NCM= = ,CM= . (2)由于四边形PCDQ构成平行四边形

1.6因动点产生的面积问题(1)

1.6 因动点产生的面积问题 1、如图1,直线I 经过点A(1, 0),且与双曲线y=m (x >0)交于点B(2, 1).过点p(p,p _l)(p x > 1)作X 轴的平行线分别交曲线 y=m (x > 0)和y=_m (xv 0)于M 、N 两点. x x 求m 的值及直线I 的解析式; 若点P 在直线y = 2上,求证:△ PMBsA PNA ; 是否存在实数P ,使得S A AMN = 4S A AMP ?若存在,请求出所有满足条件的 请说明理由.(1) (2) (3) 若不存 P 的值; P 值 图 拓展:在本题情景下,△ AMN 能否成为直角三角形?若存在求出满足条件的 y x

2、如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0), (0,1).点D是线段BC上的 1 动点(与端点B、C不重合),过点D作直线y=-—x + b交折线OAB于点E. 2 (1 )记^ ODE的面积为S,求S与b的函数关系式; (2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1, 试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由. 拓展:把本题中的矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,那么这个菱形的最小面积为最大面积为 x 图1 x

3、如图1,在^ ABC 中,/ C = 90°, AC = 3, BC = 4, CD 是斜边 AB 上的高,点 E 在斜 边AB 上,过点E 作直线与^ ABC 的直角边相交于点 F ,设AE = *,△ AEF 的面积为y . (1) (2) ① 求 ② 当 (3) 存在直线EF 将^ ABC 的周长和面积同时平分?若存在直线 求线段AD 的长; 若EF 丄AB ,当点E 在斜边AB 上移动时, y 与x 的函数关系式(写出自变 量 x 的取值范围); x 取何值时,y 有最大值?并求出最大值. 若点F 在直角边AC 上(点F 与A 、C 不重合),点E 在斜边AB 上移动,试问,是否 EF ,求出x 的值;若不存在直

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

动点问题中的面积问题

动点问题中的面积问题 1.小明到商店买学习用品,已知买20支铅笔、3块橡皮、2本笔记本需要32元;买39支铅笔、5块橡皮、 3本笔记本需要58元;则小明买5支铅笔、5块橡皮、5本笔记本需要 元。 2.某步行街摆放有若干盆甲、乙、丙三种造型的盆景。甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙咱盆景由10朵红花、18朵黄花和25朵紫花搭配而成。这些盆景一共用了2900朵红花,3750朵紫花,由黄花一共用了 朵。 3.如图,AC 是正方形ABCD 的对角线,点O 是AC 的中点,点Q 是AB 上一点,连接CQ ,DP ⊥CQ 于 点E ,交BC 于点P ,连接OP ,OQ ;求证:(1)△BCQ ≌△CDP; (2)OP=OQ. 4.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=2,BC=6,AB=3.E 为BC 边上一点,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧.(1)当正方形的顶点F 恰好落在对角线AC 上时,求BE 的长; (2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFC 为正方形B ′EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B ′EFG 的边EF 与AC 交于点M ,连接B ′D ,B ′M ,DM ,设正方形B ′EFG 与△ADC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围. A B C D E O P Q

5.已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴 的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围; 6.如图,矩形ABCD中,AB=6,BC= 23,点O是AB的中点,点P在AB的延长线上,且BP=3。一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧。设运动的时间为t秒(t≥0)。(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值; (2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;

(完整版)汇编《因动点产生的面积问题》含答案

例1如图1,边长为8的正方形ABCD的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上A、C两点间的一个动点(含端点),过点P作PF⊥BC于点F.点D、E的坐标分别为(0, 6)、(-4, 0),联结PD、PE、DE. (1)直接写出抛物线的解析式; (2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由; (3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”. 请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标. 图1 备用图

如图1,边长为8的正方形ABCD 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上A 、C 两点间的一个动点(含端点),过点P 作PF ⊥BC 于点F .点D 、E 的坐标分别为(0, 6)、(-4, 0),联结PD 、PE 、DE . (1)直接写出抛物线的解析式; (2)小明探究点P 的位置发现:当点P 与点A 或点C 重合时,PD 与PF 的差为定值.进而猜想:对于任意一点P ,PD 与PF 的差为定值.请你判断该猜想是否正确,并说明理由; (3)小明进一步探究得出结论:若将“使△PDE 的面积为整数” 的点P 记作“好点”,则存在多个“好点”,且使△PDE 的周长最小的点P 也是一个“好点”. 请直接写出所有“好点”的个数,并求出△PDE 周长最小时“好点”的坐标. 图1 备用图 动感体验 请打开几何画板文件名“15河南23”,拖动点P 在A 、C 两点间的抛物线上运动,观察S 随P 变化的图像,可以体验到,“使△PDE 的面积为整数” 的点P 共有11个. 思路点拨 1.第(2)题通过计算进行说理.设点P 的坐标,用两点间的距离公式表示PD 、PF 的长. 2.第(3)题用第(2)题的结论,把△PDE 的周长最小值转化为求PE +PF 的最小值. 满分解答 (1)抛物线的解析式为21 88 y x =-+. (2)小明的判断正确,对于任意一点P ,PD -PF =2.说理如下: 设点P 的坐标为21(,8)8x x -+,那么PF =y F -y P =218 x . 而FD 2=22222222111+(86)+(2)(2)888x x x x x -+-=-=+,所以FD =2128 x +. 因此PD -PF =2为定值. (3)“好点”共有11个. 在△PDE 中,DE 为定值,因此周长的最小值取决于FD +PE 的最小值. 而PD +PE =(PF +2)+PE =(PF +PE )+2,因此当P 、E 、F 三点共线时,△PDE 的周长最小(如图2).

中考数学动点问题点动专题训练

中考数学运动问题点动专题训练 1、已知:如图,Rt△ABC中,∠C=90°,AC=6,BC=12.点P从点A出发沿AC向点C 以每秒1个单位长度的速度移动,点Q从点C出发沿CB向点B以每秒1个单位长度的速度移动,点P、Q同时出发,设移动的时间为t秒(t>0). ⑴设△PCQ的面积为y, 求y关于t的函数关系式; ⑵设点C关于直线PQ的对称点为D,问:t为何值时四边形PCQD是正方形? ⑶当得到正方形PCQD后,点P不再移动,但正方形PCQD继续沿CB边向B点以每秒 1个单位长度的速度移动,当点Q与点B重合时,停止移动.设运动中的正方形为MNQD,正方形MNQD与Rt△ABC重合部分的面积为S,求: ①当3≤t≤6时,S关于t的函数关系式; ②当6<t≤9时,S关于t的函数关系式; ③当9<t≤12时,S关于t的函数关系式. 2、如图,在矩形ABCD中,AB=3cm,BC=4cm。设P、Q分别为BD、BC上的动点,在 点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P、Q移动的时间为t(0<t≤4)。 (1)当t为何值时,PQ⊥BC? (2)写出△PBQ的面积S(cm2)与时间t(s)之间的函数表达式,当t为何值时,S有最大值?最大值是多少? (3)是否存在某一时刻,使PQ平分△BDC的面积. (4)△PBQ能否成为等腰三角形?若能,求t的值;若不能,说明理由。

3、如图,在梯形ABCD 中,3545AD BC AD DC AB B ====?∥,,,.动M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长. (2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形. 4、已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥? (2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分?若存在,求 出此时t 的值;若不存在,说明理由; (4)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一 时刻t ,使四边形PQP C '为菱形?若存在,求出此时菱形的边长;若不存在,说明理由. 5、在△ABC 中,,4,5,D BC CD 3cm,C Rt AC cm BC cm ∠=∠==点在上,且以=现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿AC 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动。过点P 作PE ∥BC 交AD 于点E ,连结EQ 。设动点运动时间为x 秒。 (1)用含x 的代数式表示AE 、DE 的长度; (2)当点Q 在BD (不包括点B 、D )上移动时,设△EDQ 的面积为2()y cm ,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)当x 为何值时,△EDQ 为直角三角形。 C 图①

最新数学中考专题复习——《动点问题》教案

中考专题复习——动点问题 【学情分析】 动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 【教学目标】 知识与技能: 1、利用特殊三角形的性质和定理解决动点问题; 2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动); 3、结合图形和题目,得出已知或能间接求出的数据。 过程与方法: 1、利用分类讨论的方法分析并解决问题; 2、数形结合、方程思想的运用。 情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。 【教学重点】 根据动点中的移动距离,找出等量列方程。 【教学难点】 1、两点同时运动时的距离变化; 2、运动题型中的分类讨论 【教学方法】教师引导、自主思考 【教学过程】 一、动点问题的近况: 1、动态几何 图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型----动点问题。所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。

中考数学动点问题(含答案)

中考数学之 动点问题 一、选择题: 1. 如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( ) 9 4x y O P D A 、10 B 、16 C 、18 D 、20 二、填空题: 1. 如上右图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°. 恒成立的结论有_______________________(把你认为正确的序号都填上)。 三、解答题: 1.(2008年大连)如图12,直角梯形ABCD 中,AB ∥CD ,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C 作CH ⊥AB ,垂足为H .点P 为线段AD 上一动点,直线PM ∥AB ,交BC 、C H 于点M 、Q .以PM 为斜边向右作等腰Rt △PMN ,直线MN 交直线AB 于点E ,直线PN 交直线A B 于点F .设PD 的长为x , EF 的长为y . ⑴求PM 的长(用x 表示); ⑵求y 与x 的函数关系式及自变量x 的取值范围(图13为备用图); ⑶当点E 在线段AH 上时,求x 的取值范围(图14为备用图). Q P O B E D C A

图 13 图 14 图 12 A H B C D A H B C D H M Q P D C B A 2.(2008年福建宁德)如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全 程用时8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动的时间为x 秒()80 <x<,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米. ⑴求y 1与x 的函数关系,并在图2中画出y 1的图象; ⑵如图2,y 2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P 的速度及AC 的长; ⑶在图2中,点G 是x 轴正半轴上一点(0<OG <6=,过G 作EF 垂直于x 轴,分别交y 1、y 2于点E 、F . ①说出线段EF 的长在图1中所表示的实际意义; ②当0<x <6时,求线段EF 长的最大值.

2014挑战中考数学压轴题_1.6因动点产生的面积问题

1.6 因动点产生的面积问题 例1 2013年苏州市中考第29题 如图1,已知抛物线2 12 y x bx c = ++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个. 图1 动感体验 请打开几何画板文件名“13苏州29”,拖动点C 在y 轴负半轴上运动,可以体验到,△EHA 与△COB 保持相似.点击按钮“C 、D 、E 三点共线”,此时△EHD ∽△COD .拖动点P 从A 经过C 到达B ,数一数面积的正整数值共有11个. 请打开超级画板文件名“13苏州29”,拖动点C 在y 轴负半轴上运动,可以体验到,△EHA 与△COB 保持相似.点击按钮“C 、D 、E 三点共线”,此时△EHD ∽△COD .拖动点P 从A 经过C 到达B ,数一数面积的正整数值共有11个. 思路点拨 1.用c 表示b 以后,把抛物线的一般式改写为两点式,会发现OB =2OC . 2.当C 、D 、E 三点共线时,△EHA ∽△COB ,△EHD ∽△COD . 3.求△PBC 面积的取值范围,要分两种情况计算,P 在BC 上方或下方. 4.求得了S 的取值范围,然后罗列P 从A 经过C 运动到B 的过程中,面积的正整数值,再数一数个数.注意排除点A 、C 、B 三个时刻的值. 满分解答

中考动点问题专题 教师讲义带答案

中考动点型问题专题 一、中考专题诠释 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。 二、解题策略和解法精讲 解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 三、中考考点精讲 考点一:建立动点问题的函数解析式(或函数图像) 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 (2015?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半

径的圆的面积S与点P的运动时间t的函数图象大致为() A.B.C.D. 思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论. 解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则: (1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1); (2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2). 综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2), 这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B 符合要求. 故选B. 点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择. 对应训练 1.(2015?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是() A.B.C.D.

6、因动点问题产生的面积问题

1.6 因动点产生的面积问题 例1 2013年苏州市中考第29题 如图1,已知抛物线2 12 y x bx c = ++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个. 图1 满分解答 (1)b =1 2 c + ,点B 的横坐标为-2c . (2)由2111 ()(1)(2)222 y x c x c x x c =+++=++,设E 1(,(1)(2))2x x x c ++. 过点E 作EH ⊥x 轴于H . 由于OB =2OC ,当AE //BC 时,AH =2EH . 所以1(1)(2)x x x c +=++.因此12x c =-.所以(12,1)E c c --. 当C 、D 、E 三点在同一直线上时, EH CO DH DO =.所以1212 c c c --= --. 整理,得2c 2+3c -2=0.解得c =-2或1 2 c =(舍去). 所以抛物线的解析式为213 222 y x x =--.

2018中考专题复习——动点问题

动点问题(讲义) 一、知识点睛 动点问题操作规程: 1. 研究______________. 2. 分析运动过程,分段,定范围. 根据起点、终点,确定_____________. 根据状态转折点确定_______________;常见状态转折点有拐点、碰撞点等. 3. 分析_____________、表达、建等式. 画出符合题意的图形,表达线段长,根据_____________建等式求解,结合范围验证结果. 二、精讲精练 1. 如图所示,菱形ABCD 的边长为6厘米,∠B =60°.从初始时刻开始,点P ,Q 同时从点A 出发,点P 以1厘米/秒的速度沿A →C →B 的方向运动,点Q 以2厘米/秒的速度沿 A → B → C → D 的方向运动,当点Q 运动到点D 时,P ,Q 两点同时停止运动.设P ,Q 运动x 秒时,△APQ 与△ABC 重叠部分的面积为y 平方厘米,解答下列问题: (1)点P ,Q 从出发到相遇所用时间是____________秒; (2)在点P ,Q 运动的过程中,当△APQ 是等边三角形时,x 的值为__________________; (3)求y 与x 之间的函数关系式. 2. 如图,已知△ABC 中,AB =AC =10厘米,BC =8厘米,点D 为AB 的中点. A B C D

(1)点P在线段BC上以3厘米/秒的速度由点B向点C运动,同时点Q在线段CA上由点C向点A 运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等? (2)若点Q以②中的运动速度从点C提前4秒出发,点P以原来的运动速度从点B出发,都沿△ABC 的三边逆时针运动,当点Q首次回到点C时停止运动.设△CQP的面积为S,点Q运动的时间为t,求S与t之间的函数关系式,并写出t的取值范围.(这里规定:线段是面积为0的三角形) 3.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发,沿CA以每秒1个单位长度的速 度向点A匀速运动,到达点A后立刻以原速度沿AC返回;点Q从点A出发,沿AB以每秒1个单位长度的速度向点B匀速运动.伴随着P,Q的运动,DE始终保持垂直平分PQ,且交PQ于点D,交

相关文档
相关文档 最新文档