文档库 最新最全的文档下载
当前位置:文档库 › 公差分析的方法与比较

公差分析的方法与比较

公差分析的方法与比较
公差分析的方法与比较

公差分析的方法與比較

PSBU-RDD4-MDD 工程師朱誠璞 alex.chu@https://www.wendangku.net/doc/7f5352315.html,

2002/11/14 PM 04:32 version 1.1

A.公差分析的傳統方法( I)----Worst Case 法

首先,必須解釋在公差分析時所用的兩種方法: 公差合成與公差分配.

而在以下兩個例子中用來運算公差範圍的數學方法為 Worst Case 法,這是傳統的做法 :

1.公差的合成(使用Worst Case 法運算)

Part A 與 Part B 必須接合在一起,合成後的尺寸與公差範圍會是如何呢?

在這個例子中,可以得到一個很直觀的結果------當Part A 與 Part B相接後所得到的 Part A+B 長度和公差範圍都是Part A + Part B 的結果.

也就是說:合成後的公差範圍會包括到每個零件的最極端尺寸,無論每個零件的尺寸在其公差範圍內如何變化,都會 100% 落入合成後的公差範圍內.

聽起來相當合理,不是嗎?

稍後會解釋這樣做的缺點.

2.公差的分配(使用Worst Case 法運算)

現在 Part A+B 必須放入 Part C 的開口處,而開口的尺寸與公差如圖所示,那麼 Part A 與 B 的分別的公差範圍又應該是多少呢?

我們以最簡單的方法 : 平均分配給其中所有的零件,所以 Part A 與 B 各得50 %,當然也可以按照其他的比例來調整,並沒有絕對的優劣之分.

B. Worst Case法的問題

1.控制公差範圍難以被控制在設計的需求範圍中.

由於 Worst Case 法合成時要求100 % 的可以容許單一零件的公差變化,會造成合成後的公差範圍變的較大,對設計者而言,是非常容易造成零件組裝後相互干涉或間隙過大.

在以上的例子中,如果要將 Part A+B 放入 Part C 時,會發生過緊干涉的情況,因為 Part C 最窄只有 10.75 mm,但是 Part A+B 卻可能有 11.50 mm的情況則有 0.75 mm 的干涉;另一方面,當 Part C 最寬11.25 mm,而 Part A+B 為10.5 mm 的最小值時,又有 0.75 mm的間隙產生.由此可知公差範圍過大所造

成的難以控制的缺點.

2.決定公差範圍的過程缺乏客觀及合邏輯的程序

以此類方式決定的公差範圍尺寸,必須仰賴設計者的經驗,且必須經過多次的試作才可真正決定;若生產條件改變:如更換生產廠商,模具修改…等,皆有可能使原訂之公差範圍無法達成,而被迫放寬或產生大量不良品的損失.

3.公差範圍與產品生產的品質水準無關

對生產者而言,公差範圍越大越容易生產,同時品質要求也較低;但對設計者而言,公差範圍給定越大,品質水準低,則越難達成功能上的需求;由於此種矛盾的情況無法以此方式解決,造成設計者與生產者的衝突.

C.其他的公差分析方法 ---基礎知識

由於上述的缺點,使得Worst Case法只能被視為一種粗略的近似方法;以下將介紹兩種較接近真實世界的公差分析方法,但是,我們必須先有一些基礎知識才能瞭解這些方法的運作方式.

1.何謂不可調整的公差範圍?

在做任何的公差分析前,必須清楚的定義哪些是可由設計者調整的,而哪些又不是;在這裡,我們認為只有兩種是不可以被更改的:

a.機械上的製造公差範圍:

例如各種工具機的精度不同,如果以CNC加工的精度來要求鈑金零件,

則勢必吃力不討好.

b.客戶或規範上要求的公差範圍

例如1U rack mount 機殼的高度,ATX主機板的孔位;特別是有相容性問

題發生時.

2.何謂常態分佈曲線?

我們以一個簡單的例子說明:在一群人中身高與人數的分佈情況.

簡單的說,就是中等身材的人應該最多,很高或很矮的人很少;在統計學中

會利用這條曲線來模擬真實的情況並藉此進行下一步的分析,當我們在對於工廠所生產出來的一批產品,測量相同的一個尺寸,我們也會得到類似的分佈曲線;例如量測1000件長度為10mm的零件,正常狀況下一定會得到長度為10 mm的零件數目最多;而長度是20 mm或 1 mm 的零件出現的機

會應該是微乎其微.

在數學定義上,只要知道兩個條件就可以畫出這條曲線,如圖所示:

在未來的討論中我們會利用下面的兩項特性進行分析:

a.中間值 μ :曲線的對稱軸的位置,這決定了整條曲線的位置

b.標準差σ :由中間值到曲線的曲率正負號改變點的距離,這決定了曲線

的分散或集中程度.

這些特性的來源,其實就是在微積分中,以此曲線的方程式求導數為0所得的解(參照附錄A的說明),有興趣的人可以到這個網頁進一步了解: https://www.wendangku.net/doc/7f5352315.html,/CE597N/1997F/students/michael.a.kropins ki.1/project/tutorial

3.何謂 “6-σ” ?

在我們運用常態分佈曲線來模擬並分析真實的情況時,如果我們加入上限及下限,且運用於品質管制的領域時,而被提出的一種品質水準的規範: “在一批生產出來的產品中,如其允收上限與下限的範圍是其常態分佈曲線σ的6倍,則可確保有 99.9999998 % 的產品是合格的.” 此種方式稱為 6-σ的品質水準要求,如下圖,這是一個簡單的表示方法 :

D. 傳統的公差分析方法 ( II )---統計公差分析法

我們一樣使用合成與分配的兩個例子來解釋:

1.合成:我們一樣用前面所提的例子來看,現在實際上我們要做的是如何疊

加這兩條曲線:

毫無疑問的,疊加以後,我們還是會得到一條類似的曲線,但是疊加後的上下限應該在那裡??

由常態分佈曲線的數學特性(參照附錄A的說明),我們有一個很方便的數學式:

Tasm = √(T12+ T22+ T32+ T42+…….) T 代表上限或下限的公差, 所以結果是 :

Tasm = √( 0.22+0.32) = 0.36055128... ~ 0.361

我們可以知道合成後的情況應該是: 11+/- 0.361 mm.

2.分配:

同樣道理,用於分配時,可以得到的結果之一:

Tasm = 0.25 = √(T12+ T22) ? T1 = T2= 0.176776695…~ 0.177 也就是說: Part A = 5 +/- 0.177

Part B =6 +/- 0.177

E.比較兩種傳統公差分析的問題與改善方法:

首先我們比較 Worst case 與統計公差法所得的結果:

第一,我們可以看出公差合成後所得的公差範圍明顯縮小了,對設計者而言,較小的公差範圍意味著較準確的組裝與配合,所以累積下來的誤差也會減少,可以得到較佳的設計.

第二,在公差分配的情況時,每個零件所得到的公差範圍變大了,對製造者而言,較大的公差範圍意味著較容易製作及控制生產品質,十分有利於製造者.

所以,統計公差法顯然優於 Worst Case 法,但是是否完全解決了問題呢?

答案是“ NO “,統計公差仍然會發生相同的問題,由其是在疊加或分析的零件很多時,請參照附錄C所提的例子,我們依舊需要進行Try and Error 的過程,以求得設計和製造上的平衡點;在這篇文章中利用加入 weight factor的方法修改原有公差以其放大或縮小原有公差範圍來達成設計及製造的需求.

另一方面,統計公差法,仍然無法與實際生產的品質有任何關聯,所以仍舊會發生,同樣的公差範圍下,甲廠商可以達成,乙廠商卻叫苦連天的情況.

F.新的公差分析方法( I )---加入 6-σ概念的統計公差分析法

為了修正上一節所提到的問題,我們導入 6-σ品質水準的概念進入公差分析的過程中,這樣可以取得一個在理論(設計者)與實際(生產者)都可接受的一個平衡點.

首先我們必須加入一個條件: 就是生產者的品質水準是滿足 6-σ的要求.

(如果不滿足就不行嗎?當然不是,我們會在後面再檢討這個條件.)

1.合成:

仍舊是最早的例子,但是現在應該是這樣的分佈狀況,以滿足剛剛的加入條件:

由上圖,可以得知 : T1= 0.2 = 6σ1 ?σ1 =0.2/6 =0.03333…~0.03333

T2=0.3 =6σ2 ?σ2 = 0.3/6 = 0.05

為什麼要求個別零件的σ值呢? 因為對於一個疊加後的常態分佈曲線而言,它的σ值與個別零件的σ值正好有以下的關係(參照附錄A的說明):

σasm = √(σ12+σ22+σ32+σ42+….)

所以我們可以得到合成後的σ值:

σasm =√( 0.033332 + 0.052) = 0.06007….~0.06007

請注意,合成後的依然要遵守6-σ品質水準的概念,所以:

Tasm = 6σasm = 6 x 0.06007 = 0.36042

合成後的情況應該是: 11+/- 0.36042 mm.

2.分配:

同樣的方法,公差分配時,得到的結果:

Tasm = 0.25 = 6σasm

σasm =0.041666~0.04167 =√(σ12+σ22) ?σ1 =σ2= 0.02946… ~ 0.0295

T1=T2= 6 x 0.0295 = 0.177

也就是說: Part A = 5 +/- 0.177

Part B =6 +/- 0.177

G..兩種統計公差方法的比較:

我們會馬上發現兩種方法的結果是完全相同的!

也就是說在使用統計方式計算的公差範圍是事實上,就是完全要求生產者的品質水準是符合 6-σ的結果,那麼使用新方法又有什麼優點呢?

其實在工廠端要求的品質水準並非完全都是要到 6-σ如此之高的地步,以Sun Microsystem 為例,在模具驗收時,成品的製程水準至少需要Cpk = 1.33,也就是說大約是 4-σ ,( 我們會在下一節中解釋 Cpk的意義,以及對我們的影響)而使用新方法,設計者可以自由的調整所需要的品質水準,並且反映到公差範圍之中,而達到一個生產者與設計者都可以接受的平衡點,以下就是調整過的例子:

生產 part A 的廠商有 4-σ的品質水準,所以:

T1= 0.2 = 4σ1 ?σ1 =0.2/4 =0.05

生產 part B 的廠商仍為 6-σ的品質水準,所以:

T2=0.3 =6σ2 ?σ2 = 0.3/6 = 0.05

所以我們可以得到合成後的σ值:

σasm =√( 0.052 + 0.052) = 0.0707…~0.0707

組裝時的品質水準要達到 6-σ :

Tasm = 6σasm = 6 x 0.0707= 0.4242

所以合成後的設計尺寸與公差應為: 11 +/- 0.4242

在這裡隱藏了一個很重要的觀念: 以統計和 6-σ的方法應用於公差範圍的決定,可使設計者( RD ) 與品管 (QC) 使用相同的標準與語言去解決生產的問題,以上面的例子而言,當生產 part A 的廠商只有4-σ的生產水準時, σ值會變大則組裝後的公差範圍就應隨之變大;反過來說,當廠商生產品質高時, σ值會變小,我們就會獲得組裝後較小的公差變化範圍,這與品管人員的努力方向是一致的,且設計者也可以確知自己的設計是否會過嚴苛或過於寬鬆.

此外使用此種方式具有相當大的彈性,可以針對不同的品質要求,而有不同的結果,而且一切都有理可循,不必完全倚靠經驗.

H.新的公差分析方法( I )---完整的 6-σ公差分析法

在前面所舉的例子中,我們所用的都是完美的常態分佈曲線,但是實際生產時我們所面對的卻不見得是如此理想的狀況:

也就是說,分佈曲線的中心與設計者所定的中心存在一個偏移量 K,在這種狀況下我們要計算σ值,就必須藉由 Cp 和 Cpk (製程能力指標)來做轉換:

Cp的定義:

Cpk的定義:

一般實務上,品管人員都會掌握Cp或 Cpk 值的變化,藉以評估生產的品質差異,所以在取得實際生產的品質資料時,得到Cp和 Cpk 值的機會較大且符合真正的情況.在這裡留個小小的問題: Cpk = 1.33 ,K=0時, part A 的σ值為何?

而其餘的運算皆與上一節所提的相同,在這裡不再重覆計算.

I.理論與實務----ADCATS Tolerance Spreadsheets

以上所提到的理論基礎,全部來自於這個網頁: https://www.wendangku.net/doc/7f5352315.html,/home.html 這是美國猶他州( Utah ) Brigham Young University 機械工程學系的Dr. Ken Chase 所建立的,他發表過許多以電腦輔助做公差分析的論文, PTC( 參數科技)的 CE/Tol,是目前少數能做 3D公差分析的軟體,就是由這位教授的學生開發完成的,CE/Tol訓練教材的分析範例就是來自 Chase 教授的論文.

在網頁中提供了一個 excel sheet, 就是實際運用上述理論的產物,請到這裡下載: CATS 1D Tolerance Stack-up :

https://www.wendangku.net/doc/7f5352315.html,/WWW/ADCATS/software/

實際上我們已運用於 Sun Microsystem 的 project 中,在機殼設計所碰到的問題中,1D的分析就幾乎可以含蓋全部的狀況;此外使用它的優點在於此 sheet並非由我們發展,而由客觀的第三者提供,我們不必花費太多精力與客戶溝通分析進行的理論,再者此sheet 免費,也無需軟體購買成本.

J.附錄.

A. 這些理論都應該在此附上證明,這部份將於最近完成.

B. CATS 1D 的power point file.

C. “Tolerance Allocation Methods for Designers” ADCATS Report No.99-6 Dr.

Kenneth W. Chase 1999

公差分析

例子1公差(Tolerancing) 1-1概论 公差分析将有系统地分析些微扰动或色差对光学设计性能的影响。公差分析的目的在于定义误差的类型及大小,并将之引入光学系统中,分析系统性能是否符合需求。Zemax内建功能强大的公差分析工具,可帮助在光学设计中建立公差值。公差分析可透过简易的设罝分析公差范围内,参数影响系统性能的严重性。进而在合理的费用下进行最容易的组装,并获得最佳的性能。 1-2公差 公差值是一个将系统性能量化的估算。公差分析可让使用者预测其设计在组装后的性能极限。设罝公差分析的设罝值时,设计者必须熟悉下述要点: ●选取合适的性能规格 ●定义最低的性能容忍极限 ●计算所有可能的误差来源(如:单独的组件、组件群、机械组装等等…) ●指定每一个制造和组装可允许的公差极限 1-3误差来源 误差有好几个类型须要被估算 制造公差 ●不正确的曲率半径 ●组件过厚或过薄 ●镜片外型不正确 ●曲率中心偏离机构中心

●不正确的Conic值或其它非球面参数 材料误差 ●折射率准确性 ●折射率同质性 ●折射率分布 ●阿贝数(色散) 组装公差 ●组件偏离机构中心(X,Y) ●组件在Z.轴上的位置错误 ●组件与光轴有倾斜 ●组件定位错误 ●上述系指整群的组件 周围所引起的公差 ●材料的冷缩热胀(光学或机构) ●温度对折射率的影响。压力和湿度同样也会影响。 ●系统遭冲击或振动锁引起的对位问题 ●机械应力 剩下的设计误差 1-4设罝公差 公差分析有几个步骤须设罝: ●定义使用在公差标准的」绩效函数」:如RMS光斑大小,RMS波前误差,MTF需求, 使用者自定的绩效函数,瞄准…等 ●定义允许的系统性能偏离值 ●规定公差起始值让制造可轻易达到要求。ZEMAX默认的公差通常是不错的起始点。 ●补偿群常被使用在减低公差上。通常最少会有一组补偿群,而这一般都是在背焦。 ●公差设罝可用来预测性能的影响 ●公差分析有三种分析方法: ?灵敏度法 ?反灵敏度法

尺寸链原理及应用

第五章尺寸链原理及应用 在机械产品设计过程中,设计人员根据某一部件或总的使用性能,规定了必要的装配精度(技术要求),这些装配精度,在零件制造和装配过程中是如何经济可靠地保证的,装配精度和零件精度有何关系,零件的尺寸公差和形位公差又是怎样制定出来的。所有这些问题都需要借助于尺寸链原理来解决。因此对产品设计人员来说尺寸链原理是必须掌握的重要工艺理论之一。 §5-1 概述 教学目的:①尺寸链的基本概念,组成、分类; ②尺寸链的建立与分析; ③尺寸链的计算 教学重点:掌握工艺尺寸链的基本概念;尺寸链组成及分类 教学难点:尺寸链的作图 一、尺寸链的定义及其组成 1. 尺寸链的定义 由若干相互有联系的尺寸按一定顺序首尾相接形成的尺寸封闭图形定义为尺寸链。 在零件加工过程中,由同一零件有关工序尺寸所形成的尺寸链,称为工艺尺寸链,如图5-1所示。在机器设计和装配过程中,由有关零件设计尺寸形成的尺寸链,称为装配尺寸链,如图5-2所示。 图5-1 工艺尺寸链示例 图5-1是工艺尺寸链的一个示例。工件上尺寸A1已加工好,现以底面A定位,用调整法加工台阶面B,直接保证尺寸A2。显然,尺寸A1和A2确定以后,在加工中未予直接保证的尺寸A0也就随之

确定。尺寸A0、A1和A2构成了一个尺寸封闭图形,即工艺尺寸链,如图5-1b所示。 图5-2 装配尺寸链图 由上述可知,尺寸链具有以下三个特征 1)具有尺寸封闭性,尺寸链必是一组有关尺寸首尾相接所形成的尺寸封闭图。其中应包含一个间接保证的尺寸和若干个对此有影响的直接获得的尺寸。 2)尺寸关联性,尺寸链中间接保证的尺寸受精度直接保证的尺寸精度支配,且间接保证的尺寸精度必然低于直接获得的尺寸精度。 3)尺寸链至少是由三个尺寸(或角度量)构成的。 在分析和计算尺寸链时,为简便起见,可以不画零件或装配单元的具体结构。知依次绘出各 个尺寸,即将在装配单元或零件上确定的尺寸链独立出来,如图5-1b),这就是尺寸链图。尺寸链图中,各个尺寸不必严格按比例绘制,但应保持各尺寸原有的连接关系。 2.尺寸链的组成 组成尺寸链的每一个尺寸,称为尺寸链的尺寸环。各尺寸环按其形成的顺序和特点,可分为封闭环和组成环。凡在零件加工过程或机器装配过程中最终形成的环(或间接得到的环)称为封闭环,如图5-1中的尺寸A0。尺寸链中除封闭环以外的各环,称为组成环,如图5-1中的尺寸A1和A2。对于工艺尺寸链来说,组成环的尺寸一般是由加工直接得到的。 组成环按其对封闭环影响又可分为增环和减环。若尺寸链中其余各环保持不变,该环变动(增大或减小)引起封闭环同向变动(增大或减小)的环,称为增环。反之,若尺寸链中其余各环保持不变,由于该环变动(增大或减小)引起封闭环反向变动(减小或增大)的环,称为减环。图5-1

统计公差分析方法概述

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20+0.3)+(15+0.25)+(10+0.15)=45.7,出现在A、B、C偏上限之状况 D(Min.)=(20-0.3)+(15-0.25)+(10-0.2)=44.3,出现在A,B、C偏下限之状况 45±0.7适合拿来作设计吗? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0.9973=0.0027;在组装完毕后所有零件都有缺陷的机率为:0.0027^3=0.000000019683。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。 三.统计公差分析法 ?由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。 ?统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造和生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。 四.方和根法 计算公式(平方相加开根号) 假设每个尺寸的Ppk 指标是1.33并且制程是在中心

公差模型和公差分析方法的研究

生 产现场 S H O P S O L U T I O N S 金属加工 汽车工艺与材料 A T&M 2009年第7期 50 机械装配过程中,在保证各组成零件适当功能的前提下,各组成零件所定义的、允许的几何和位置上的误差称为公差。公差的大小不仅关系到制造和装配过程,还极大影响着产品的质量、功能、生产效率以及制造成本。公差信息是产品信息库中的重要 内容,公差模型就是为表示公差信息而建立的数学及物理模型,它是进行公差分析的理论基础。 公差分析或称偏差分析,即通过已知零部件的尺寸分布和公差,考虑偏差的累积和传播,以计算装配体的尺寸分布和装配公差的过程。公差分析的目的在于判断零部件的公差分布是否满足装配功能要求,进而评价整个装配的可行性。早期公差分析方法面向的是一维尺寸公差的分析与计算。Bjorke 则将公差分析拓展到三维空间。Wang 、C h a s e 、P a b o n 、H o f f m a n 、Lee 、Turner 、Tsai 、Salomons 、Varghese 、Connor 等许多学者也分别提出了各自的理论和方法开展公差分析的研究。此后,人工智能、专家系统、神经网络、稳健性理论等工具被引入公差分析领域当中,并分别构建了数学模型以解决公差分析问题。 1 公差模型 公差模型可分为零件层面的公差信息模型和装配层面的公差拓扑关系模型。Shan 提出了完整公差模型的建模准则,即兼容性和可计算性准则。兼容性准则是指公差模型满足产品设计过程的要求,符合ISO 和ASME 标准,能够完整表述所有类型的公差。可计算性准则是指公差模型可实现与CAD 系统集成、支持过/欠约束、可提取隐含尺寸信息、可识别公差类型,以检查公差分配方案的可行性等。目前已经提出了很多公差模型表示法,但每一种模型都是基于一些假设,且只部分满足了公差模型的建模准则,至今尚未出现统一的、公认的公差模型。以下将对几种典型的公差模型加以介绍和评价。1.1 尺寸树模型 Requicha 最早研究了零件层面的公差信息表示,并首先提出了应用于一维公差分析的尺寸树模型。该模型中,每一个节点是一个水平特征,节点间连线表示尺寸,公差值附加到尺寸值后。由于一维零件公差不考虑旋转偏差,所有公差都可表示为尺寸值加公差值的形式。该模型对于简单的一维公差分析十 分有效,但却使尺寸和公差的概念模糊不清,而且没有考虑到形状和位置公差的表示。1.2 漂移公差带模型 Requicha 从几何建模的角度,于20世纪80年代提出了漂移公差带模型以定义形状公差。在这个模型中,形状公差域定义为空间域,公差表面特征需位于此空间域中,同时采用边界表示法(Breps )建立传统的位置和尺寸公差模型。对于表面特征和相关公差信息则运用偏差图(VGraph )来表示。VGraph 主要是作为一种分解实体表面特征的手段,将实体的边界部分定义为特征,公差信息则封装在特征的属性中。漂移公差带模型很好地表达了轮廓公差,轮廓公差包含了所有实际制造过程中的偏差。该模型提供了公差的通用理论且易于实现,但是不能区分不同类型的形状公差。1.3 矢量空间模型 Hoffmann 提出了矢量空间模型,Turner 扩展了这一模型。矢量空间模型首先需要定义公差变量、设计变量和模型变量。公差变量表示零件名义尺寸的偏差。设计变量由设计者确定,用以表示最终装配体的多目标优化函数。模型变量是控制零件各个公差的独立变量。由 公差模型和公差分析方法的研究 讨论了目前工程设计、制造中具有代表性的公差模型的建模、描述和分析的方法。在此基础上,对于面向刚性件和柔性件装配的公差分析方法的研究现状分别进行了综述和评价,通过对比说明各种分析方法的算法、应用范围及不足。最后,展望了公差模型和公差分析方法的研究方向及其发展动态。 奇瑞汽车股份有限公司 葛宜银 李国波

统计公差分析方法概述

统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20+0.3)+(15+0.25)+(10+0.15)=45.7,出现在A、B、C偏上限之状况 D(Min.)=(20-0.3)+(15-0.25)+(10-0.2)=44.3,出现在A,B、C偏下限之状况 45±0.7适合拿来作设计吗? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。 以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1- 0.9973=0.0027;在组装完毕后所有零件都有缺陷的机率为:0.0027^3=0.000000019683。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。 三.统计公差分析法 ?由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。?统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造和生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。

统计公差分析方法概述

统计公差分析方法概述(总5 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20++(15++(10+=,出现在A、B、C偏上限之状况 D(Min.)=++=,出现在A,B、C偏下限之状况 45±适合拿来作设计吗 Worst Case Analysis缺陷: 设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; 公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

线性尺寸链公差分析

線性尺寸鏈公差分析. 程序設計用于(1D)線性尺寸鏈公差分析。程序解決以下問題: 1公差分析,使用算術法"WC"(最差條件worst case)綜合和最優化尺寸鏈,也可以使用統計學計算"RSS"(Root Sum Squares)。 2溫度變化引起的尺寸鏈變形分析。 3使用"6 Sigma"的方法拓展尺寸鏈統計分析。 4選擇裝配的尺寸鏈公差分析,包含組裝零件數的最優化。 所有完成的任務允許在額定公差值內運行,包括尺寸鏈的設計和最優化。 計算中包含了ANSI, ISO, DIN以及其他的專業文獻的數據,方法,算法和信息。標准參考表:ANSI B4.1, ISO 286, ISO 2768, DIN 7186 計算的控制,結構及語法。 計算的控制與語法可以在此鏈接中找到相關信息"計算的控制,結構與語法". 項目信息。 “項目信息”章節的目的,使用和控制可以在"項目信息"文檔裏找到. 理論-原理。 一個線性尺寸鏈是由一組獨立平行的尺寸形成的封閉環。他們可以是一個零件的相互位置尺寸(Fig.A)或是組裝單元中各個零件尺寸(Fig. B). 一個尺寸鏈由分開的部分零件(輸入尺寸)和一個封閉零件(結果尺寸)組成。部分零件(A,B,C...)可以是圖面中的直接尺寸或者是按照先前的加工工藝,組裝方式。所給尺寸中的封閉零件(Z)表現爲加工工藝或組裝尺寸的結果,結果綜合了部分零件的加工尺寸,組裝間隙或零件的幹涉。結果尺寸的大小,公差和極限直接取決于部分尺寸的大小和公差,取決于部分零件的變化對封閉零件變化的作用大小,在尺寸鏈中分爲兩類零件: - 增加零件- 部分零件,該零件的增加導致封閉零件的尺寸增加 - 減少零件- 部分零件,封閉零件尺寸隨著該零件的尺寸增加而減小 在解決尺寸鏈公差關系的時候,會出現兩類問題: 5公差分析- 直接任務,控制 使用所有已知極限偏差的部分零件,封閉零件的極限偏差被設置。直接任務在計算中是明確的同時通常用于在給定圖面下檢查零件的組裝與加工。 6公差合成- 間接任務,設計

统计公差分析方法概述

统计公差分析方法概述 一、引言 公差设计问题可以分为两类:一类就是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸与公差,确定装配后需要保证的封闭环公差;另一类就是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸与公差,求解组成环的经济合理公差。 公差分析的方法有极值法与统计公差方法两类,根据分布特性进行封闭环与组成环公差的分析方法称为统计公差法、本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二、Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max、)=(20+0、3)+(15+0、25)+(10+0、15)=45、7,出现在A、B、C偏上限之状况 D(Min、)=(20-0、3)+(15-0、25)+(10-0、2)=44、3,出现在A,B、C偏下限之状况 45±0、7适合拿来作设计不? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。 以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0、9973=0、0027;在组装完毕后所有零件都有缺陷的机率为:0、0027^3=0、3。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都就是接近极限尺寸的情况非常罕见。 三、统计公差分析法 ?由制造观点来瞧,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。?统计公差方法的思想就是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析与计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造与生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的就是『变异』值。

尺寸链及公差叠加分析

课程培训目标: ?能够计算装配零件的最小和最大壁厚、间隙、或干涉, ?能够创建几何公差或正负公差的尺寸链,分析公差叠加结果, ?能够创建、分析复杂的公差叠加分析工具,包含几何公差,名义尺寸,实效条件尺寸,和正负公差, ?能够分析通用装配条件的公差叠加分析, ?能够分析浮动紧固件的公差叠加分析,如何定义螺栓,轴类,或孔类公差, ?能够分析固定紧固件的公差叠加分析,如何定义螺栓,间隙孔,槽,凸缘,和整体尺寸的公差,以及螺纹孔的投影公差, ?能够计算在不同的基准方案下的最大,最小间隙, ?掌握一套逻辑的,系统的,数量化的公差分析方法, 课程包含主要内容: 课程参与者能够解决实际工作中面对的从简单到复杂的装配体的公差叠加分析。培训中以理论讲授和实践练习相结合来分析尺寸公差和几何公差的叠加分析,比较分析不同的基准设置情况下的输出结果。 培训大纲: ?尺寸链分析的起点 ?创建正负尺寸链 ?如何计算,如何确定影响贡献公差叠加结果的尺寸因素 ?如何分析:最差条件法Wost Case ?哪些几何公差影响公差叠加结果? ?均值分析:Mean ?边界计算:GD&T,MMC,LMC和RFS材料条件修正情况下, ?等边正负公差转换 2.复杂装配体的正负尺寸公差叠加分析 ?计算方法 ?尺寸链分析工具制作 ?分析工具的应用 ?最大、最小间隙的分析结果输出 ?合格率的计算 ?Cpk与公差叠加分析 ?统计公差的分析及计算 ?6Sigma公差设计方法

3.公差叠加的2D分析法–水平方向公差叠加和竖直方向的公差叠加分析?尺寸链分析的起点 ?创建正负尺寸链 ?最小、最大间隙的分析结果输出 4.装配体的公差叠加分析 ?装配体中零件间的尺寸链如何建立 ?不同的尺寸布局方案的公差叠加分析 ?尺寸公差定义的装配体中公差叠加分析复杂性 ?最小,最大间隙结果输出 ?公差的优化 ?合格率的计算 ?与几何公差的比较 5.浮动螺栓装配分析 ?几何公差控制的实效边界和补偿公差 ?内边界,外边界,均值边界 ?公差叠加分析中直径到半径的转化方法 ?轮廓度的叠加分析分解方法 ?基准浮动因素 ?几何公差浮动因素 ?复杂装配体的几何公差尺寸链建立方法 ?分析的标准化模板, 6.固定螺丝装配分析 ?计算装配体的最大、最小间隙 ?投影公差的因素 ?正向设计固定螺栓装配总成 ?逆向设计固定螺栓装配总成 ?对于孔类、槽类、凸缘和轴类装配体的分析 ?确定所有的几何公差因素 ?独立特征和阵列特征的不同分析方法 7.几何公差复杂装配体实例分析 ?对零件进行GD&T定义 ?装配设计方案 ?螺纹特征

公差分析报告基本知识

公差分析 一、误差与公差 二、尺寸链 三、形位公差及公差原则

一、误差与公差 (一)误差与公差的基本概念 1. 误差 误差——指零件加工后的实际几何参数相对于理想几何参数之差。 (1)零件的几何参数误差分为尺寸误差、形状误差、位置误差及表面粗糙度。 尺寸误差——指零件加工后的实际尺寸相对于理想尺寸之差,如直径误差、孔径误差、长度误差。 形状误差(宏观几何形状误差)——指零件加工后的实际表面形状相对于理想形状的差值,如孔、轴横截面的理想形状是正圆形,加工后实际形状为椭圆形等。 相对位置误差——指零件加工后的表面、轴线或对称面之间的实际

相互位置相对于理想位置的差值,如两个面之间的垂直度,阶梯轴的同轴度等。 表面粗糙度(微观几何形状误差)——指零件加工后的表面上留下的较小间距和微笑谷峰所形成的不平度。 2. 公差 公差——指零件在设计时规定尺寸变动范围,在加工时只要控制零件的误差在公差范围内,就能保证零件的互换性。因此,建立各种几何公差标准是实现对零件误差的控制和保证互换性的基础。 (二)误差与公差的关系 图1 由图1可知,零件误差是公差的子集,误差是相对于单个零件而言的;公差是设计人员规定的零件误差的变动范围。

(三)公差术语及示例 图2 以图2为例: 基本尺寸——零件设计中,根据性能和工艺要求,通过必要的计算和实验确定的尺寸,又称名义尺寸,图中销轴的直径基本尺寸为Φ20,长度基本尺寸为40。 实际尺寸——实际测量的尺寸。 极限尺寸——允许零件实际尺寸变化的两个极限值。两个极限值中大的是最大极限尺寸,小的是最小极限尺寸。 尺寸偏差——某一尺寸(实际尺寸,极限尺寸)减去基本尺寸所得到的代数差。 上偏差=最大极限尺寸-基本尺寸,用代号(ES)(孔)和es(轴)下偏差=最小极限尺寸-基本尺寸,用代号(ES)(孔)和es(轴)尺寸公差——允许尺寸的变动量

公差分析的方法与比较

公差分析的方法與比較 PSBU-RDD4-MDD 工程師朱誠璞 alex.chu@https://www.wendangku.net/doc/7f5352315.html, 2002/11/14 PM 04:32 version 1.1 A.公差分析的傳統方法( I)----Worst Case 法 首先,必須解釋在公差分析時所用的兩種方法: 公差合成與公差分配. 而在以下兩個例子中用來運算公差範圍的數學方法為 Worst Case 法,這是傳統的做法 : 1.公差的合成(使用Worst Case 法運算) Part A 與 Part B 必須接合在一起,合成後的尺寸與公差範圍會是如何呢? 在這個例子中,可以得到一個很直觀的結果------當Part A 與 Part B相接後所得到的 Part A+B 長度和公差範圍都是Part A + Part B 的結果. 也就是說:合成後的公差範圍會包括到每個零件的最極端尺寸,無論每個零件的尺寸在其公差範圍內如何變化,都會 100% 落入合成後的公差範圍內. 聽起來相當合理,不是嗎? 稍後會解釋這樣做的缺點.

2.公差的分配(使用Worst Case 法運算) 現在 Part A+B 必須放入 Part C 的開口處,而開口的尺寸與公差如圖所示,那麼 Part A 與 B 的分別的公差範圍又應該是多少呢? 我們以最簡單的方法 : 平均分配給其中所有的零件,所以 Part A 與 B 各得50 %,當然也可以按照其他的比例來調整,並沒有絕對的優劣之分. B. Worst Case法的問題 1.控制公差範圍難以被控制在設計的需求範圍中. 由於 Worst Case 法合成時要求100 % 的可以容許單一零件的公差變化,會造成合成後的公差範圍變的較大,對設計者而言,是非常容易造成零件組裝後相互干涉或間隙過大. 在以上的例子中,如果要將 Part A+B 放入 Part C 時,會發生過緊干涉的情況,因為 Part C 最窄只有 10.75 mm,但是 Part A+B 卻可能有 11.50 mm的情況則有 0.75 mm 的干涉;另一方面,當 Part C 最寬11.25 mm,而 Part A+B 為10.5 mm 的最小值時,又有 0.75 mm的間隙產生.由此可知公差範圍過大所造 成的難以控制的缺點. 2.決定公差範圍的過程缺乏客觀及合邏輯的程序 以此類方式決定的公差範圍尺寸,必須仰賴設計者的經驗,且必須經過多次的試作才可真正決定;若生產條件改變:如更換生產廠商,模具修改…等,皆有可能使原訂之公差範圍無法達成,而被迫放寬或產生大量不良品的損失.

线性尺寸的公差分析方法概述

Tolerance Analysis of Linear Dimensional Chains
Page 1 of 13
线性尺寸链公差分析. 性尺寸链公差分析
程序设计用于(1D)线性尺寸链公差分析。程序解决以下问题: 1. 公差分析,使用算术法"WC"(最差条件worst case)综合和最优化尺寸链,也可以使用统计学计算"RSS"(Root Sum Squares)。 2. 温度变化引起的尺寸链变形分析。 3. 使用"6 Sigma"的方法拓展尺寸链统计分析。 4. 选择装配的尺寸链公差分析,包含组装零件数的最优化。 所有完成的任务允许在额定公差值内运行,包括尺寸链的设计和最优化。 计算中包含了ANSI, ISO, DIN以及其他的专业文献的 数据,方法,算法和信息。标准参考表: ANSI B4.1, ISO 286, ISO 2768, DIN 7186
计算的控制,结构及语法。 算的控制,
计算的控制与语法可以在此链接中找到相关信息 "计算的控制,结构与语法".
项目信息。 目信息。
“项目信息”章节的目的,使用和控制可以在"项目信息"文档里找到.
理论-原理。 原理。
一个线性尺寸链是由一组独立平行的尺寸形成的封闭环。他们可以是一个零件的相互位置尺寸(Fig.A)或是组装单元中各 个零件尺寸 (Fig. B).
一个尺寸链由分开的部分零件(输入尺寸)和一个封闭零件(结果尺寸)组成。部分零件(A,B,C...)可以是图面中的直 接尺寸或者是按照先前的加工工艺,组装方式。 所给尺寸中的封闭零件(Z)表现为加工工艺或组装尺寸的结果,结果 综合了部分零件的加工尺寸,组装间隙或零件的干涉。结果尺寸的大小,公差和极限直接取决于部分尺寸的大小和公 差,取决于部分零件的变化对封闭零件变化的作用大小,在尺寸链中分为两类零件: - 增加零件 - 部分零件,该零件的增加导致封闭零件的尺寸增加 - 减少零件 - 部分零件,封闭零件尺寸随着该零件的尺寸增加而减小 在解决尺寸链公差关系的时候,会出现两类问题: 1. 公差分析 - 直接任务,控制 使用所有已知极限偏差的部分零件,封闭零件的极限偏差被设置。直接任务在计算中是明确的同时通常用于在给 定图面下检查零件的组装与加工。 2. 公差合成 - 间接任务,设计 出于功能需要使用封闭零件的极限偏差,来设计部分零件的极限偏差。间接任务用来解决设计功能组及组装。 公差计算方法的选择以及尺寸链零件的极限偏差影响组装精度和零件的组装互换性。因此,产品的经济性和运转性取决 于此。在尺寸链中解决公差关系,工程实践使用三个基本方法: 算数计算法 统计学计算法 成组交替性计算方法 术计算方法 算术计算方法 - WC method (Worst Case). 最常使用的方法,有时叫做最大-最小计算方法。它用于在任何部分零件的实际尺寸的任意组合下保证封闭零件的所需 极限偏差,也就是最大和最小极限尺寸。 这个方法保证了零件的完全装配和工作交替性。但是,由于封闭零件的高精 度要求,导致部分零件的公差值太极限,因此带来高的加工成本。因此WC方法主要适合用于计算小数量零件尺寸链或 结果尺寸的公差是可以接受的 情况。最常用于单间或小批量生产。 WC 方法计算得出的结果尺寸是部分尺寸的算术和。因此封闭零件的尺寸决定于其中心值:
2013/4/7

统计公差分析方法概述

统计公差分析方法概述 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

统计公差分析方法概述(2012-10-2319:45:32) 分类: 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100%落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20++(15++(10+=,出现在A、B、C偏上限之状况 D(Min.)=++=,出现在A,B、C偏下限之状况 45±适合拿来作设计吗 Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。 以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为=;在组装完毕后所有零件都有缺陷的机率为:^3=。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。 三.统计公差分析法 ?由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。 ?统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环)加工精度,从而减小制造和生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。 四.方和根法 计算公式(平方相加开根号) 假设每个尺寸的Ppk指标是并且制程是在中心

2-D和3-D尺寸链公差分析

2-D和3-D尺寸鏈公差分析. 程序設計用于 (2-D)和 (3-D) 尺寸鏈的公差分析,處理以下問題: 1.使用“ Worst case“方法分析尺寸鏈公差。 2.使用“ Monte Carlo“方法分析尺寸鏈公差。 在設計尺寸鏈中,程序允許使用額定公差值。 數據,方法,運算法則和專業文獻信息以及ANSI, ISO, DIN和其他標准使用與計算中。 標准表:ANSI B4.1, ISO 286, ISO 2768, DIN 7186 計算的控制,結構和語法. 計算的法則和控制可以在以下文檔中找到 "控制,結構和計算法則". 項目信息. 項目信息章節的目的,使用和控制可以通過鏈接文檔找到 "項目信息". 理論-基礎. 一個尺寸鏈是一組互相連接的尺寸而形成一個幾何封閉環。可以是一個零件上多個元件位置或組裝成品中多個零件的尺寸。 尺寸鏈由各個局部零件(輸入尺寸)和一個封閉零件(結果尺寸)而組成。局部零件(A,B,C...)可以是圖面上定義的尺寸或是加工,組裝的尺寸。封閉零件(Z)代表的是加工或組裝尺寸,是綜合了局部零件尺寸的結果,可能是組裝間隙或零件幹涉。結果尺寸的大小,公差和極限偏差取決于局部零件的尺寸和公差。取決于各個零件的相互位置,我們劃分三類尺寸鏈: -線性尺寸鏈(1D) -僅爲平行的尺寸 -二維尺寸鏈(2D)- 尺寸分布在一個或多個平行平面內。 -三維尺寸鏈(3D)- 尺寸位于非平行平面內。 本計算設計用于 2-D 和 3-D尺寸鏈公差分析。 當處理尺寸鏈公差關系時,出現兩類問題: 1.公差分析 - 直接任務l 使用已知的所有局部零件的極限偏差,封閉零件的極限偏差被設置。直接任務在計算中很明確同時常常用于根據定義圖面檢查元件和加工的組裝零件。 2.公差綜合 - 間接任務,設計 使用根據功能要求而給定的封閉零件的極限偏差,設計局部零件的極限偏差。間接任務用于處理設計功能組合組裝。 在尺寸鏈中處理公差關系,程序使用兩種計算方法: - "Worst Case"方法

相关文档