文档库 最新最全的文档下载
当前位置:文档库 › 分段连续函数为黎曼可积的证法

分段连续函数为黎曼可积的证法

分段连续函数为黎曼可积的证法
分段连续函数为黎曼可积的证法

函数可积、原函数存在、变上限函数的关系解读(绝对原创)

有关函数可积、连续、间断、可导等问题的探究 一、 基本概念: ① 原函数: ()()()()()()' f x F x F x f x F x f x 已知函数是一个定义在某区间的函数,如果存在函数,使得在该区间内的任一点都有=,则在该区间内就称函数为函数的原函数。 ② 函数可积: ()[]()[]()[])())[]()(),,,,,,b a f x a b f x a b f x i f a x dx ii a b a b a b b ?定积分注:“可积”的说法只是针对定积分而言,即闭区间改成开区间后对定积如果在上的存在,我们就说在上可积分的值不影响,即定积分在开区间。即是上的可积函数。依然存在 ③ 变上限函数: ()[][]()[]()[](),,,,x a x a x a f x a b x a b f x dx x a b x f x dx a b f t dt ???设函数在区间上,并且设为上的一点,考察定积分如果积分上限在区间上 任意变动,则对于每一个取定的值,定积分有一个对应值,所以它在上定义了一个函数, 记积分上限函数连续 二、函数可积与原函数理论: ①函数可积的几个条件: ()[][]() )()[])()[])()[]()[])),,,,,,ii ii f x a b a b i f x a b ii f x a b f x a b iii f x b i a ?? ? ??? ? :在可积则它必在上界, 即函数可积函数在该区间上有界但有界函数不一定可积,如:狄利克雷函数在上连续 :在上至多有有限个第一类间注:函数可积的充分条件中的和中的“有界”是排除函数出现无穷间断点的情况,在能够保证函数 不存在断点且有界在上无穷间断点时可积 在上单,“有界条调且有”的界函数可积的必要条件函数可积的充分条件件可以舍去 ②可积函数的原函数的存在性讨论:

分段函数的几种常见题型和解法

函数的概念和性质 考点 分段函数 分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下: 1.求分段函数的定义域和值域 例1.求函数1222[1,0];()(0,2);3[2,);x x f x x x x +∈-?? =-∈??∈+∞? 的定义域、值域. 2.求分段函数的函数值 例2.已知函数2 |1|2,(||1)()1,(||1)1x x f x x x --≤?? =?>?+?求12[()]f f .

例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤?? =+<≤??-+>? 的最大值. 4.求分段函数的解析式 例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( ) 222(10) .()2(02)x x x A f x x +-≤≤?=?+<≤? 222(10) .()2(02)x x x B f x x --≤≤?=?-<≤? 222(12) .()1(24)x x x C f x x -≤≤?=?+<≤? 2 26(12) .()3(24)x x x D f x x -≤≤?=?-<≤? y x

分段函数的几种常见题型及解法

分段函数的几种常见题型及解法 分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下: 1.求分段函数的定义域和值域 例1.求函数1222[1,0]; ()(0,2);3 [2,);x x f x x x x +∈-?? =-∈?? ∈+∞?的定义域、值域. 【解析】 作图, 利用“数形结合”易知()f x 的定义域为 [1,)-+∞, 值域为(1,3]-. 2.求分段函数的函数值 例2.(05年浙江理)已知函数2 |1|2,(||1) ()1,(||1)1x x f x x x --≤?? =?>?+?求12 [()]f f . 【解析】 因为311222()|1|2f =--=-, 所以3 12 22 3 2 14[()]()1() 13 f f f =-== +-. 3.求分段函数的最值 例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤?? =+<≤??-+>? 的最大值.

【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, m ax ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有m ax ()4f x =. 4.求分段函数的解析式 例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( ) 222(10) .()2(02)x x x A f x x +-≤≤?=?+<≤? 222(10) .()2(02)x x x B f x x --≤≤?=?-<≤? 222(12) .()1(24)x x x C f x x -≤≤?=?+<≤? 2 26(12) .()3(24)x x x D f x x -≤≤?=?-<≤? 【解析】 当[2,0]x ∈-时, 1 2 1y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下 平移 1个单位, 得解析式为11 2 2 (2)111y x x = -+-= -, 所以 ()22 ( [f x x x = + ∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2 个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以 1 2 ()2([0,2])f x x x = +∈, 综上可得2 22(10) ()2(02)x x x f x x +-≤≤?=?+<≤?, 故选A . 5.作分段函数的图像 例5.函数|ln | |1|x y e x =--的图像大致是( ) y x

(完整版)黎曼积分与勒贝格积分的区别与联系

黎曼积分与勒贝格积分的区别与联系 数学系1302班第五组 07 樊萌 12 韩鸿林 19 兰星 21 李鸿燕 45 王堃 51 武相伶 54 许小亭 57 杨莉

黎曼积分与勒贝格积分的区别与联系 黎曼积分和勒贝格积分定义的比较 1、黎曼积分定义:设()x f 在[]b a ,上有界,对[]b a ,做分割,{}b x x x a T n =<<<==Λ10,其中令(){}i i x x x f M ?∈=,sup ,(){}i i x x x f m ?∈=,inf ,i i i x x x -=?+1,()11-=-=∑i i n i i x x m s ()11 -=-=∑i i n i i x x M S ,若有 dx s dx S b a b a ??= 则称()x f 在[]b a ,上黎曼可积. 2、勒贝格积分定义:, 0>?δ,作M y y y m n =<<=Λ10,,其中δ<--1i i y y ,M ,m 分别为()x f 在E 上的上界和下界,令(){}i i i y x f y x E ≤≤=-1,,()n i Λ,2,1=若i n i i mE y ∑=-→110 lim δ存在,则()x f 勒贝格可积. 3、一般的可测函数的积分定义为:设在可测集E 上可测,若记()(){}0,m ax x f x f =+ , ()(){}0,m in x f x f -=- ,则有()()()x f x f x f -+ -= ,若()dx x f E +? ,()dx x f E _ ?不同时为∞,则 ()x f 在E 上的积分确定且 ()()()dx x f dx x f dx x f E E E -+??? -=. 4、 简单函数的勒贝格积分定义:设()x f 是可测集E 上的非负简单函数,于是有对E 的划分i E ,n i Λ2,1=,()x f 在i E 上的取值为i c ,则()i E n i i c x f χ∑==1,定义()x f 的勒贝格积分为 ()i n i i E mE c dm x f ∑?==1 ,若()∞

数学分析9.6可积性理论补叙

第九章 定积分 6 可积性理论补叙 一、上和与下和的性质 性质1:对同一分割T ,相对于任何点集{ξi }而言,上和是所有积分和的上确界,下和是所有积分和的下确界.即 S(T)=∑=?∈n 1 i i x )f(ξsup i △x i , s(T)=∑=? ∈n 1 i i x )f(ξinf i △x i . 证:由s(T)≤∑=n 1 i i )f(ξ△x i ≤S(T),可知 相对于任何点集{ξi },上和与下和分别是全体积分和的上界与下界. 任给ε>0,在各个△i 上有上确界M i ,可选取点ξi ∈△i ,使f(ξi )>M i -a -b ε . ∴∑=n 1i i )f(ξ△x i >∑=??? ?? n 1i i a -b ε-M △x i =∑=n 1 i i M △x i -∑=n 1i i x △a -b ε=S(T)-ε. ∴S(T)=∑=?∈n 1 i i x )f(ξsup i △x i . 同理可证:s(T)=∑=? ∈n 1 i i x )f(ξinf i △x i . 性质2:设T ’为分割T 添加p 个新分点后所得到的分割,则有 S(T)≥S(T ’)≥S(T)-(M-m)p T ;s(T)≤s(T ’)≤s(T)+(M-m)p T . 即增加分点后,上和不增,下和不减. 证:将p 个新分点同时添加到T ,与逐个添加到T ,得到同样的T ’. 可先取p=1,则新分点将某小区间△k 分成两个小区间△k ’与△k ”. ∴S(T)-S(T 1)=M k △x k -(M ’k △x ’k +M ”k △x ”k ) =M k (△x ’k +△x ”k )-(M ’k △x ’k +M ”k △x ”k )=(M k -M ’k )△x ’k +(M k -M ”k )△x ”k . ∵m ≤M ’k (或M ”k )≤M k ≤M ,

高考真题精选4《分段函数》

历年高考数学真题精选(按考点分类) 专题八 分段函数(学生版) 一.选择题(共19小题) 1.(2010?天津)设函数2()2g x x =-,()4,() ()(),()g x x x g x f x g x x x g x ++??是(,)-∞+∞上的减函数,那么a 的取值范围 是( ) A .(0,1) B .1(0,)3 C .11[,)73 D .1[,1)7 5.(2006?山东)设12 3 2,2 ()log (1),2x e x f x x x -?的解集为( ) A .(1,2)(3?,)+∞ B .,)+∞ C .(1 ,2)?)+∞ D .(1,2) 6.(2005?山东)函数21sin(),10 (),0x x x f x e x π-?-<<=?? …若f (1)f +(a )2=,则a 的所有可能

几种特殊类型函数的积分

几种特殊类型函数的积分 一、有理函数的不定积分 1.化有理函数为简单函数 两个多项式的商所表示的函数)(x R 称为有理函数,即 m m m m m n n n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++= =------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且 0,000≠≠b a . 当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式. 对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一 个真分式之和的形式.例如 1 2)1(11222 4+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题. 设有理函数(1)式中m n <,如果多项式)(x Q 在实数范围内能分解成一次因式和二次质因式的乘积: μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= . 其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式) () (x Q x P 总可以分解成如下部分分式之和,即 β ααα)()()()() (1121b x B a x A a x A a x A x Q x P -++-++-+-=- λ ββ) ()(21 112q px x N x M b x B b x B ++++-++-+ - μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++ ++++++++++ - s rx x S x R s rx x S x R +++++++++ -2 122 2)(μμμ . (2)

函数黎曼可积性

函数黎曼可积性深究 罗俊逸 以下的“可积”皆指“黎曼可积”。 定义1:称有界函数f 为[a,b]上的次级离散函数(简称次离散函数), 若:1、f 仅有有限个间断点; 或:2、f 有无限个间断点,所有这些间断点仅有有限个聚点。 定义2:在闭区间[a,b]上,连续函数与次离散函数统称次级函数。 定义3:称有界函数f 为[a,b]上的超级离散函数(简称超离散函数),若f 有无限个间断点且它们有无限个聚点。 性质:[a,b]上的任何有界离散函数,要么是次离散函数,要么是超离散函数。(这是显然的) 根据定义和性质,[a,b]上的所有有界函数的集合关系如下: 定理1:所有次级函数可积。 推论1:若f 为[a,b]上的连续函数,则f 在[a,b]上可积。 推论2:若f 是[a,b]上只有有限个间断点的有界函数,则f 在[a,b]上可积。 定义4:设f 为[a,b]上的超离散函数,若存在[a,b]上的次级函数g ,任取I ∈ [a,b],g 在I 上有f 上的无穷个点,则称f 在[a,b]上可聚,g 称为f 的聚集函数(简称聚函数)。 定理2(可聚性定理):任何超离散函数f 可聚,即f 至少有一个聚函数。 定理3:超离散函数f 可积的充要条件.... 是:f 唯一可聚,即f 仅有唯一的聚函数。 定理4:设f 是定义在[a,b]上的可积超离散函数,其聚函数是g , 则:= 连续函数 次级离散函数 超级离散函数 次级函数 离散函数

补充: 为方便叙述,笔者自做了些定义,若有冒犯前辈的文献,请谅解。本文的主要思想是函数的划归,点有聚点,函数也可有聚函数。

微积分-函数、极限和连续

《微积分初步》单元学习辅导一(函数极限连续) 微积分初步学习辅导(一) ——函数、极限和连续部分 学习重难点解析 (一)关于函数的概念 1.组成函数的要素: (1)定义域:自变量的取值范围D ; (2)对应关系:因变量与自变量之间的对应关系f . 函数的定义域确定了函数的存在范围,对应关系确定了自变量如何对应到应变量.因此,这两个要素一旦确定,函数也就随之确定.所以说,两个函数相等(即)()(x g x f =)的充分必要条件是两个函数的定义域和对应关系都相等.若两者之一不同,就是两个不同的函数. 2.函数定义域的确定 对于初等函数,一般要求它的自然定义域,具体说来通过下面的途径确定: (1) 函数式里如果有分式,则分母的表达式不为零; (2) 函数式里如果有偶次根式,则根式里的表达式非负; (3) 函数式里如果有对数式,则对数式中真数的表达式大于零; (4)如果函数表达式是由若干表达式的代数和的形式,则其定义域为各部分定义域的公共部分; (5)对于分段函数,其定义域为函数自变量在各段取值的之并集. (6)对于实际的应用问题,应根据问题的实际意义来确定函数的定义域. 3.函数的对应关系 函数的对应关系f 或f ( )表示对自变量x 的一个运算,通过f 或f ( )把x 变成了y ,例如152)(3 +-==x x x f y ,则f 代表算式 1)(5)(2)(3+-=f 括号内是自变量的位置,运算的结果得到因变量的值. (二)关于函数的基本属性 函数的基本属性是指函数的单调性、奇偶性、周期性和有界性.了解函数的属性有助于我们对函数的研究. 理解函数属性中需要注意下面的问题: 1.关于函数的奇偶性:讨论函数的奇偶性,其定义域必须是关于原点对称的的区间,函数奇偶性的判别方法是函数奇偶性定义和奇偶函数的运算性质,即 奇函数±奇函数=奇函数

18年高考数学专题1.3一题多变分段函数求值或范围小题大做

专题1.3 一题多变分段函数求值或范围 【经典母题】已知函数f (x )=?????2x -1 -2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A.-74 B.-54 C.-34 D.-14 答案A. 【迁移探究1】设函数f (x )=????? ? ?? ??12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( ) A .(-∞,-3) B .(1,+∞) C .(-3,1) D .(-∞,-3)∪(1,+∞) 解:法一:当a <0时,不等式f (a )<1为? ????12a -7<1,即? ????12a <8,即? ????12a -3,此时-30ax +1,x ≤0,若f (4)=3,则f (x )>0的解集为( ) A .{x |x >-1} B .{x |-1-1且x ≠0} D.?????? ????x ??? -112 解:因为x >0时,f (x )=log 2x +a ,所以f (4)=2+a =3,所以a =1. 所以不等式f (x )>0等价于? ???? x >0,log 2x +1>0,即x >12,或????? x ≤0x +1>0,即-10的解集为?????? ????x ??? -112. 答案D

可积条件

§3 可积条件 教学目的:掌握可积判别准则及可积函数类。 重点难点:重点为可积性判别,难点为可积函数类的证明。 教学方法:讲练结合。 一 可积的必要条件 定理9.2 若函数f 在[]b a ,上可积,则f 在[]b a ,上必定有界. 证 用反证法.若f 在[]b a ,上无界,则对于[]b a ,的任一分割T ,必存在属于T 的某个小区间k k x f x ??在,上无界.在k i ≠各个小区间i ?上任意取定i ξ,并记 ().i k i i x f G ?= ∑≠ξ 现对任意大的正数M ,由于f 在k ?上无界,故存在k k ?∈ξ,使得 ().k k x G M f ?+> ξ 于是有 ()()()i k i i k k i n i i x f x f x f ?- ?≥?∑∑≠=ξξξ1 M G x x G M k k =-???+ 由此可见,对于无论多小的T ,按上述方法选取点集{}i ξ时,总能使积分和的绝对值大于任何预先给出的正数,这与f 在[]b a ,上可积相矛盾. 口 注:有界函数不一定可积。 例1 证明狄利克雷函数 ()?? ?=x x x D ,0,1为无理数 为有理数 在[]10, 上有界但不可积. 证 显然()[].1,0,1∈≤x x D 对于[]10, 的任一分割T ,由有理数和无理数在实数中的稠密性,在属于T 的任一小区间i ?上,当取i ξ全为有理数时, ()11 1 =?=?∑∑==n i i i n i i x x D ξ;当取i ξ全为无理数时,

()01 =?∑=i n i i x D ξ.所以不论T 多么小,只要点集{}i ξ取法不同(全取有理数或全取无理数), 积分和有不同极限,即()x D 在[]10,上不可积. 口 由此可见,有界是可积的必要条件.以后讨论函数的可积性时,总是假设函数是有界的. 二 可积的充要条件 要判断一个函数是否可积,固然可以根据定义,直接考察积分和是否能无限接近某一常数,但由于积分和的复杂性和那个常数不易预知,因此这是极其困难的.下面即将给出的可积准则只与被积函数本身有关,而不涉及定积分的值. 设{} n i T i ,,2,1 =?=为对[]b a ,的任一分割.由f 在[]b a ,上有界,它在每个i ?上存在上、下确界: ()().,,2,1,inf ,sup n i x f m x f M i i x i x i ===?∈?∈ 作和 ()(),,1 1 i n i n i i i i x m T s x M T S ?=?= ∑∑== 分别称为f 关于分割T 的上和与下和(或称达布上和与达布下和,统称达布和).任给 ,,,2,1,n i i i =?∈ξ,显然有 ()()().1 ∑=≤?≤ n i i i T S x f T s ξ 与积分和相比较,达布和只与分割T 有关,而与点集{}i ξ无关.由不等式(1),就能通过讨论上和与下和当0→T 时的极限来揭示f 在[]b a ,上是否可积.所以,可积性理论总是从讨论上和与下和的性质入手的. 定理9.3 (可积准则) 函数f 在[]b a ,上可积的充要条件是:任给0>ε,总存在相应的一个分割T ,使得 ()()ε<-T s T S 设i i i m M -=ω称为f 在i ?上的振幅,有必要时也记为f i ω。由于 S(T )-()= T s ∑=n i i 1 ω i χ?(或记为i T i x ?∑ω), 因此可积准则又可改述如下: 定理3.9', 函数f 在[]b a ,上可积的充要条件是:任给0>ε,总存在相应的某一

§6-3 闭区间上连续函数可积性的证明.doc.gzip

§6-3 闭区间上连续函数可积性的证明 函数)(x f 在区间],[b a 上的一致连续性,使得对于任意给定的正数ε,都有仅与ε有关的正数)(εδδ=,当把区间],[b a 划分为有限个长度都不超过δ的小 区间1[,](1)i i x x i n -≤≤时(图6-3), 在每一个小区间],[1i i x x -上,函数的最大值i M 减去最小值i m 的差i ω(称为振幅)不会超过 ε,即)1(n i m M i i i ≤≤≤-=εω。令 () 1 (P)n i i i s m x == ?∑小和, 1 (P)n i i i S M x ==?∑大和() 则有 1 1 0(P)(P)()()n n i i i i i i S s M m x x b a ε ε==≤-= -?=?=-∑∑ 即 lim [(P)(P)]0n x S s ?→-= (6-1) 正是有这个结论,我们才证明了闭区间上连续函数的可积性。 证 设)(x f 是闭区间],[b a 上的连续函数。对于区间],[b a 的任何两个划分方法P '和P '',总有)P ()P (''≤'S s 。 为了说明这个结论,不妨认为0)(≥x f 。如图6-4①,对于任意划分P ',小和)P ('s 对应的那些内接小矩形合起来含在曲边梯形AabB 内。如图6-4②,对于任意划分P '',大和)P (''S 对应的那些外接小矩形合起来能够覆盖住曲边梯形AabB 。因此,总有)P ()P (''≤'S s 。 其次,因为所有可能的小和构成的集合{})P ('s 有上界)P (''S ,所以有最小上界σ,于是)P (''≤S σ;而因为对于所有可能的大和构成的集合{})P (''S 有下界σ,所以有最大下界σ, 于是σσ≤。 因此,有)P ()P (''≤≤≤'S s σσ。 特别,对于区间[,]a b 的任意划分P ,就有 )P (P)(S s ≤≤≤σσ 或 )P (P)(0s S -≤-≤σσ 图6-4 ① · · · · · · b a ] [ x 图6-3 1i i x x -

高三数学分段函数

2.11分段函数与绝对值函数 ——随着高考命题思维量的加大,分段函数成了新的热点和亮点,单设专题,以明析强化之 一、明确复习目标 了解分段函数的有关概念;掌握分段函数问题的处理方法 二.建构知识网络 1.分段函数:定义域中各段的x 与y 的对应法则不同,函数式是分两段或几段给出的. 分段函数是一个函数,定义域、值域都是各段的并集。 2.绝对值函数去掉绝对符号后就是分段函数. 3.分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。 4.分段函数的处理方法:分段函数分段研究. 三、双基题目练练手 1.设函数f (x )=???? ?≥--<+, 11 4,1) 1(2 x x x x 则使得f (x )≥1的x 的取值范围为 ( ) A.(-∞,-2]∪[0,10] B.(-∞,-2]∪[0,1] C.(-∞,-2]∪[1,10] D.[-2,0]∪[1,10] 2.(2006安徽)函数2 2,0 ,0x x y x x ≥?=? -

4.(2006全国Ⅱ)函数19 1 ()n f x x n == -∑的最小值为 ( ) (A )190 (B )171 (C )90 (D )45 5.(2005北京市西城模拟)已知函数f (x )=?? ?<-≥-), 2(2 ), 2(2 x x x 则f (lg30-lg3) =___________;不等式xf (x -1)<10的解集是_______________. 6. (2006浙江)对R b a ∈,,记则{}? ??≥=b a b b a a b a <,,,max 则函数 (){}()R x x x x f ∈-+=2,1max 的最小值是 . 7. 已知函数1 3 2 (0)()(01)log (1) x x f x x x x ?<=≤≤>??,当a <0时,f {f [f (a )]}= 8.函数2 21(0) ()(0) x x f x x x ?+≥?=?-

平方可积函数

平方可积函数的认识 1、平方可积函数的来源与定义 平方可积函数是连续物理过程,而连续是由离散情况变化而来,因此这里将首先引入离散情况。 现在考虑一个问题:要测量某个物理量在不同条件下的值,设有N 个温度值,第一次测量结果是: (1)(1)(1) 12,,,N a a a 第二次测量结果是: (2)(2)(2)12,,,N a a a 评估两次测量的偏差,最直接的设想是计算每个温度下测量偏差之和: (1)(2)1 1()N k k k a a N =-∑ 其实就是平均值,但是这并不能反映真实情况,因为各项有正有负可能抵消,在 极端的情况下,平均值可以为0,而实际上两次测量可以存在很大误差。于是,采用: (1)(2) 11N k k k a a N =-∑ 这虽然避免了正负相消,但是绝对值是很不方便运算的,因此考虑更常见的 (1)(2)21 1 ()N k k k a a N =?= -∑ 但是?的量纲很明显的不对,于是对上式进行开方得到: 1 (1)(2)221 1 [ ()]N k k k a a N δ==-∑ δ的量纲显然与测量值(1)k a 、(2)k a 一致,因此它是合理的。 ?称为方差,δ称为标准差。上述考虑的是离散情况下,如果观测的物理量对温度的变化是连续进行的,则相应的会有两个函数(1)()f x 和(2)()f x 。类似于上式,存在函数平方的积分(1)(2)2[()()]b a f x f x dx -?。总之,经过发现可以得出把一 个函数平方再积分,用这个量来刻画函数性质在种种物理过程中是十分有效的。 由于已知黎曼积分本质上是适用于连续函数的积分,但是由于统计思想的深入,不得不考虑连续函数或不光滑函数。因此,这里的积分考虑的是勒贝格积分理论。 定义1设()f x 是E R ?上的可测函数,而且2 ()f x 在E 上可积,这种函数的集合称为平方可积函数空间,记作2()L E (或简单记作2L )。

分段函数连续性讨论书写格式

讨论分段函数在分段点的连续性与可导性涉及分段函数概念、连续概念、导数概念,既是重点,又是难点。建议同学们认真模仿以下3道题的解答过程,注意讨论的函数是整个分段函数()f x ,而不是其中的某段函数(以下解答中标红的不要省了);务必精准写出连续、导数定义;答题过程较长时最后要加以总结. 例1:讨论20,1,()0 1,x x e f x x ≠?-=?=?在0x =的连续性与可导性. 解: (0)1f =. 020 li l m im (1)()0x x x f x e →→=-=. 因0 lim ()(0)x f x f →=,故 ()f x 在0x =不连续,从而也不可导. 例2:讨论20,1,()0sin , x x e f x x x ≤?-=?>?在0x =的连续性与可导性. 解:先讨论连续性. (0)0f =. 因020li l m(1im )0()x x x f x e --→→=-=,且00 lim l s i m ()n 0i x x x f x ++→→==, 得0 lim ()0x f x →=. 因0 lim ()(0)x f x f →=,故 ()f x 在0x =连续. 再讨论可导性. 因021()(0)(01lim )lim 02x x x f x f f x e x --→-→-'=--==, 但00sin l ()(0)(0)im l 1im x x f x f x f x x ++ +→→==-=', 得1()(0) (1)lim 0x f x f f x →-'=-不存在,故 ()f x 在0x =不可导. 总之, ()f x 在0x =连续,但不可导.

勒贝格可积性准则证明

MATH255:Lecture10 The Riemann Integral:Lebesgue’s Integrability Criterion De?nition.A set S of real numbers is said to have measure zero if,for every >0,the set S is contained in a countable union of intervals,the sum of whose lengths is less than . Theorem.If S1,S2,...,S n,...are each of measure zero then their union is also of measure zero. Proof.Each set S k can be covered by a countable union of intervals,the sum of whose lengths< /2k. The union of all the intervals so obtained is also countable and the sum of the lengths is less than ∞ 11/2k= . QED A countable set is of measure zero but there are uncountable sets of measure zero.For example, the Cantor set consisting of all the real numbers in the interval[0,1]whose representation to the base 3contain only0or2,is an uncountable set of measure zero.The proof of this is left as an exercise. De?nition.Let f be a bounded function de?ned on a subset S?R.The oscillation of f on S is ?f(S)=sup x,y∈S |f(x)?f(y)|. If T?S,we have?f(T)≤?f(S).Let N r(c)={x||x?c|0 ?f(S∩N r(c)). Exercise1.If f is a bounded function on S and c∈S,then f is continuous at c??ωf(c)=0. Theorem(Lebesgue’s Integrability Criterion).A bounded function on[a,b]is Riemann integrable if and only if the points of discontinuity of f form a set D of measure zero. Proof.(?)Let >0be given and let D i be the set of points x withωf(x)≥ /2i.Let P be the partition{a=x00such that N r(x)?(x k?1,x k)so that 2i ≤ωf(x)≤?f(N r(x))≤M k?m k. If T is the set of these k with D i∩(x k?1,x k)=?,it follows that 2i k∈T ?x k≤ n k=1 (M k?m k)?x k< 4i . Hence k∈T [x k?x k?1]< /2i and D i? k∈T [x k?1,x k].This shows that each D i is contained in the union of a?nite number of intervals,the sum of whose lengths is less than /2i.Since D= D i,it follows that D is of measure zero. (?)Let M>0be an upper bound for|f|on[a,b]and let >0be given.Since D is of measure zero, it can be covered by open intervals J i,(i≥1),the sum of whose lengths is less that /4M.We now de?ne a functionδon[a,b]as follows: 1.If t∈D,there is a k such that t∈J k.Thus there is aδ(t)>0such that Nδ(t)(t)?J k. 2.If t/∈D,there is aδ(t)>0such that x∈Nδ(t)(t)?|f(x)?f(t)|< /4(b?a).

高考中的分段函数

高考中的分段函数 云南省下关第一中学 郭润仙 分段函数既能考查函数的概念及性质,又能体现分类讨论,数形结合的数学思想方法,故成为高考命题热点之一.下面就高考中分段函数的题型及解题策略做一归纳,希望同学们能有所收获. 一. 求分段函数的函数值 已知分段函数解析式求对应的函数值,这类问题是高考数学试题最常考的题型,解决这类问题的关键就是弄清自变量所在区间,然后代入对应区间的解析式求值;若是求"层层套"的函数值,要从内到外逐层计算. 例1.(2015 理5)设函数211log (2),1, ()2,1, x x x f x x -+-,所以 22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C . 例2(2015陕西文4) 设 ,则 ( ) A . B . C . D . 【答案】 例3(2015 全国课标1文10)已知函数1222,1 ()log (1),1 x x f x x x -?-≤=?-+>? , 且()3f a =-,则(6)f a -= ( ) A.74- B.54- C.34- D.14 - 【答案】A 【解析】试题分析:∵()3f a =-,∴当1a ≤时,1 ()2 23a f a -=-=-,则121a -=- ,此

等式显然不成立,当1a >时,2log (1)3a -+=-,解得7a =, ∴(6)f a -=(1)f -=117 224 ---=- ,故选A. 二. 求分段函数的值域或最值 已知分段函数解析式求值域或最值,是高考数学试题的最基本题型.解决这类问题的关键就是求出分段函数中每一个区间对应函数值的范围或每一个区间上的最值(再进行比较),借助于图象也是解决这类问题的常用方法. 例4(2015浙江文12)已知函数,则 , 的最小值是 . 【答案】 例5( 2015福建理14)若函数 ( 且 )的值域是 ,则实数 的取值范围是 . 【答案】 三.分段函数的性质的判断与应用 1. 分段函数的单调性: 分段函数的单调性必须每一段都单调,而且要关注分段点处的情况. 2. 分段函数的奇偶性:必须对每一段的奇偶性进行单独讨论,由函数及偶性的定义,得出奇 偶性的结论,或由函数图象来判断. 例6(2014福建理7)已知函数()? ??≤>+=0,cos 0 ,12x x x x x f 则下列结论正确的是( ) A.()x f 是偶函数 B. ()x f 是增函数 C.()x f 是周期函数 D.()x f 的值域为[)+∞-,1

函数的连续性复习--例题及解析

分段函数的极限和连续性 例 设???????<<=<<=) 21( 1)1( 21)10( )(x x x x x f (1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间. 分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续. 解:(1)1lim )(lim 1 1==--→→x x f x x 11lim )(lim 1 1==++→→x x x f ∴1)(lim 1 =→x f x 函数)x f (在点1=x 处有极限. (2))(lim 21)1(1 x f f x →≠= 函数)x f (在点1=x 处不连续. (3)函数)x f (的连续区间是(0,1),(1,2). 说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0 00x f x f x f x x x x x x →→→+-=才存在. 函数的图象及连续性 例 已知函数2 4)(2+-=x x x f , (1)求)x f (的定义域,并作出函数的图象;

(2)求)x f (的不连续点0x ; (3)对)x f (补充定义,使其是R 上的连续函数. 分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0 x f x x →,再让)(l i m )(0 0x f x f x x →=即可. 解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22, 当2≠x 时,.22 4)(2-=+-=x x x x f 其图象如下图. (2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 2 2-=-=-→-→x x f x x 因此,将)x f (的表达式改写为 ?? ???-=--≠+-=)2(4)2(24)(2x x x x x f 则函数)x f (在R 上是连续函数. 说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致. 利用函数图象判定方程是否存在实数根

相关文档
相关文档 最新文档