文档库 最新最全的文档下载
当前位置:文档库 › 数列三角换元题分析整合

数列三角换元题分析整合

数列三角换元题分析整合
数列三角换元题分析整合

数列三角换元题分析整合

By Liuzirui1122

引:这种题型常见于各类竞赛、自主招生中,模拟题和高考题中并不多见,一旦出现往往也会有各种各样的提示所以难度不大。网上关于这种题型的整合比较乱而且分散。本篇主要提供一些常见的通项构造方法和技巧等。

一、结构特点

三角换元构造的数列题有着比较鲜明的特点,一旦无法注意这些特点而当成普通数列题去探索通项是非常危险的。

1、几乎每一题提供的递推方程中都含有平方项,大部分有根号。如

1n n a a +=+

值得注意的是含有平方的非线性递推数列往往是很难求通项的,所以一旦看到提供了这样的特点并且要求求通项,很可能就是三角换元。 2、提供的递推方程中极少出现n,a n

3、若第一问求通项,第二问要求证明的等式/不等式中含有三角函数或者π.

4、试着解出的a 1,a 2,a 3中含有常见的三角函数值(注意熟记15°的三角函数值)

二、常用参照公式

三角换元的递推式都是参照至少一种或一类三角函数公式为母本所构造的。以下提供了一些非常常见的参照公式:

222222cos 22cos 11tan 1cos cos 1sin 2tanx

tan 21tan sin,cos,tan,cot x x x x

x x x x

=-+=

=-=

-的三倍角公式

当发现这些参照公式时,只需令其中一个a n 为某一三角函数f(φn )

(注意讨论定义域!)

解出形如φn+1=k φn +b 或类似的递推式,再用正常方法求解 三、例题

2

*11212111{},21()

(1)[1,1],{}(2),{}

(1)cos ,2cos 1cos 2cos 2(2)cosx 2

cos cosh cosh n n n n n n n ix ix a a a a a n N a a a R a a a a e e x x e a x θθθθ+--==-∈∈-∈==-==+===例:已知数列满足时求时求解显然通过余弦二倍角公式进行构造令则猜想由数学归纳法易证。

解考虑到二倍角公式可以通过证明

再由与类似的的函数的值域

想到设111

1

222222221,=ln(2

2()122((cosh 22

2

n n n n x x

x x x x

x

x

n n e x a e e e e a e

e

a a a x ---------++++=-=

+++-===

其中从而猜想数学归纳法易证

分析:例1的第(1)问很简单,显然调用了余弦二倍角公式即可求解。第(2)问如果不会这种构造可能会相当麻烦,因为形如a n+1=ka n 2+b 的形式通过不动点或者错项相减的做法是很难走下去的。

笔者归纳了形如例1的递推的情况,并且推导出如下规律:

11

212211

12

,2,,22cos2,,n n n n

n n n a ka k

x x

a a x k k a a k k θθ--+--=-?+>=

????≤=??

若则

当时其中为系数当时其中为系数

有兴趣的读者可以试着讨论三次的情况(借助三倍角公式分析)

1121212120075){}(01),.

:212(1)12cos 1cos 2cos ,2

n n n n n n a a a a a a a a a θθ

+++---=<<==---=-==例2.(年第届希望杯高二试题数列中,求解化简递推式

对比上面两个式子,余弦二倍角公式的雏形已经出来了

证明与例1大体相同

11121

1

3.(2010)

{}1,(1){};(1)(2): (2)

1(1)cot cot cot

sin 2

cot(),2

(2)cot cot

...cot(

)

4

8

2

tan(

)tan(

2

4

2

n n n n n n n n a a a a a n a a a a πθ

θθθπ

π

π

π

π

π

π

+++==+-+++>

=+==+++=-

+例江苏南通中学期中-19-改已知数列满足求数列的通项公式求证解考虑到可猜想数学归纳法易证

解1

1

1)...tan(

)

8

22

sin tan , (2)

4

2

8

2

2(1)(...)24822

n n n n n π

π

π

ππ

π

π

π

π

θθθπππππ

+++-

++-<<>-

+

-

++

-

-=-+++>由常见结论原式

分析:本题第(2)问就是典型的利用通项来证明放缩的题型,难度都不大,只要运用好三角函数的相关恒等式/不等式就可以轻松求解。

2211221220221120{}{}:

1,2,,2

{}

:4,1(1cos ,(0,)22

n n n n n n n n n a b a a a a a a a a a a a a πθθ-++++======+=∈例4.已知数列和满足求通项解补联立两个递推式

得令

10221222222221221

22

1

3

,,3

cos ,2sec ,cos 22cos cos

cos

...cos

2

6

12

24

32

sin 32cos

...cos cos

cos

32

24

12

6

sin

321cos ...c 232n n n n n n n n

n n n n n n n n a a a a a a a a a a π

θθθθ

π

π

π

π

π

π

π

π

π

π

π+++++-----=

=====???=??=?由得由上面结论数学归纳法易证

联立从而

累乘得2

1

1

1

*21os cos cos 24126

sin

3

...2

sin

2

sin

3232()

2tan

32n n n n n n

n

a n N ππππ

π

π

π

----+==

=??=

∈?再由递推式得

分析:本题难度较大,主要是开始的构造非常难以想象,以及最后的求积的思想需要竞赛思维才能解决,再加上大量的运算。与本题类似的题型非常多,详见习题部分。

四、习题

2

11112

1111(20142015{}21,=11{2,3,4,...}

(1):1(2):cos 2:

22,,b ,:

(2009)

,,n n n N N N n n

n n n n n n a a a a a N a k a a b a b a a b a b k M π+--++-=-≠∈≤=====+习题一:

江苏宿迁市沭阳县银河学校高三(上)开学检测)

数列满足且,其中求证求证习题二已知数列满足求的通项.习题三江苏盐城一模给定正整数正实数

对于满足2211122111{}....:(:{}(0),{}.

k n k k k n n n n n a a M a T a a a a a a a a S a n a ++++++≤=+++=>=的所有等差数列求的最大值习题四来源西神)

已知数列满足且是的前项和,求

*

2211111*211

121(1)1,11,()1,21,=1,1,1,

1,1()(11,)1

1,[0,1]2

1,1

(2)N 2,1,1cos (1),N k n n N N N N N N m N m N m N m a k N k N i k a a a a a a a ii k m m N m N a a a a a a a N m m k π

-+----------≤≤≤-∈==-=≠=-≤=≤≤-∈+≤=

∈≤≤===-==>猜想:时由得且所以成立

假设时

则所以得证时假设时存在12

21

22212(m 1)211(1)2(1)2

12

,cos

21,cos 2

1cos 22

2(22)cos cos

221cos 2

m m m m m N k Z a k N m k a a k a k k a a N k k a ππ

πππ

π

---+-+-+--∈==+=+==-===使得时存在使得则所以或所以无论取任何大于的正整数,都存在使得

习题二证明略,参考例4作答

1122111111.....(1)()(1)(sin )

2

,1)(3cos sin )2

1)

=

2

,k k k k k k a a a a a k k d a a k k a a k a a a a d a a +++++++++=++++++=++-+=-+===

大值最

1111112121

211,:

2,,3

(2)k k k k k k k OAA O OA OA a

a OA a

AA OA A A A AA AA AA OA A A a OA S k π

--=============≥习题四证明构造一个等边三角形令由余弦定理得在射线上取点使得由余弦定理得重复以上步骤

可以得到递推式且满足题设递推式.

且由三角1

1

1

62sin sin 2sin

32n n n n n n OA A OA AA OA A O a a

π

π

---=?=

=

?形边角关系易得从而由正弦定理,即

(完整版)三角换元(高二)

三角换元(一) 三角换元是一种用三角函数中的角度θ代替问题中的字母参数,然后利用三角函数之间的关系而达到解题目的的一种换元方法,此方法应用非常广泛,本文主要介绍利用三角恒等式sin2?θ+cos2?θ=1及其变形形式,来处理多元代数式的最值或取值范围问题. x=cos θ2,y=tanθ, 其中θ∈[0,π2),则 |x|?|y|= cos θ2?tan θ=cos θsin θ-2, 表示点(0,2)与单位圆2x +2y =1,x ∈(0,1]上的点连线的斜率的相反数,如下图:

因此,可计算得斜率的范围为(?∞,?3],故题中所求 代数式的最小值为3. 例2 设 x,y 为实数,若2 x ?xy+2y =1,求x+2y 的取值范围. 分析 联想到θsin 2?+θcos 2=1,考虑将题中2 x ?xy+2y =1变形,然后用三角换元进行求解. 解 题中等式可化为 22y -x )(+2y 4 3=1, 进行三角换元,令 x=2y +cos θ,y=sin θ3 2, 其中θ∈[0,2π),解得 x=31sin θ+cosθ,y=sin θ3 2,, 所以 x+2y= 35sinθ+cosθ=328sin(θ+φ),

其中sinφ=1421,cosφ=14 75. 因此,x+2y 的取值范围为[?3212,3 212]. 总结 (1)常用于三角换元的三角恒等式有 sin 2θ+cos 2θ=1, αcos 12?tan 2α=1, (2) 利用三角恒等式,可将多元代数式的变元用θ代替,进而使变元减少,然后再结合辅助角公式等方式求最值或范围即可. (3)三角换元是换元法的一种,换元后一定注意新变元的范围,也就是需要根据题意给出θ的合理范围; 练习

必修5解三角形数列综合测试题

必修5解三角形数列综合测试题 第Ⅰ卷(选择题共60分) 一、选择题:(每小题5分,共60分) 1.已知锐角ABC ?的面积为4,3BC CA ==,则角C 的大小为( ) A . 30 B . 45 C . 60 D . 75 2. 在等差数列{}n a 中,若4612a a +=,n S 是数列{}n a 的前n 项和,则9S =( ) A .48 B .54 C .60 D .108 3. 已知等比数列{}n a 的公比为正数,且2 3952a a a ?=,21a =,则1a =( ) A . 1 2 B .2 C D .2 4. 已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ?? ???? 的前5项和为( ) A . 158或5 B . 5 或1631 C .3116 D .15 8 5. 已知数列{}n a 的前n 项和2 9n S n n =-,第k 项满足58k a <<,则k =( ) A .9 B .8 C .7 D .6 6. 在各项均为正数的等比数列{n a }中,123a a a =5,789a a a =10,则456a a a =( ) A . B .7 C . 6 D . 7. 在ABC ?中,60A =,且最大边长和最小边长是方程2 7110x x -+=的两个根,则第三边的长为( ) A .2 B .3 C .4 D .5 8. 在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a = ( )

A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++ 9. 在ABC ?中,A 、B 的对边分别是a 、b ,且 30=A ,a =4b =,那么满 足条件的ABC ?( ) A .有一个解 B .有两个解 C .无解 D .不能确定 10. 已知等差数列{}n a 的公差0d <,若462824,10a a a a =+=,则该数列的前n 项和n S 的最大值为( ) A .50 B .45 C .40 D .35 11. 各项均为正数的等比数列{}n a 的前n 项和为n S ,若10302,14S S ==,则40S =( ) A .80 B .30 C .26 D .16 12. 在?ABC 中,222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是( ) A .(0, 6 π ] B .[ 6π,π) C .(0,3π] D .[ 3 π ,π) 第Ⅱ卷(非选择题共90分) 二、填空题:(每小题5分,共20分) 13. 已知c b a ,,分别是ABC ?的三个内角C B A ,,所对的边,若 B C A b a 2,3,1=+==则=C sin . 14. 设n S 是等差数列{}n a 的前n 项和,若 5359a a =,则95 S S = . 15. 已知ABC ? 的一个内角为 120,并且三边长构成公差为4的等差数列,则ABC ?的面积为_______________. 16.下表给出一个“直角三角形数阵” 41 4 1,21

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

解三角形与数列Word版

解三角形及其数列专练 1.(2016·吉林)△ABC的内角A,B,C所对的边分别为a,b,c,已知向量m=(cosA,3sinA),n=(2cosA,-2cosA),m·n=-1. (1)若a=23,c=2,求△ABC的面积; (2)求 b-2c acos( π 3 +C) 的值. 解析(1)因为m·n=2cos2A-3sin2A=cos2A-3sin2A+1=2cos(2A+ π 3 )+1=-1,所以cos(2A+ π 3 )=-1.又 π 3 <2A+ π 3 <2π+ π 3 ,所以2A+ π 3 =π,A= π 3 .由12=4+b2-2×2×b×cos π 3 ,得b=4(舍负值).所以△ABC的面积为 1 2 ×2×4×sin π 3 =2 3. (2) b-2c acos( π 3 +C) = sinB-2sinC sinAcos( π 3 +C) = sin(A+C)-2sinC 3 2 cos( π 3 +C) = 3 2 cosC- 3 2 sinC 3 2 cos( π 3 +C) = 3cos( π 3 +C) 3 2 cos( π 3 +C) =2. 2.(2016·福建)在△ABC中,B= π 3 ,点D在边AB上,BD=1,且DA=DC. (1)若△BCD的面积为3,求CD; (2)若AC=3,求∠DCA. 解析(1)因为S △BCD =3,即 1 2 BC·BD· sinB=3,又B= π 3 ,BD=1,所以BC=4. 在△BDC中,由余弦定理得,CD2=BC2+BD2-2BC·BD·cosB, 即CD2=16+1-2×4×1× 1 2 =13,解得CD=13. (2)在△ACD中,DA=DC,可设∠A=∠DCA=θ,则∠ADC=π-2θ,又AC=3,由正弦定

解三角形、数列2018年全国数学高考分类真题(含答案)

解三角形、数列2018年全国高考分类真题(含答案) 一.选择题(共4小题) 1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=() A.B.C.D. 2.在△ABC中,cos=,BC=1,AC=5,则AB=() A.4 B. C. D.2 3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则() A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=() A.﹣12 B.﹣10 C.10 D.12 二.填空题(共4小题) 5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为. 6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=. 7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为. 8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=. 三.解答题(共9小题) 9.在△ABC中,a=7,b=8,cosB=﹣. (Ⅰ)求∠A; (Ⅱ)求AC边上的高. 10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过

点P(﹣,﹣). (Ⅰ)求sin(α+π)的值; (Ⅱ)若角β满足sin(α+β)=,求cosβ的值. 11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣). (Ⅰ)求角B的大小; (Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值. 12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求cos∠ADB; (2)若DC=2,求BC. 13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列. (1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围; (2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n. (Ⅰ)求q的值; (Ⅱ)求数列{b n}的通项公式. 15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6. (Ⅰ)求{a n}和{b n}的通项公式; (Ⅱ)设数列{S n}的前n项和为T n(n∈N*), (i)求T n; (ii)证明=﹣2(n∈N*). 16.等比数列{a n}中,a1=1,a5=4a3.

三角换元(高二)(最新整理)

三角换元(一)三角换元是一种用三角函数中的角度θ代替问题中的字母参数,然后利用三角函数之间的关系而达到解题目的的一种换元方法,此方法应用非常广泛,本文主要介绍利用三角恒等式sin2?θ+cos2?θ=1及其变形形式,来处理多元代数式的最值或取值范围问题. x=,y=tanθ,cos θ 2其中θ∈[0,π2),则 |x|?|y|= ?tan θ=,cos θ2cos θsin θ-2表示点(0,2)与单位圆+=1,x ∈(0,1]上的点连线的斜率的相反数,2x 2y 如下图:

因此,可计算得斜率的范围为(?∞,?3],故题中所求 代数式的最小值为3. 例2 设 x,y 为实数,若?xy+=1,求x+2y 的取值范围.2x 2y 分析 联想到?+=1,考虑将题中?xy+=1变形,然θsin 2θcos 22x 2y 后用三角换元进行求解. 解 题中等式可化为 +=1,22y -x )(2y 4 3进行三角换元,令 x= +cos θ,y=,2y sin θ32其中θ∈[0,2π),解得 x=sinθ+cosθ,y=,,31sin θ3 2所以 x+2y= sinθ+cosθ=sin(θ+φ),35328

其中sinφ=,cosφ=.142114 75因此,x+2y 的取值范围为[?,].32123212总结 (1)常用于三角换元的三角恒等式有 sin θ+cos θ=1, ?tan α=1,22αcos 122(2) 利用三角恒等式,可将多元代数式的变元用θ代替,进而使变元减少,然后再结合辅助角公式等方式求最值或范围即可. (3)三角换元是换元法的一种,换元后一定注意新变元的范围,也就是需要根据题意给出θ的合理范围;

向量解三角形数列不等式测试卷

向量、解三角形、数列、不等式测试卷 一、选择题(本大题共12小题,每小题5分,共60分) 1.由11a =,3d =确定的等差数列{}n a , 当298n a =时,n 等于 ( ) A.99 B.100 C.96 D.101 2.ABC ?中,若?===60,2,1B c a ,则ABC ?的面积为 ( ) A . 2 1 B .23 C.1 D.3 3.如图,在△ABC 中,1 ,3,,,2 BD DC AE ED AB a AC b BE = ===若则= ( ) A .1133a b + B .11 24a b -+ C .1124a b + D .11 33 a b -+ 4.已知3≥x ,函数1 1 -+=x x y 的最小值是 ( ) A .2 7 B .4 C .8 D .6 5.设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -?-的最小值为 ( ) A 、2- ( B )22- ( C )1- (D)12- 6.在各项均为正数的等比数列 {}n b 中,若783b b ?=,则 3132log log b b ++……314log b +等于 ( ) (A) 5 (B) 6 (C)7 (D)8 7.设,x y 满足约束条件1 2x y y x y +≤?? ≤??≥-? ,则3z x y =+的最大值为 ( ) A . 5 B. 3 C. 7 D. -8 8.在ABC ?中,80,100,45a b A ?===,则此三角形解的情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解 9.已知b a ,满足:a =3,b =2,b a +=4,则b a -=( ) A .3 B .5 C .3 D 10 10.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( )

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

解三角形与等差数列阶段测试

解三角形与等差数列阶段测试题 2014.8.8 一、选择题:(每小题5分,共计50分) 1. 在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( ) A .310+ B .() 1310- C .13+ D .310 2. 在△ABC 中,b=c=3,B=300,则a 等于( ) A B . C D .2 3. 不解三角形,下列判断中正确的是( ) A .a=7,b=14,A=300有两解 B .a=30,b=25,A=1500有一解 C .a=6,b=9, A=450有两解 D .a=9, c=10,B=600无解 4. 在△ABC 中,AB =5,BC =7,AC =8,则AB BC ?的值为( ) A .79 B .69 C .5 D .-5 5. .在△ABC 中,A B B A 22sin tan sin tan ?=?,那么△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .等腰三角形或直角三角形 6. 已知等差数列5724,7 43…,则使得n S 取得最大值的n 值是( ) A. 15 B. 7 C. 8和9 D. 7和8 7. 已知数列{}n a 满足*12463(),9n n a a n N a a a ++=∈++=且,则15796 log () a a a ++的值是( ) A .-2 B .12- C .2 D .12 8. 已知等差数列{}n a 满足1231010a a a a ++++=,则有( ) A 、11010a a +> B 、11010a a +< C 、11010a a += D 、5151a = 9. 在等差数列中,若是9641272=++a a a ,则1532a a +等于( ) A. 12 B. 96 C. 24 D. 48 10. 等差数列{ a n }的前n 项的和记为S n ,已知a 1 > 0,S 7 = S 13,则当S n 的值 最大时,n =( ) A. 8 B.9 C.10 D.11

最新必修5解三角形和数列测试题及答案

必修五解三角形和数列综合练习 解三角形 一、选择题 1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 等于( ) (A) 6 π (B) 3 π (C) 3 2π (D) 6 5π 2.在△ABC 中,给出下列关系式: ①sin(A +B )=sin C ②cos(A +B )=cos C ③2 cos 2sin C B A =+ 其中正确的个数是( ) (A)0 (B)1 (C)2 (D)3 3.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c .若a =3,sin A =32,sin(A +C )=4 3 ,则b 等于( ) (A)4 (B)3 8 (C)6 (D) 8 27 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,sin C = 3 2 ,则此三角形的面积是( ) (A)8 (B)6 (C)4 (D)3 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,则此三角形的形状是( ) (A)直角三角形 (B)正三角形 (C)腰和底边不等的等腰三角形 (D)等腰直角三角形 二、填空题 6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,B =45°,则角A =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,c =19,则角C =________. 8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b =3,c =4,cos A = 5 3 ,则此三角形的面积为________. 9.已知△ABC 的顶点A (1,0),B (0,2),C (4,4),则cos A =________. 10.已知△ABC 的三个内角A ,B ,C 满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________. 三、解答题 11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =3,b =4,C =60°. (1)求c ; (2)求sin B . 12.设向量a ,b 满足a ·b =3,|a |=3,|b |=2. (1)求〈a ,b 〉; (2)求|a -b |.

2018高考数学专题复习-三角换元法

三角换元法 摘要:本文归纳总结了三角换元法的基本用法,以常见例题的形式讲述了三角换元法在解题过程中的具体应用。 大家知道,换元法的实质是通过换元将原来比较复杂的、非标准的形式转化为简单的、标准的形式,以利于揭示问题的本质、题目的分析和解决。三角换元法是众多换元法中的一种,它以三角函数为“元”,将代数问题转化为易于应用三角函数性质求解的问题,三角换元法在求解方程、不等式、解析几何和函数最值等方面都有着广泛的应用。一般情况下,在运用三角换元的题目中,往往在表达式的形式或字母的取值范围等方面明显反映出三角函数式的特征,这一点给三角换元法的应用提供了线索。具体表现在该方法对于含有被开方式为二次式的二次根式问题能起到除去二次根式的作用,因为二次根式c bx ax ++2总是可以转化为22t k -、t k +2或22k t -的形式,其中t 为变量,k 为非负常量。现对于此类问题归纳如下: 1.形如),(22x a x f y -=的形式,其中f 是x 和22x a -的代数函数。令)22,0(,sin ππ≤≤- >=t a t a x 此时,[]a a x ,-∈或令),0,0(,cos π≤≤>=t a t a x 同理[]a a x ,-∈, 2.形如),(22a x x f y +=的形式,其中f 是x 和22x a +的代数函数。令),22,0(,tan ππ<<- >=t a t a x 此时,),(+∞-∞∈x 或令),0,0(cot π<<>=t a t a x ),(+∞-∞∈x 。 3.形如),(22a x x f y -=的形式,其中f 是x 和22a x -的代数函数。令),23,20,0(,sec πππ<≤< ≤>=t t a t a x 此时,),,[],(+∞?--∞∈a a x 或令t a x csc = ),20,02,0(π π ≤<<≤->t t a 其中),[],(+∞?--∞∈a a x 。 注:上面替换中应注意,t 的范围应满足: 1°根式中变量的取值要求。 2°二次根式的化简唯一。 以上是常见的用法,其具体应用现分类介绍如下: 一、三角换元法在解方程及解不等式中的应用。 例1. 解方程:12 3512=-+x x x 解:该方程的根必然为正(否则左负右正),所以设)20(,sec π ≤≤=t t x ,则方程变为

解三角形练习题及答案

解三角形测试 一、选择题 1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ). A .90° B .120° C .135° D .150° 2.在△ABC 中,下列等式正确的是( ). A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin B C .a ∶b =sin B ∶sin A D .a sin A =b sin B 3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ). A .1∶2∶3 B .1∶3∶2 C .1∶4∶9 D .1∶2∶3 4.在△ABC 中,a =5,b =15,∠A =30°,则c 等于( ). A .25 B .5 C .25或5 D .10或5 5.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形 C .不可求出 D .有三种以上情形 6.在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不能确定 7.在△ABC 中,若b =3,c =3,∠B =30°,则a =( ). A .3 B .23 C .3或23 D .2 8.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B =30°,△ABC 的面积为 2 3 ,那么b =( ). A . 2 3 1+ B .1+3 C . 2 3 2+ D .2+3 9.某人朝正东方向走了x km 后,向左转150°,然后朝此方向走了3 km ,结果他离出发点恰好3km ,那么x 的值是( ).

(完整版)高二数学必修5(解三角形和数列)练习题

高二数学必修5(解三角形与数列)练习题 一、选择题 1在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 2 已知,2 31,2 31-= += b a 则b a ,的等差中项为( ) A .3 B .2 C . 3 1 D . 2 1 3等比数列{}n a 中,44a =,则26a a ?等于( ) A.4 B.8 C.16 D.32 4等差数列{a n }的前n 项和为S n ,若2462,10,S S S ==则等于( ) A .12 B .18 C .24 D .42 5在ABC ?中,ο 120,3,33===A b a ,则B的值为( ) A、ο30 B、ο45 C、ο60 D、ο 90 6在⊿ABC 中,已知ba c b a 22 22+=+,则∠C= ( ) A 300 B 1500 C 450 D 1350 7在ABC ?中,已知?=30A ,?=45C ,2=a ,则ABC ?的面积等于( ) A .2 B .13+ C .22 D . )13(2 1 + 8已知a b c d ,,,成等比数列,且曲线2 23y x x =-+的顶点是()b c ,,则ad 等于( ) A.3 B.2 C.1 D.2- 9设ABC ?的三内角A 、B 、C 成等差数列,sinA 、sinB 、 sinC 成等比数列,则这个三角形的形状是( ) A.直角三角形 B钝角三角形 C.等腰直角三角形 D.等边三角形 二、填空题 11已知数列{n a }的前n 项和2 9n S n n =-,则其通项n a = 12已知等差数列{a n }的前n 项和为S n , a 1=4,d=- 5 7 , 当S n 取得最大值时n= 13、在ABC ?中,2||,60==AB A ο ,且ABC ?的面积为 2 3 ,则=||AC ; 14、在等差数列{}n a 中,421,,a a a 这三项构成等比数列,则公比=q 三、解答题 15.在ABC ?中,A B C 、、是三角形的三内角,a b c 、、是三内角对应的三边,已知

2019年三角函数和解三角形大题

2018-2019学年高三一模理分类---三角函数和解三角形 海淀(理) (15)(本小题满分13分) 已知函数()cos()cos 4 f x x x a π =-+ (Ⅱ)求a 的值; (Ⅱ)求函数()f x 的单调递增区间. 文)已知函数()cos()cos 4 f x x x a π =-+的图象经过点(O,l),部分图象如图所示. (I)求a 的值; (Ⅱ)求图中0x 的值,并直接写出函数()f x 的单调递增区间. 朝阳 (理)15.(本小题满分13分) 在ABC △中,a ,120A ∠=?,ABC △b c <. (Ⅰ)求b 的值; (Ⅱ)求cos 2B 的值. (文)15.(本小题满分13分) 已知函数2 ()cos cos f x x x x =. (Ⅰ)求( )3 f π 的值及()f x 的最小正周期; (Ⅱ)若函数()f x 在区间[0,]m 上单调递增,求实数m 的最大值. 石景山

(文 理)15. (本小题13分) 在ABC △中,角A B C , ,的对边分别为a b c ,, ,b=3c =,1 cos 3 B=-. (Ⅰ)求sin C 的值; (Ⅱ)求ABC △的面积. 丰台 (理)15.(本小题13分) 已知函数2()cos(2)2sin ()3f x x x a a π =--+∈R ,且()03 f π=. (Ⅰ)求a 的值; (Ⅱ)若()f x 在区间[0,]m 上是单调函数,求m 的最大值. 延庆 (理)15.(本小题满分13分) 如图,在ABC ?中,点D 在BC 边上,cos ADB ∠=,3cos =5 C ∠,7AC =. sin CA D ∠(求Ⅰ)的值; (Ⅱ)若10BD =, 求AD 的长及ABD ?的面积. 怀柔 15.(本小题满分13分) 在 中,角,,所的对边分别是a ,b ,c , , . (Ⅰ)求边c 的值; (Ⅱ)若,求 的面积. 门头沟 A D B C

高一下学期解三角形数列综合测试题

一、选择题 的值为则,,中,已知在c C b a ABC ,12046.1?===? 76.A 76.B 28.C 28.D 应等于的规律,,,,,,,,,,观察数列x x 553421853211.2 11.A 12.B 13.C 14.D 的值为,则,中,已知在A c C a ABC 3,606.3=?==? ?45.A ?135.B ??13545.或C ??12060.或D 的值为,则,中,已知等差数列124115116}{..4a a a a a n ==+ 15.A 30.B 31.C 64.D 离为 向,这时船与灯塔的距后,看见灯塔在正西方海里的方向航行方向,后来船沿南偏东偏东某船开始看见灯塔在南906030.5?? 海里230.A 海里330.B 海里345.C 海里245.D 的值为,则,中,已知等差数列158431204}{..6a a a a a a n =+=+ 26.A 30.B 28.C 36.D 的值为,则且项和是其前为等差数列,已知611tan 3 22,}{..7a S n S a n n π = 3.A 3 3 . B 3.± C 3.- D 等于时,的面积等于当,中,已知在C ABC B a ABC sin 32,3 24.8?= =?π 147. A 1414. B 714. C 14 21 .D 9.在ABC ?中,若7,3,8,a b c ===则面积为( ) A 12 B 21 2 .28C D 为取最小值的则使,若项和为的前等差数列n S a a a S n a n n n ,14,5}{..101041=+-= 3.A 4.B 5.C 6.D 则最大角正弦值等于,,中,已知在,14 13 cos 87.11= ==?C b a ABC 73. A 732. B 733. C 73 4. D

解三角形数列(2)

选择题 1.在△ABC 中,a =80,b =100,∠A =45°,则此三角形解的情况是( ) A .一解 B .两解 C .一解或两解 D .无解 2.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( ) A.2π3 B.5π6 C.3π4 D.π3 3.在△ABC 中,∠B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 4.在△ABC 中,a 2+b 2-ab =c 2=23S △ABC ,则△ABC 一定是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形 5.如图所示为起重机装置示意图.支杆BC =10 m ,吊杆AC =15 m ,吊索AB =519 m ,起吊的货物与岸的距离AD 为( ) A .30 m B.152 3 m C .15 3 m D .45 m 6.在△ABC 中,b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( ) A. 152 B.15 C .2 D .3 7.锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( ) A .1<a <3 B .1<a < 5 C.3<a < 5 D .不确定 8.△ABC 中,a ,b ,c 分别是A 、B 、C 的对边,且满足2b =a +c ,B =30°,△ABC 的面积为0.5,那么b 为( ) A .1+ 3 B .3+ 3 C.3+33 D .2+ 3 9.在△ABC 中,下列结论: ①a 2>b 2+c 2,则△ABC 为钝角三角形;②a 2=b 2+c 2+bc ,则A 为60°;③a 2+b 2>c 2,则△ABC 为锐角三角形;④若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3. 其中正确的个数为( ) A .1 B .2 C .3 D .4 10.锐角三角形ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,设B =2A ,则b a 的取值范围是( ) A .(-2,2) B .(0,2) C .(2,2) D .(2,3) 11.已知数列{a n }满足a 1=3,a n -a n +1+1=0(n ∈N +),则此数列中a 10等于( ) A .-7 B .11 C .12 D .-6 12.已知等差数列{a n }的首项a 1=125 ,第10项是第一个比1大的项,则公差d 的取值范围是( ) A .d >875 B .d <825

解三角形与数列知识整理(超好)

高二数学解三角形与数列知识整理 1. 三角基本关系式: 22sin cos 1αα+=,sin tan cos α αα =. 2. 两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +,变形:()()tan tan tan 1tan tan αβαβαβ-=-+; ⑹()tan tan tan 1tan tan αβ αβαβ ++= -,变形:()()tan tan tan 1tan tan αβαβαβ+=+-. 3. 重要的诱导公式: ()sin sin ααπ-=,()cos cos ααπ-=-,()tan tan ααπ-=-. 三角形中常考点: sin()sin A B C +=;cos()cos A B C +=-; tan()tan A B C +=-,tan tan tan tan tan tan A B C A B C ++=??. 4. 二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=; ⑵2 222 cos2cos sin 2cos 112sin ααααα=-=-=-, 变形:2 1cos 2cos 2αα+=,2 1cos 2sin 2 αα-=; ⑶222 sin 22sin cos 2tan tan 2cos 2cos sin 1tan αααα ααααα = ==--. 5. 一个综合性很强的例子: 22 222 cos 2cos sin (cos sin )(cos sin ) 1sin 2sin cos 2sin cos (sin cos )cos sin 1tan 1tan tan()sin cos tan 11tan 4 ααααααααααααααααααααααα--+== ++++---π====-+++ 6. 辅助角公式(一角一函数): ()sin cos a b ααα?+=+,其中tan b a ?= . 常见辅助角公式: sin cos x x x π? ?±=± ?4??, 2sin x x x π? ?=± ?4? ?, cos 2sin x x x π??±=± ?6??, sin 2sin x x x π? ?±=± ?3? ?, 3sin 2x x x π??=± ?6??, 3cos 2x x x π??±=± ?3? ?, 7. 根据“函数()()sin 00y x ω?ω=A +A >>,”的定义域,利用其单调性求其最值. 8. 设A 、B 两点的坐标分别为()11x y ,,()22x y ,,有: ⑴()1212,x x y y AB =--;⑵||(x AB =. 9. 设()11a x y =,,()22b x y =,,有: ⑴模长:21a x = +2b x =+ ⑵坐标运算:()1212a b x x y y +=++,,()1212a b x x y y -=--,,1212a b x x y y ?=+; ⑶平行与垂直:若a ∥b ,则12210x y x y -=;若a b ⊥,则12120a b x x y y ?=+=; ⑷数量积:cos a b a b θ?=, 12 1 cos a b a b x θ?== + 10. 正弦定理: 在C ?AB 中,有 2sin sin sin a b c R C ===A B ,其中,R 为C ?AB 的外接圆的半径. 正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 11. 射影定理:(要求会用两角和的正弦公式及正弦定理证明) cos cos cos cos cos cos .a b C c B b a C c A c a B b A =+=+=+,,

解三角形练习题及答案

第一章 解三角形 一、选择题 1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ). A .90° B .120° C .135° D .150° 2.在△ABC 中,下列等式正确的是( ). A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin B C .a ∶b =sin B ∶sin A D .a sin A =b sin B 3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ). A .1∶2∶3 B .1∶3∶2 C .1∶4∶9 D .1∶2∶3 4.在△ABC 中,a =5,b =15,∠A =30°,则c 等于( ). A .25 B .5 C .25或5 D .10或5 5.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形 C .不可求出 D .有三种以上情形 6.在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不能确定 7.在△ABC 中,若b =3,c =3,∠B =30°,则a =( ). A .3 B .23 C .3或23 D .2 8.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B =30°,△ABC 的面积为 2 3 ,那么b =( ). A . 2 3 1+ B .1+3 C . 2 3 2+ D .2+3 9.某人朝正东方向走了x km 后,向左转150°,然后朝此方向走了3 km ,结果他离出发点恰好3km ,那么x 的值是( ).

高考数学解题之换元法

换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x=sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取, 一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。

相关文档
相关文档 最新文档