文档库 最新最全的文档下载
当前位置:文档库 › 桥形接线

桥形接线

桥形接线
桥形接线

桥形接线

定义:桥形接线适用于仅有两台变压器和两回出线的装置中,仅有3台断路器,桥形接线属于无母线接线,“桥”即是回路连接线。

分类:根据桥回路断路器的位置不同,桥形接线分为内桥和外桥两种接线。内桥:即桥回路置于线路断路器与主变内侧;外桥:即桥回路置于线路断路器与主变外侧。(线路断路器特指低压侧出线断路器)特点及适用范围

内桥特点:

1、线路操作方便。线路故障,仅跳开故障线路断路器,其余

线路正常工作。

2、正常运行时主变操作复杂。若变压器检修或故障时,需跳

开线路侧断路器和桥回路断路器,使未发生故障线路受影响而短时停电。

3、桥回路检修或故障时,两个回路单元失去联系;同时出线

断路器检修时会造成回路停电。

适用于两回进线两回出线、线路较长且故障可能性较大、变压器不需要经常切换运行方式的系统。

外桥特点:

1、变压器操作方便。如变压器检修或故障时,仅断开线路侧

断路器,其余回路正常。

2、线路投入与切除复杂。如线路故障或检修时,需断开线路

侧断路器和桥断路器,并使本线路变压器短时停电。

3、桥回路检修或故障时,两个单元失去联系;同时出线侧断

路器检修或故障时,造成线路变压器停电。

适用于两回进线两回出线、变压器需要经常切换、线路有穿越功率通过的系统。(穿越功率:穿越功率就是出线所能输送的功率。有穿越功率的叫

中间变电站,与之相对的叫终端变电站。简单说就是进线输送的电能一部分供中间变电站,一部分又转送到其它变电站。转出线路由中间变电站站控制并设保护。穿越功率的大小受出

发展方向:桥形接线线路简单清晰,设备少,造价低,易于发

展为单母分段或双母接线,为节省投资在发电厂或变电站初期可使用,随发展逐步建成单母或双母接线。

牵引变电所接线方式

1WL 2WL 1WL 2WL 9QS 10QS 1QS 2QS 1QS 2QS 1QF 2QF 5QS 3QF 6QS 3QS 4QS 3QS 5QS 4QS 7QS 3QF 6QS 8QS T-1 T-2 T-1 T-2 1QF 2QF (a ) (b ) 图2-2 桥式接线 (a) 内桥带外跨 条接线 ;(b ) 外桥接线 两回 进线 (电源引入线)分别经断路器接入两台主变压器,若在两条电源引入线之间用带断路器的横向母线(汇流母线)将它们连接起来,即构成桥式接线。带断路器的横向母线通常称为连接桥。当桥式接线的两回电源引入线接入电力系统的环形电网中时,断路器经常处于闭合状态以便系统功率穿越。 根据连接桥的所在的位置不同,桥式接线又分为外桥式接线和内桥式接线。 (1)内桥带外跨条接线 如图2-2(a)所示,连接桥若设置在靠变压器侧,则构成了内桥式接线。为了提高内桥接线的供电的可靠性和运行的灵活性,一般在进线断路器外侧再设置一条带隔离开关的横向母线(称为外跨条)。内桥带外跨条接线在两条电源进线回路上均有断路器,任一电源线路故障不影响向牵引变电所的供电。 主接线正常运行时,如电源1WL 供电,2WL 备用;主变压器T-1运行,T-2备用。此时,除隔离开关9QS 、10QS 、8QS 断开,其他开关均闭合,使系统功率从桥断路器通过,如图2-2(a)中的箭头所指的方向所示。电源1WL 经1QS 、1QF 、3QS 、7QS 将电能传递给T-1,另一回电路冷备用。电源1WL 经1QS 、1QF 、3QS 、5QS 、3QF 、6QF 、4QS 、2QF 、2QS 将电能传递给周边变电所,完成系统功率穿越。 内桥带外跨条式主接线在两条电源进线上均设有断路器,如断路器1QF 、2QF 。若电源1WL 故障,需要退出检修时,反映该故障的继电器保护装置动作,断路器1QF 断开,电源1WL 退出运行,同时,电源2WL 测的电源断开点自动闭合,2WL 投入运行。若只是一般的倒换电源1WL ,只需断开1QF ,闭合电源2WL 测的

各种接线方式的优缺点

单母线接线 优点:接线简单,清晰,设备少,操作方便,便于扩建和采用 成套配电装置。 缺点:可靠性差,母线或母线隔离开关检修或故障时,所有回 路都要停止工作,也就是要造成全厂或全站长期停 电,调度不方便,电能只能并列运行,并且线路侧 发生短路时,有较大的短路电流。 2.1双母线接线 优点:有两组母线,可以互为备用,运行可靠性和灵活性高,调度灵方便、便于扩建,可以向母线左右任意一个方向顺延扩建,检修任一 母线时,隔离开关仅仅使本回路断开。 缺点:造价高,因为增加了一组母线及其隔离开关,增加了配电装置构架及 占地面积;当母线故障或检修时,隔离开关作倒换操作电器, 容易误操作,但可以装断路器的连锁装置加以克服。 单元接线 (1)优点:单元接线简单,开关设备少,操作简单以及因不设发电机电压级母线,而在发电机和变压器之间采用封闭母线,使得在发电机和变 压器低压侧短路的几率和短路电流相对于具有发电机电压级母线时, 有所减小。 (2)缺点:存在如下技术问题: 1)当主变压器或厂总变压器发生故障时,除了跳主变压器高压 侧出口断路器外,还需跳发电机磁场开关。 2)发电机定子绕组本身故障时,若变压器高压侧断路器失灵拒 跳,则只能通过失灵保护出口启动母差保护或发远方跳闸信 号使线路对侧断路器跳闸;若因通道原因远方跳闸信号失效, 则只能由对侧后备保护来切除故障,这样故障切除时间大大 延长,会造成发电机、主变压器严重损坏。 单母线分段接线 (1)优点: 1)供电可靠性和灵活性相对于单母线接线高,操作简单,接线方便,便于检修,投资较小,对重要用户可以从不同段引出两回馈电线路, 由两个电源供电。 2)当一段母线发生故障分段断路器自动将故障段切除,保证正常断母线

500KV变电站电气接线讲解

500KV 变电站电气主接线及倒闸操作管理 1、概念 1.1变电站电气主接线,是指由变压器、开关(一般指断路器QF )、刀闸(一般指隔离开关QS )、互感器(CT 、CT )、母线、避雷器(F 、老的用B )等电气设备按一定的顺序连接,用来汇集和分配电能的电路,也称为一次设备主接线图。 1.2把这种全部由一次设备组成的电路绘制在图纸上,就是我们的电气主接线图。在电气主接线图中,所有的电气设备均用国家和电力行业规定的文字和符号表示,并且按它们的“正常状态”画出。所谓“正常状态”,就是电气设备处在所有电路无电压及无任何外力作用下的状态,开关和刀闸均在断开位置。 1.3需要注意的是,电气设备的和是两个不同的概念,正常状态有两层含义:一是作为电气主接线图来讲所包含的上面讲到的一层含义,也就是电气设备处在所有电路无电压及无任何外力作用下的状态,开关和刀闸均在断开位置。另外一层含义,是指设备的各项功能正常,在额定的电压、电流作用下能长期运行的一种状态。而正常运行方式是指在本站设备或系统正常运行情况下,管辖调度所规定的经常采用的一种运行方式。只要本站设备正常,就必须按照有关调度规定的方式运行,除有管辖权的调度以外的其他人员是无权改变设备的运行方式 的。 与正常运行方式相对应的是非正常运行方式,这是指因设备故障、停电检修、本站或系统事故处理而暂时改变设备的正常运行方式。 2、对电气主接线的要求 500KV 变电站在电网中的地位非常重要,尤其是随着三峡工程的建设,全国“西电东送,南北互供”大电网的逐步建成,它的安全可靠运行直接影响到大电网的安全稳定运行。因此对500KV 变电站一次设备主接线的要求较高。

变电站基础知识

变电站基础知识 1.电力系统电压等级与变电站种类 电力系统电压等级有220/380V(0.4 kV),3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV。随着电机制造工艺的提高,10 kV 电动机已批量生产,所以3 kV、6 kV已较少使用,20 kV、66 kV也很少使用。供 电系统以10 kV、35 kV为主。输配电系统以110 kV以上为主。发电厂发电机有6 kV与10 kV两种,现在以10 kV为主,用户均为220/380V(0.4 kV)低压系统。 根据《城市电力网规定设计规则》规定:输电网为500 kV、330 kV、220 kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6 kV,低压配电 网为0.4 kV(220V/380V)。 发电厂发出6 kV或10 kV电,除发电厂自己用(厂用电)之外,也可以用10 kV电压送给发电厂附近用户,10 kV供电范围为10Km、35 kV为20~50Km、66 kV 为30~100Km、110 kV为50~150Km、220 kV为100~300Km、330 kV为200~600Km、500 kV为150~850Km。 2.变配电站种类 电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器 (变电站为升压站),电压降低为降压变压器(变电站为降压站)。一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。 变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。 枢纽站电压等级一般为三个(三圈变压器),550kV /220kV /110kV。区域站一般 也有三个电压等级(三圈变压器),220 kV /110kV /35kV或110kV /35kV /10kV。终端站一般直接接到用户,大多数为两个电压等级(两圈变压器)110kV /10 kV

变电站接线方式

变电站接线方式 1线路变压器组接线: 线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式,其特点是设备少、投资省、操作简便、宜于扩建,但灵活性和可靠性 2桥形接线: 桥形接线采用4个回路3台断路器和6个隔离开关,是接线中断路器数量较少、也是投资较省的一种接线方式。根据桥形断路器的位置又可分为内桥和外桥两种接线。由于变压器的可靠性远大于线路,因此中应用较多的为内桥接线。若为了在检修断路器时不影响和变压器的正常运行,有时在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线。 3多角形接线: 多角形接线就是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路。多角形接线所用设备少,投资省,运行的灵活性和可靠性较好。正常情况下为双重连接,任何一台断路器检修都不影响送电,由于没有母线,在连接的任一部分故障时,对电网的运行影响都较小。其最主要的缺点是回路数受到限制,因为当环形接线中有一台断路器检修时就要开环运行,此时当其它回路发生故障就要造成两个回路停电,扩大了故障停电范围,且开环运行的时间愈长,这一缺点就愈大。环中的断路器数量越多,开环检修的机会就越大,所一般只采四角(边)形接线和五角形接线,同时为了可靠性,线路和变压器采用对角连接原则。四边形的保护接线比较复杂,一、二次回路倒换操作较多。 4单母线分段接线: 单母线分段接线就是将一段母线用断路器分为两段,它的优点是接线简单,投资省,操作方便;缺点是母线故障或检修时要造成部分回路停电。 5双母线接线: 双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。 与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断,当一组母线故障时,只要将故障母线上的回路倒换到另一组母线,就可迅速恢复供电,另外还具有调度、扩建、检修方便的优点;其缺点是每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。 6双母线带旁路接线: 双母线带旁路接线就是在双母线接线的基础上,增设旁路母线。其特点是具有双母线接线的优点,当线路(主变压器)断路器检修时,仍有继续供电,但旁路的倒换操作比较复杂,增加了误操作的机会,也使保护及自动化系统复杂化,投资费用较大,一般为了节省断路器及设备间隔,当出线达到5个回路以上时,才增设专用的旁路断路器,出线少于5个回路时,则采用母联兼旁路或旁路兼母联的接线方式。 7双母线分段带旁路接线: 双母线分段带旁路接线就是在双母线带旁路接线的基础上,在母线上增设分段断路器,它具有双母线带旁路的优点,但投资费用较大,占用设备间隔较多,一般采用此种接线的原则为: 1)当设备连接的进出线总数为12~16回时,在一组母线上设置分段断路器; 2)当设备连接的进出线总数为17回及以上时,在两组母线上设置分段断器。 8 3/2(4/3)断路器接线:

110kva变电站电气主接线图分析

把变电站内的电气设备都要算上啊 一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置 二次设备:综合自动化、. 、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等 其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等 好像有点说多了,也可能有少点的,存在差异吧 35KV高压开关柜上一般都设有哪些保护各作用是什么? 过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。 2.定时限电流保护:用于下一电压级别的短路保护。 3.反时限电流保护:作用与2相同,但灵敏度比2高。 4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。 5.纵联差动电流保护:专用于变压器内部故障保护。 6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。 零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。 2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。可以选择作用于跳闸或发信。 过电压保护:1.雷电过电压保护。 2.操作过电压保护。1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。

3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。 低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。俗称躲晃电。 非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。选择跳闸。 2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。 3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。 以上都是针对一次侧设计的保护。 二次侧的保护:1.直流失压保护,用于变电所直流设备故障时防止设备在保护失灵状况下运行。一般设备通常选择发信报警。重要设备选择跳闸。 2.临柜直流消失保护,用于监测相邻高压柜的直流电压状态,选择发信报警。 随着技术的发展,继电保护的内容越来越多,供人们在不同情况下选用。 目前使用的微机型综合保护器内都设计了各种保护功能,可以通过控制字的设定很方便地选择所需要的保护功能组合。

内桥外桥接线

内桥外桥接线(总1页)本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

当只有两台变压器和两条线路时,可以采用桥式接线,桥式接线按照连接桥的位置可分为 内桥接线和外桥接线,桥式接线具有工作可靠、灵活、使用电器少、装置简单清晰、建造费用低和易于发展成单母线分段接线等优点。 如图所示。 a内桥接线的连接桥设置在断路器和变压器之间。 b外桥接线的连接桥设置在断路器和线路之间。 连接桥上亦装设断路器,正常运行时此断路器是接通的。这种接线中,四条回路只用了三台断路器,所用的断路器数量是较少的。 1. 内桥接线 其特点是:两台断路器QF1 和QF2 接在引出线上。因此引出线的切除和投入是比较方便的。当线路发生短路故障时,仅故障线路的断路器断开,其它三条回路仍可继续工作。但是当变压器(如1T)故障时,与变压器1T 连接的两台断路器QF1 和QF3 都将断开,从而影响了非故障线路WL—1 的工作。此外,这种接线当切除和投入变压器时,操作也比较复杂。例如切除变压器1T 时,必须首先断开断路器QF1、QF3和变压器低压侧的断路器(图中未画出),再断开隔离开关QS1,然后接通QF1 和QF3,使出线WL—1 恢复工作。所以内桥接线一般适用于故障较多的长线路和变压器不需要经常切除的场合。 2. 外桥接线. 其特点与内桥接线相反。当变压器发生故障或运行中需要切换时,只要断开本回路即可,不影响其它回路的工作。但是,当线路 (例如出线WL—1) 发生故障时,断路器QF1 和QF3 都将断开,因而变压器1T 也将被切除。为了恢复1T 的正常运行,必须在断开QS2后,再接通QF1 和QF3。 因此,外桥接线适用于线路较短和变压器按经济运行需要经常切换的情况。此外,当电力系统有穿越性功率经过发电厂和变电所时,也应采用外桥接线,这时穿越功率仅经过连接桥上的断路器。否则,若采用内桥接线,穿越功率要经过三台断路器,其中任一台断路器发生故障或检修时,将影响穿越功率的传送。又如两条引出线接入环形电网时,也应采用外桥接线,使环形电网断开的机会减少。 2

电压切换及并列回路在扩大内桥接线方式中的应用

电压切换及并列回路在扩大内桥接线方式中的应用 张丹杰1,张建军2 (宁夏中卫供电局宁夏中卫 755000) 摘要:本文介绍了电压切换及并列回路的基本要求以及对于110kV变电站一次扩大内桥主接线的主要运行方式,根据一次侧电压互感器的配置情况,分析了相应的二次电压切换及并列回路的实现方法,以提高对电压切换及并列回路在扩大内桥接线方式中应用的认识。 关键词:一次主接线;扩大内桥接线;运行方式;电压切换及并列 The application of voltage switching and parallel circuit in enlargeing internal bridge main connection ZHANG Dan-jie, ZHANG Jian-jun ( Zhongwei Electric Power Supply Bureau, Zhongwei 755000,China) Abstract:Basic requriements of voltage switching and parallel circuit and operation mode of 110kV enlargeing internal bridge main connection was introduced. According to the configuration of voltage transformers in the primary side,the implemention method was analyzed to improve the recognition and application of voltage switching and parallel circuit in enlargeing internal bridge main connection. Key words: main connecton; enlargeing internal bridge main connection; operation mode; voltage switching and parallel circuit 0 引言 电压切换及并列装置在电力系统继电保护中发挥着非常重要的作用,要保证一次系统和二次系统的电压相互对应,并使二次电压能够随时反映一次设备的运行状态,以免发生继电保护或自动装置误动或拒动。电压切换及并列主要分为手动并列和自动并列两种。主要应用于单母分段、内桥接线、双母接线等一次接线方式。 近年来,随着部分地区高耗能负荷的日益增加,部分变电站的新建、扩建工程开始考虑扩大内桥接线方式,这种一次接线方式简单清晰,节约成本,建设周期短。所以被广泛应用。但是对继电保护二次回路造成了压力。特别是电压切换及并列回路,它打破了常规电压切换及并列回路的接线方式,在原有基础上进行创新,使电压切换及并列回路更加复杂化。 1 电压切换及并列回路基本要求 电压切换及并列回路的基本要求如下: 1)应能正确反映一次设备运行状态,并随一次设备运行状态的变化而随时切换; 2)应能有效地防止在切换过程中对一次侧停电的电压互感器进行反充电; 3)电压回路并列前,应测量两组电压之间的相位角差,确保能够达到并列条件; 4)用于电压切换及并列的隔离开关或断路器节点应取自实际位置,而非取自断路器操作箱; 5)电压切换或并列过程中,应保持保护电压与计量电压相互独立[1-2]。 2 电压切换及并列回路在扩大内桥接线方式中的应用 2.1 扩大内桥接线运行方式 扩大内桥接线方式如图1,对于110kV 侧它可以有以下三种运行方式,①进线111带1号、2号主变运行,进线151带3号主变,母联100断路器运行,母联100A断路器处热备用;②进线111带1号主变运行,进线151带2号、3号主变运行,母联100断路器处热备用,100A断路器运行;③进线111或进线151带1号、2号、3号主变运行,母联100、100A断路器运行。以上三种一次设备运行方式,将导致二次电压切换及并列发生相对应的变化[3]。

110kV变电站电气主接线及运行方式

110kV变电站电气主接线及运行方式 变电站电气主接线是指高压电气设备通过连线组成的接受或者分配电能的电路。其形式与电力系统整体及变电所的运行可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置的布置、继电保护和控制方式的拟定有较大影响。所以,主接线设计是一个综合性问题,应根据电力系统发展要求,着重分析变电所在系统中所处的地位、性质、规模及电气设备特点等,做出符合实际需要的经济合理的电气主接线。 一变电所主接线基本要求 1.1 保证必要的供电可靠性和电能质量。 保证供电可靠性和电能质量是对主接线设计的最基本要求,当系统发生故障时,要求停电范围小,恢复供电快,电压、频率和供电连续可靠是表征电能质量的基本指标,主接线应在各种运行方式下都能满足这方面的要求。 1. 2 具有一定的灵活性和方便性。 主接线应能适应各种运行状态,灵活地进行运行方式切换,能适应一定时期内没有预计到的负荷水平变化,在改变运行方式时操作方便,便于变电所的扩建。 1. 3 具有经济性。 在确保供电可靠、满足电能质量的前提下,应尽量节省建设投资和运行费用,减少用地面积。 1. 4 简化主接线。 配网自动化、变电所无人化是现代电网发展的必然趋势,简化主接线为这一技术的全面实施创造了更为有利的条件。 1. 5 设计标准化。 同类型变电所采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修。 1. 6 具有发展和扩建的可能性。 变电站电气主接线应根据发展的需要具有一定的扩展性。 二变电所主接线基本形式的变化 随着电力系统的发展,调度自动化水平的提高及新设备新技术的广泛应用,变电所电气主接线形式亦有了很大变化。目前常用的主接线形式有:单母线、单母线带旁路母线、单母线分段、单母线分段带旁路、双母线、双母线分段带旁路、一个半断路器接线、桥形接线及线路变压器组接线等。从形式上看,主接线的发展过程是由简单到复杂,再由复杂到简单的过程。在当今的技术环境中, 随着新技术、高质量电气产品广泛应用,在某些条件下采用简单主接线方式比复杂主接线方式更可靠、更安全,变电所主接线日趋简化。因此,变电所电气主接线形式应根据可靠性、灵活性、经济性及技术环境统一性来决定。 三 110kV变电站的主接线选择 在电力系统和变电所设计中,根据变电所在系统中的地位和作用,可把电网中110kV变电所分为终端变电所和中间变电所两大类。下面就这两类变电所高压侧电气主接线模式作一分析。 3. 1 110kV终端变电所主接线模式分析

主接线的基本形式

(一)单母线接线 1、单母线无分段接线 接线的特点:只有一组母线WB,所有的电源回路和出线回路,均经过必要的开关电器连接在该母线上并列运行。 优点:接线简单、清晰,所用的电气设备少,操作方便,配电装置造价便宜。 缺点:只能提供一种单母线运行方式,对状况变化的适应能力差;母线或母线隔离开关故障或检修时,全部回路均需停运(有条件进行带电检修 的例外);任意断路器检修时,其所在的回路也将停运。 适用范围:单母线接线的工作可靠性和灵活性都较差,只能用于某些出线回路较少,对供电可行性要求不高的小容量发电厂与变电站中。 2、单母线分段接线 接线特点:利用分段断路器QFd将母线适当分段。母线分段的数目,取决于电源的数目、容量、出线回数、运行要求等,一般分为2~3段。应尽量将电 源与负荷均衡的分配与各母线段上,以减少各分段间的功率交换。对 于重要用户,可从不同母线段上分别引出两个及以上回路向其供电。 优点:可以提供单母线运行、各段并列运行、各段分列运行等运行方式,且便于分段检修母线,减小母线故障的影响范围。当任一段母线故障时, 继电保护装置可使分段断路跳闸,保证正常母线段继续运行。若分段 断路器平时断开,则当任一段母线失去电源时,可由备用电源自动投 入装置使分段断路器合闸,继续保持该母线段的运行。 缺点:是在一段母线故障检修期间,该段母线上的所有回路均需停电;任一断路器检修时,所在回路也将停电。 适用范围:单母线分段接线,可应用于6~220KV配电装置中。 3、单母线分段带旁路母线接线 接线特点:增设了一组旁路母线WP及各出线回路中相应的旁路隔离开关QSp,分段断路器QSd兼作旁路断路器QFp,并设有分段隔离开关QSd. 运行特点:平时旁路母线不带电,QS1、QS2及QFp合闸,QS3、QS4及QSd断开,主接

内桥接线方式下的主变差动保护死区问题探讨

内桥接线方式下的主变差动保护死区问题探讨 【摘要】根据110kV AIS终端站内桥接线方式的特点和运行方式,分析了主变差动保护死区故障时的保护动作行为,提出了改进方案。再通过理论分析证明,可在一定程度上减少全站失电以及越级跳闸导致扩大停电范围的安全隐患,同时可使调控中心与运维人员能够快速分析并隔离死区故障,加快事故处理进程,从而提高此类变电站的经济性和供电可靠性。 【关键词】内桥接线;主变差动保护;死区故障;改进方案 引言 目前常州地区110kV及以下终端变电站高压侧多数采用内桥接线方式。而在这类变电站中,为了建设的经济性以及市区占位狭小的因素,早期的户外高压侧内桥间隔一般只配置一侧差动电流互感器[1]――设备配置的局限性致使主变差动保护存在保护死区的问题,相关保护无法动作或不能及时动作隔离故障,影响全站甚至上级电源的供电可靠性,成为电网运行的安全隐患。 1、典型内桥接线的AIS终端站简介 110kV北郊变电站有两条110kV进线,110kVⅠ段与Ⅱ段

母线之间通过内桥断路器700连接(如图1所示,内桥间隔配置一只差动CT靠110kVⅠ母侧,即位于7001隔离开关至700断路器间[2]);1号主变(简称T1)经低压侧101断路器带10kVⅠ段母线,2号主变(简称T2)经低压侧102断路器带10kVⅡ段母线。主变一般配置差动保护、非电量保护作为主保护,同时配置110kV侧复合电压闭锁过流保护(高后备)、10kV侧复合电压闭锁过流保护(低后备)作为后备保护;内桥断路器未配置过流保护(大多数此类变电站即使配置有过流保护,通常也处于停用状态);110kV备自投、10kV备自投均启用。 正常的运行方式主要有4种:方式1为高压侧并列运行即#1进线711主供两台主变、#2进线明备用;方式2为高压侧并列运行即#2进线712主供两台主变、#1进线明备用;方式3或4是高压侧分列运行,即两条进线分别供T1、T2(备自投方式为#1、#2进线互为暗备用)。 2、主变差动保护死区故障分析 如图1所示,差动CT1、CT3、CT5构成T1差动保护范围,差动CT2、CT4、CT5构成T2差动保护范围。不同运行方式下,若内桥断路器700与该间隔差动CT5之间的K点发生故障,两台主变差动保护动作情况如下所述: (1)方式1下,T2差动保护判为区内故障,跳开700和102,并闭锁110kV备自投;而K点仍由#1进线持续输送

内桥接线

内桥接线:母联在两台变压器开关的内侧,靠近变压器侧。 外桥接线:母联在两台变压器开关的外侧,靠近进线侧。 内桥:一般是桥开关自投。当进线失电,合桥开关。 外桥可以装设进线互投和桥开关自投。桥开关自投和内桥不同在于动作逻辑。内桥要考虑变压器保护的动作,外桥一般不必考虑。 电力系统电压等级与变电站种类 电力系统电压等级有220/380V(0.4 kV),3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV。随着电机制造工艺的提高,10 kV电动机已批量生产,所以3 kV、6 kV已较少使用,20 kV、66 kV也很少使用。供电系统以10 kV、35 kV为主。输配电系统以110 kV以上为主。发电厂发电机有6 kV与10 kV两种,现在以10 kV为主,用户均为220/380V(0.4 kV)低压系统。 根据《城市电力网规定设计规则》规定:输电网为500 kV、330 kV、220 kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6 kV,低压配电网为0.4 kV (220V/380V)。 发电厂发出6 kV或10 kV电,除发电厂自己用(厂用电)之外,也可以用10 kV电压送给发电厂附近用户,10 kV供电范围为10Km、35 kV为20~50Km、66 kV为30~100Km、110 kV为50~150Km、220 kV为100~300Km、330 kV为200~600Km、500 kV为150~850Km。 2.变配电站种类 电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器(变电站为升压站),电压降低为降压变压器(变电站为降压站)。一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。 变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。枢纽站电压等级一般为三个(三圈变压器),550kV /220kV /110kV。区域站一般也有三个电压等级(三圈变压器),220 kV /110kV /35kV或110kV /35kV /10kV。终端站一般直接接到用户,大多数为两个电压等级(两圈变压器)110kV /10 kV或35 kV /10 kV。用户本身的变电站一般只有两个电压等级(双圈变压器)110 kV /10kV、35kV /0.4kV、10kV /0.4kV,其中以10kV /0.4kV为最多。 3.变电站一次回路接线方案 1)一次接线种类 变电站一次回路接线是指输电线路进入变电站之后,所有电力设备(变压器及进出线开关等)的相互连接方式。其接线方案有:线路变压器组,桥形接线,单母线,单母线分段,双母线,双母线分段,环网供电等。

阐述变电站扩大内桥主接线的二次回路

阐述变电站扩大内桥主接线的二次回路 摘要:本文主要以电流回路、电压回路和备自投逻辑回路为重点,层层分析扩大内桥变电站电气二次回路,最终实现变电站稳定运行和供电可靠的目的。 关键词:变电站扩大内桥接线电流回路电压回路 Abstract: in the paper, the current circuit, voltage circuit and prepare for the logic circuit as the key point, layer upon layer analysis in electric substation expand bridge the secondary circuit, and finally achieve the stable operation of power substation and reliable purpose. Keywords: substation in expanding the current circuit voltage circuit bridge connection 1分析电流回路 扩大内桥接线的电流回路主要涉及主变压器保护的差动电流回路的配置问题。高压侧的差动电流回路有2种配置:一种是配置在高压侧开关CT;另一种是配置在主变压器高压侧套管CT。变压器差动保护的范围是构成变压器差动保护电流互感器之间的电气设备以及连接这些设备的导线。差动保护来自开关间隔的电流绕组,能获得较大的保护范围;而来自主变压器的高压侧套管只反映变压器的内部故障,通过启动跳闸继电器,同样可以在故障出现时跳开断路器切除电源。由于差动保护对保护区外故障不会动作,对保护区内故障可以瞬时动作,因此差动保护来自开关间隔的电流绕组时保护范围更大,且可与其他主变压器的差动保护相交叉,达到消除保护死区的效果。扩大内桥接线变电站的中间变压器,高压侧差动保护的电流互感器配置如图1所示。 在配置好电流互感器的保护绕组后,还要根据功率的方向(即互感器一次端Pl的指向)来确定二次绕组的sl端接人保护装置是电流极性端还是非电流极性端。当线路I、内桥I和内桥n的电流互感器P1靠近断路器侧时,线路I、内桥I电流互感器的矛主变压器差动保护绕组Sl端应接人保护装置的非电流极性端,内桥n电流互感器的2#主变压器差动保护绕组Sl端应接人保护装置的电流极性端。差动保护是反映被保护元件(或区域)多侧电流差而动作的保护装置。差动保护是保护变压器的内部短路故障,电流互感器安装在变压器的各侧,在正常运行或外部发生短路时,流人差动继电器的电流为不平衡电流,在适当选择各侧电流互感器的变压比和接线方式的条件下,该不平衡电流值很小,并小于差动保护的动作电流,故保护装置不动作;在变压器内部发生短路时,流人继电器的电流大

110kV变电站三种典型接线方式的思考 高锦成

110kV变电站三种典型接线方式的思考高锦成 发表时间:2018-06-27T09:51:41.593Z 来源:《电力设备》2018年第7期作者:高锦成 [导读] 摘要:现阶段,国内生产生活不断发展,对电力稳定运输的要求不断提高,但是大部分城市的高压配电网中还存在一定的问题需要得到解决,基于此,本文针对110kV变电站三种典型接线方式进行深入的分析。 (胜利石油管理局有限公司山东省东营市 257000) 摘要:现阶段,国内生产生活不断发展,对电力稳定运输的要求不断提高,但是大部分城市的高压配电网中还存在一定的问题需要得到解决,基于此,本文针对110kV变电站三种典型接线方式进行深入的分析。首先简单了解了110kV变电站接线方式和内容,进而从不同的性能情况入手,深入分析何种接线方式更适合现阶段的国家城市发展,以此为国家地区配电网规划工作提供参考。 关键词:高压配电网;接线方式;电力可靠性 引言:随着电力系统的不断扩大,电网结构优化工作已经成为新时期的重点工作内容,通过城市电网的合理规划,能够从根本上提高城市电网的科技含量,并且满足社会经济发展的电量需求。而高压配电网中是电网系统中的重要的组成部分,而110kV变电站则是高压配电网中的最为常见的一种形式,这种变电站的接线方式有很多,需要根据地方的实际情况,确定具体的接线方式,以此保证国家各地区的供电情况良好。 一、110kV变电站接线方式内容分析 城市110kV变电站的接线方式不同,会对变电站的占地面积、经济效益、供电情况等多个方面造成严重的影响,常见的接线方式包括环网、双T、辐射等,这些接线方式之间的可靠性、稳定性、可扩展性都有着较大的不同。 (一)桥接线方式 桥接线方式还可以具体划分为三种形式,分别为:内桥式、外桥式、扩大内桥式,其中最为常见的一种形式为内桥式,这种接线方式,在线路容量充足的情况下,一条线路可以提供两台变压器运行,供电的整体可靠性较高,但是结构较为复杂,继电保护动作较为复杂,尤其是在变压器故时,桥开关的作用无法发挥,而另外两种也有这不同程度的缺陷,应用情况较少,但是这种桥式接线方式中的断路器数量较少,占地面积较小,但是这种接线方式可以扩建的情况较少,会受到多种方面的限制。 (二)线路变压器组 线路变压器组这种接线方式中,可以连接三台变压器,能够在一个变电站内,每条线路接入一台变压器,在必要的时候,也可以在两回线路上接入三台变压器。在这三种典型接线方式中,线路变压器组中最为简单、需要使用的设备较少,占地面积也相对较少,但是如果其中一台变压器出现停运现象,会对整个供电能力造成影响,只适用于终端变电站。这种接线方式在发展故障后,也是采用分段断路器完成自切动作,以此保证其他主变压器能够继续供电。 (三)T型接线方式 T型接线方式中接线结构较为简单,适用性较强,可以适用于终端、中间这两种变电站,可靠性较高,能够灵活的使用不同的调度任务,在发生故障时能够在短时间内的进行故障隔离,但是在结构中需要安装数量较多的断路器,因此造价成本较高。在T型接线故障后,110kV变电站中失电后需要依靠分段断路器会做出自切动作,而在同一变电站中的其他进线则会继续完成供电工作,而故障后,受到影响的主变压器会停止供电,依靠分段断路器,失电10kV母线就会完成自切动作,同时变电站内其他的主变压器就会继续完成供电工作,而在进行了简单的操作后,T型接线可以有效维持三台主变压器恢复正常供电。 二、110kV变电站接线方式性能分析 (一)经济性分析 从上述这三个接线方式中的具体情况可以发现,这三种接线方式的结构都比较简单,占地面积也都相对较小,因此在这两个方面上,需要耗费的花销成本较小,但是在断路器上,线路变压器组接线方式中每一台主变压器占用一台断路器,而桥接线和T型接线中每一台主变压器则分别需要占用1.5台断路器和三台断路器。因此可知,线路变压器接线方式中需要付出的造价最低,T型接线的造价最高。 (二)可靠性分析 而在对110kV的故障情况调查中过程中发现,三种接线方式在故障时需要消耗的时间相同,而线路变压器组停运的次数是桥接线的两倍,修复时间也是两倍,而在对比其他修复工作指标中,T型接线最优,而线路变压器组中的可靠性较差。其中线变组在电缆线型中三台主变压器停运的时间次数和桥接线停运次数相同,时间相同,而T型接线方式三天主变压器的停运次数最少,而在两台主变压器停运的次数上,线变组的次数最多,而桥接线的次数最少,一台主变压器停运事故中,桥接线的停运事故最少,但是停运的时间却相对较长。因此可知,三种接线方式都可以满足N-1供电可靠性的要求,但是线路变压器组和桥接线组中需要在主变压器存在备用的情况下,才能够保证为用户提供其所需要的正常供电。 (三)灵活性分析 除了上述两点性能以外,运行灵活性也较为重要,在在这三种接线方式中,T型接线方式在调度工作上最为灵活,而其他两种接线方式的灵活性上差别较小。以故障修复后为例,线路变压器组接线和桥式接线方式中在操作后,仅能够维持基本的变压器不超过符合,而T型街巷中则可以维持三台主变压器完成供电工作[1]。 三、110kV变电站接线方式选择标准 (一)桥接线和线路变压器组接线对比 根据上文的分析,可以发现在110kV变电站的三种典型接线方式中,桥式接线的可靠相对较差,且占地面积较大,需要采用的设备数量较多,和线路变压器组这种接线方式相比,两种接线方式在故障时需要修复时间较为平均,出现故障的概率也较为接近,但是桥式接线的可靠性较低,经济性较差,虽然出现故障的概率较小,但是线路变压器组这种接线方式也可以满足国家规定的N-1可靠性明年要求。可以说桥式接线和线路变压器组接线方式的性能较为接近,而且随着技术的发展,两者之间的差别将会得到进一步缩小,因此经济效益较好、可靠性较高的线路变压变压器组接线方式的发展前景更优,且这种线变组接线方式在继电保护工作上也较为容易。此外,现阶段市面上应用于扩大内桥接线的设备较少,而一般的桥式接线的最大规模为两台主变的变电站,而新时期变电站的主变规模最少也要达到3-4台,因此

变电站一次接线图册绘制

广西大学行健文理学院 毕业设计说明书 题目:某变电站一次接线图册绘制(一) 二〇一五年五月

变电站一次接线图册绘制(一) 中文摘要 随着经济社会不断发展,现代工业生产规模扩大,生产专业化程度提高,供电系统设计也变得越来越全面和系统化。目前,随着社会对电能需求快速增长,对电能质量、电力系统稳定性和供电技术可靠性要求不断地提高,因而对电力系统设计方面要求也更高且完善。 变电站是电力系统一个重要组成部分,变电也是电力系统中一个重要环节。它是电力系统中变换电压、接受和分配电能、控制电力流向和调整电压电力设施,它将电能安全、有效、经济地输送到每一个用电设备。本文主要为110kV变电站作电气一次部分设计,并且绘制电气主接线图。 其中,本变电站设有两台主变压器,站内主接线分为110kV、10kV和35kV三个电压等级。本文进行了电气主接线设计、变压器选择、短路电流计算、高压电气设备选择及高压电气设备的校验,包括断路器、熔断器、隔离开关、电流互感器、电压互感器、避雷器等。 关键词:变电站,电气主接线,变压器,电气设备

A Substation Wiring Diagram Drawing Book (1) Abstract With the continuous economic and social development, the expansion of modern industrial production, manufacturing high degree of specialization, the power supply system design has become increasingly comprehensive and systematic. At present, the rapid growth of electricity demand, power quality, power system stability and reliability of power supply technology requirements continue to increase, and thus the design of the power system requirements are higher and more perfect. Power system substation is an important part of the substation power system is a key link. It is the power system voltage conversion, acceptance and distribution of electric energy to control the flow and adjust the voltage of electricity power facilities, it will power is safe, reliable and economic electricity transported to each device. This article is a 110kV electrical substation as part of the design, and draw the main electrical wiring diagram. In particular, the substation has two main transformers, wiring into the main station 110kV, 35kV and 10kV three voltage levels. This was the design of main power line, transformer selection, calculation of short circuit current, high voltage electrical equipment, high voltage electrical equipment selection and validation, including circuit breakers, isolating switches, current transformers, voltage transformers, surge arresters, fuse And so on. Keywords:Substation,Main Electrical Connection,Transformer,Elect

供电系统的主要接线方式

1、供电系统的主要接线方式,各中接线方式的优缺点是什么? ①桥式接线:采用有两回电源线路受电和装设两台变压器的桥式主接线。桥式接线分为:外桥、 内桥和全桥三种。 外桥接线对变压器的切换方便,比内桥少两组隔离开关,继电保护简单,易于过渡到全桥或单母线分段的接线,且投资少,占地面积小。缺点是倒换线路时操作不方便,变电所一侧无线路保护。适用于进线短而倒闸次数少的变电所,或变压器采取经济运行需要经常切换的终端变电所,以及可能发展为有穿越负荷的变电所。 内桥接线一次侧可设线路保护,倒换线路操作方便,设备投资与占地面积均较全桥少。缺点是操作变压器和扩建成全桥或单母线分段不如外侨方便。适用于进线距离长,变压器切换少的终端变电所。 全桥接线适应性强,对线路、变压器的操作均方便,运行灵活,且易于扩展成单母线分段式的中间变电所。缺点是设备多,投资大,变电所占地面积大。 ②线路变压器组结线:其优点是简单,设备少,基建快,投资费用低,但供电设备可靠性差。 ③单母线:进出线均有短路器以及与母线相连的母线隔离开关,与负电线路的线隔离开关。一般 分为单母线不分段和单母线分段两种典型结线。 a、单母线不分段:结果简单,造价低,运行不够灵活,供电可靠性差,适用于小容量用户。 b、单母线分段的可靠性和灵活性比单母线不分段有所提高。 隔断开关分段(QS分段)—适用由双回路供电,允许短时间停电的二级负荷。 短路器分段(QF分段)—适用一级负荷较多的情况,可切断负荷和故障电流,也可在继电保护下实现自动分合闸,在其中一条路线故障或需要检修时,可以将负荷转到另外一条线路,避免全部停电,但它使电源只能通过一回路供进线供电,供电功率降低,从而使更多的用户停电。 2、无限大容量供电系统和有限大容量供电系统 答:所谓无限大容量供电系统是指电源内阻抗为零,在短路过程中电源端电压恒定不变,短路电流周期分量恒定不变的供电系统。事实上,真正无限大容量供电系统是不存在的,通常将电源内阻抗小于短路回路总阻抗10%的电源看做无限大容量供电系统。所谓的有限大容量供电系统是指电源的内阻抗不能忽略,且是变化的,在短路过程中电源的端电压是衰减的,短路电流的周期分量幅值是衰减的供电系统。通常将内阻抗大于短路回路总阻抗10%的供电系统称为有限大供电系统。 3、有名值和标准值得概念 有名值:电流(安培)等于电压(伏特)除以阻抗 有名值法:短路计算中的各物理量均采用有名值,实质是欧姆定律。 标幺值:用相对值表示元件的物理量 标幺值法:将实际值与所选定的基准值的比值来运算,其特点是在多电压等级系统中计算比较方便。 4、冲击电流值得概念及产生条件? 概念:短路电流可能的最大瞬时值得称为冲击电流,用itm表示。Itm=错误!未找到引用源。kimIpe 条件:①短路前为空载②假设短路回路的感抗比单电阻大得多③短路发生于某电压瞬时值过零时。 5、电流互感器常见接线方式,使用场合:

相关文档
相关文档 最新文档