文档库 最新最全的文档下载
当前位置:文档库 › 自动控制原理复习总结(精辟)

自动控制原理复习总结(精辟)

自动控制原理复习总结(精辟)
自动控制原理复习总结(精辟)

2009 年秋季 自动控制理论(一)复习指南和要求

第二章 控制系统的数学模型复习指南与要点解析

要求: 根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同)

一、控制系统3种模型,即时域模型----微分方程;※复域模型——传递函数;频域模型——频率特性。其中重点为传递函数。

在传递函数中,需要理解传递函数定义(线性定常系统的传递函数是在零初始条件下,系统输出量的拉氏变换式与输入量的拉氏变换式之比)和性质。

零初始条件下:如要求传递函数需拉氏变换,这句话必须的。

二、※※※结构图的等效变换和简化--- 实际上,也就是消去中间变量求取系统总传递函数的过程。 1.等效原则:变换前后变量关系保持等效,简化的前后要保持一致(P45)

2.结构图基本连接方式只有串联、并联和反馈连接三种。如果结构图彼此交叉,看不出3种基本连接方式,就应用移出引出点或比较点先解套,再画简。其中:

※引出点前移在移动支路中乘以()G s 。(注意:只须记住此,其他根据倒数关系导出即可)

引出点后移在移动支路中乘以1/()G s 。 相加点前移在移动支路中乘以1/()G s 。 相加点后移在移动支路中乘以()G s 。

[注]:乘以或者除以()G s ,()G s 到底在系统中指什么,关键看引出点或者相加点在谁的前后移动。在谁的前后移动,()G s 就是谁。

例1:

)

解法 1:

1) 3()G s 前面的引出点后移到3()G s 的后面(注:这句话可不写,但是必须绘制出下面的结构图,

)

2) 消除反馈连接

)

3) 消除反馈连接

4) 得出传递函数

123121232123()()()()

()1()()()()()()()()()

G s G s G s C s R s G s G s H s G s G s H s G s G s G s =+++ [注]:可以不写你是怎么做的,但是相应的解套的那步结构图必须绘制出来。一般,考虑到考试时间限制,化简结构图只须在纸上绘制出2-3个简化的结构图步骤即可,最后给出传递函数

()

()

C s R s =。。。。) 解法 2: 1()G s 后面的相加点前移到1()G s 前面,并与原来左数第二个相加点交换位置,即可解套,自己试一下。

[注]:条条大路通罗马,但是其最终传递函数

()

()

C s R s =一定相同) [注]:※※※比较点和引出点相邻,一般不交换位置※※※,切忌,否则要引线) 三. ※※※应用信号流图与梅森公式求传递函数

梅森公式: ∑=??=n

k k k P P 1

1

式中,P —总增益;n —前向通道总数;P k —第k 条前向通道增益;

△—系统特征式,即Λ+-+-=?∑∑∑f e d c b a L L L L L L 1

Li —回路增益;

∑La —所有回路增益之和;

∑LbLc —所有两个不接触回路增益乘积之和; ∑LdLeLf —所有三个不接触回路增益乘积之和;

△k

—第k 条前向通道的余因子式,在△计算式中删除与第k 条前向通道接触的回路。 [注]:一般给出的是结构图,若用梅森公式求传递函数,则必须先画出信号流图。

注意2:在应用梅森公式时,一定要注意不要漏项。前向通道总数不要少,各个回路不要漏。

例2: 已知系统的方框图如图所示 。试求闭环传递函数C(s)/R(s) (提示:应用信号流图及梅森公式)

解1)

[注]

2) 应用梅森公式求闭环传递函数: 前向通道增益

3211G G G P =;342G G P =;

回路增益

221H G L -=;133212H H G G G L -=;53G L -=;43431L G G H H =- 特征式

2212313534312521G H G G G H H G G G H H G G H ?=+++++;

余因子式(对应各个前项通道的)

511G +=?;521G +=?;------经验:一般余因子式不会直接等于1,不然太简单了

闭环传递函数1243522123135252

()(1)()

()1G G G G G C s R s G H G G G H H G G G H ++=

++++ 四、知道开环传递函数的定义,并会求闭环系统的传递函数 1.开环传递函数,如图:

12()

()()()()

()()G s H s B s G s G s H s s ε=

=

,则()

()(

)()

()()B s G s s s G H s s H ε=

= )())((G s H s G s =------常见)

2.四个闭环系统的传递函数----特点分母相同,即特征方程相同

1212()()()

()()1()()()

G s G s C s s R s G s G s H s Φ==+(通常说的输出对输入的传递函数);

212()()

()()1()()()n G s C s s N s G s G s H s Φ==+

12()1

()()1()()()

s s R s G s G s H s εεΦ==+

212()()()

()()1()()()

n G s H s s s N s G s G s H s εεΦ-==+

[注]:后面求稳态误差需要

第三章 线性系统的时域分析

要求:1) 会分析系统的时域响应()c t ,包括动态性能指标;

2) 会用劳斯判据判定系统稳定性并求使得系统稳定的参数条件; 3)会根据给出的系统结构图,求出系统稳态误差,并减小或消除之。

一、时域分析方法和思路:已知系统输入()r t 和系统模型()s Φ,求时域响应()c t 。

例1:求一阶系统的单位阶跃响应。

1)输入)(1)(t t r =,则其拉氏变换为s

s R 1

)(=

,则 2)11111

()()()111/T C s s R s Ts s s Ts s s T

Φ==?=-=-

+++ 3)对上式取拉氏反变换,得其响应单位阶跃信号的响应为: /()1e ,0t T ss ts c t c c t -=+=-≥

[注1]:※※ss c 为稳态分量,它的变化由输入信号的形式(上例中)(1)(t t r =)决定;

※ ※ts c (上例中/e t T ts c -=-)为暂态分量,由闭环传递函数的极点(上例中1

s T

=-

)决定。 二、线性系统稳定的充要条件是闭环特征根均需具有负实部或者说()s Φ的极点都在在s 平面[左]半部分。---系统稳定性是系统本来的固有特性,与外输入信号无关。

1.只有当系统的特征根全部具有负实部时,系统达到稳定。

2.如果特征根中有一个或一个以上具有正实部,则这表明系统不稳定;

3. 如果特征根中具有一个或一个以上的零实部根,而其余的特征根均具有负实部,则脉冲响应函数趋于常数,或者趋于等幅正弦(余弦)振荡,称为临界稳定。

[注2]: 根据如果()s Φ极点都在s 平面左半部分,则暂态分量ts c 随时间增大而衰减为0;

如果()s Φ极点有一个都在s 平面右半部分,则暂态分量ts c 随时间增大而发散。 三、※※※二阶系统单位阶跃响应及其欠阻尼情况下指标计算

1.熟悉二阶系统单位阶跃响应的3个对应关系,即:

不同阻尼比ζ类型—不同单位阶跃的时间响应波形图()c t ---不同系统稳定性

2.二阶系统欠阻尼单位阶跃响应的指标计算:欠阻尼二阶系统上升时间、峰值时间、调节时间、超调量计算(公式必须牢记)

p d t πω==

r d t πβω-==

()()%100%e

100%()

p p c t c c σσ-∞==

?=?∞,4

3

,0.02,,0.05s s n

n

t t ζωζω=

?==

?=或

其中,阻尼角arctan

β=,阻尼振荡频率

d ωω=

例2:2004年考题已知控制系统如图所示,

(1) 确定使闭环系统具有7.0=ζ及)/(6s rad n =ω的k 值和τ值;

)

6()(1+=

s s s G ;s s H τ=)(

(2) 计算系统响应阶跃输入时的超调量p σ和峰值时间p t 。

解:(1) 2

2222)6()(n

n n s s k s k s k

s ωζωωτ++=+++=Φ; 236

26n n k k ωζωτ

?==??=+??, 则360.067k τ=??

=? (2) 21/2

%exp([1]) 4.6%σζπζ-=--=;s t d p 733.0/==ωπ。

例3 2006年考题:已知控制系统如图所示,

)

6()(+=

s s k

s G ;s s H τ=)(

在0)(br =s G 时,闭环系统响应阶跃输入时的超调量%6.4=p σ、峰值时间733.0=p t 秒,确定系统的k 值和τ值;

解:(1) 2222

()(6)2n n n

k

s s k s k s s ωΦτζωω==+++++; % 4.6%0.70.7336p n t σζω=?=??=?=?;则2

62n n k k ωτζω?=??+=??则360.067k τ=??

=? 四、附加闭环负实零点对系统影响

具有闭环负实零点时的二阶系统分析对系统的作用表现为: 1. 仅在过渡过程开始阶段有较大影响;

2. ※附加合适的闭环负实零点可使系统响应速度加快,但系统的超调量略有增大;

3. ※负实零点越接近虚轴,作用越强。

五、高阶系统的时域分析---利用闭环主导极点降阶

如果在系统所有的闭环极点中,距离虚轴最近的闭环极点周围没有闭环零点,而其他闭环极点又远离虚轴,且满足

1|Re ||5|Re |i s s ≥

式中,1s ——为主导极点; i s ——为非主导极点。

则距离虚轴最近的闭环极点所对应的响应分量随着时间的推移衰减得最慢,从而在系统的响应过程中起主导作用。一般闭环主导极点为共轭闭环主导极点或者一个实闭环主导极点。 六、※※※利用劳斯判据判定系统稳定性并求使得系统稳定的参数条件。

1.※根据特征方程:1110()0n n n n D s a s a s a s a --=++++=L ,则线性系统稳定的充要条件是劳斯表首列元素均大于零;首列系数符号改变次数与分布在s 平面右半部的极点个数相同。 2.劳斯表特殊情况时,系统临界稳定或者不稳定。

3. 如果系统稳定,则特征方程1110()0n n n n D s a s a s a s a --=++++=L 系数同号且不缺项; 4.※利用劳斯判据判定系统稳定性

例4: 已知系统结构图,试用劳斯稳定判据确定使闭环系统稳定的k 的取值范围。

解:2()(1)(2)k

s s s s s k

Φ=

++++整理,

4

32

()332k

s s s s s k

Φ=++++从高到低排列特征方程系数 列劳斯表:

S 4 1 3 k S 3 3 2 0 S 2 7/3 k S 1 (14-9 k)/7

0 S 0

k

如果劳斯表中第一列的系数均为正值,因此,1490,14/97

k

k -><,

且0k >。所以014/9k <<。 七、※※※稳态误差以及减小或者消除稳态误差

1. 稳态误差定义:11lim ()lim [()]lim [()()]ss e t t t e e t L E s L s R s Φ--→∞

→∞

→∞

===

其中,误差传递函数()1

(),()1()()[1()()]e E s s H s R s H s G s H s Φ=

=≠+, ()1

(),()1()1()

e E s s H s R s G s Φ=

==+ 2.终值定理法求稳态误差

如果有理函数)(s sE 除了在原点有唯一的极点外,在s 右半平面及虚轴解析,即)(s sE 的极点均位于s 左半平面(包括坐标原点),则根据终值定理可求稳态误差。

()lim ()lim ()()ss ss e s s e e sE s s s R s Φ→→∞===

[注]:一般当输入是为阶跃、速度、加速度信号及其组合信号时,且系统稳定时,可应用终值定理求稳态误差。

3.系统型别ν-定义为开环传递函数在s 平面的积分环节个数。

11(1)()(),(1)

ΠΠm

i i n ν

νj j K s G s H s n m s T s τ=-=+=

≥+

其中,K :系统的开环增益(放大倍数),ν为型别。

4.基于静态误差系数的稳态误差---当-输入为阶跃、速度、加速度信号及其组合信号时,

? 静态位置误差系数 00lim ()lim p νs s K

K G s s →→==,1ss p

R e K =+

?

静态速度误差系数 100lim ()lim

v νs s K

K sG s s -→→==, ss

v

R e K = ? 静态加速度误差系数 2

200lim ()lim a νs s K K s G s s -→→==,ss a

R e K =

要求:根据给出系统开环传递函数和输入,能用静态误差系数能够求出稳态误差。

例5: 如图

求系统当 k=10, 输入为 r(t)=1.5t.时的稳态误差。 解: 开环传递函数

105

()(2)(0.51)

G s s s s s =

=++, 1ν=

因为 r(t)=1.5t,则100lim ()lim 5v νs s K

K sG s s -→→===, 因此 1.50.35

ss v R e K =

==。 5.减小或者消除稳态误差的方法:

a. 增大开环放大倍数(开环增益)(在保证系统稳定的前提下)

b. 提高系统的型别(在保证系统稳定的前提下)。

c. ※采用复合控制方法(要知道其原理):包括输入补偿和扰动补偿两种,都可以消除稳态误差而不影响系统稳定性。

[注]:0

lim ()lim ()()ss e s s e sE s s s R s Φ→→==若()e s Φ零点包含输入信号的全部极点,则系统无稳态误

差。同理,0

lim ()lim ()()ssn n en s s e sE s s s N s Φ→→==,若()en s Φ零点包含输入信号()N s 的全部极点,

则系统无稳态误差。

例6 2007一复合控制系统如图所示。

图中:2

211212(),(),()(1)1bc K as bs

G s K G s G s s T s T s

+==

=

++ K 1、K 2、T 1、T 2均为已知正值。当输入量r(t)= t 2/2时,要求系统的稳态误差为零,试确定参数 a 和b 。

解 系统闭环传递函数为

21212()()()1bc G G G G C s s R s G G +Φ==+,代入2211212(),(),()(1)1bc K as bs G s K G s G s s T s T s

+===

++ 则32

212122232

12121212212

1()(1)()()1()()1()(1)bc e G G TT s T T K a s K b s E s s s R s G G TT s T T s K K T s K K ΦΦ-++-+-==-==++++++(只适应于单位负反馈系统)

欲使系统闭环系统响应速度输入3/1)(s s R =的稳态误差为0,即

32

121222323000121212212()(1)1lim ()lim ()()lim ()(1)ss e s s s TT s T T K a s K b s e sE s s s R s s TT s T T s K K T s K K s

→→→++-+-==Φ=?+++++ ,()e s Φ应该包含3

/1)(s s R =的全部极点。

12221T T K a K b

+-??

-?,则2

22

11

K b K T T a =

+= [注]:要求会求误差传递函数,包括扰动下的误差传递函数(一般单位反馈)。

第四章 线性系统的根轨迹法

要求: 根据给出系统结构图---求开环传递函数---得出根轨迹方程---化成标准形式—判断根轨迹类型---绘制根轨迹----完成对稳定性、动态性能和稳态性能的分析。

一、※※根轨迹定义:开环系统某一参数从 0→∞时,闭环系统特征方程式的根(闭环极

点)在[s]平面变化的轨迹。 [注]:根轨迹是闭环系统特征方程式的根的轨迹。 二、根轨迹法中开环传递函数的标准形式——零极点形式

11

()

()(),()

m

j j n

i

i k s z G s H s n m s p ==-=

≥-∏∏,k 称为开环系统根轨迹增益

[注]:变化的参数以规范形式k 出现在分子上。

开环系统零极点形式表示,s 项的系数为1; 三、根轨迹方程从哪里来?----※根据闭环系统特征方程 四、※※※根轨迹绘制的基本规则(180度和0度)(前8条)

[注]:180度和0度的差别主要是相角条件有关的不同。注:相角逆时针为正。 [注]:注意绘制的主要步骤必须有——因有步骤分,而且要标注上前头方向。

例1:某负反馈系统的开环传递函数为2

(2)

()()23

k s G s H s s s +=

++,试绘制系统的概略根轨迹。 解:要判断是180°根轨迹还是0°根轨迹,根据根轨迹方程

2(2)

()()123

k s G s H s s s +=

=-++。标准型——180°根轨迹

1:根轨迹的起点和终点。

起点11p =-+

21p =--(有复极点有起始角),2n = 终点:12z =-1m =。

2:根轨迹的分支数。根轨迹的分支数=开环极点数。2n =---可以省略此步 3:根轨迹的对称性和连续性:根轨迹连续且对称于实轴。---可以省略此步 4:根轨迹的渐近线(与实轴的交点和夹角)。 1n m -=,与实轴的夹角0180a ?=——负实轴。

如图:

5:根轨迹在实轴上的分布:

(,2]-∞-是根轨迹。

6:根轨迹的起始角和终止角(只有开环复极点,因此只有出射角)

0011112180()()180(12)(11p p z p p θ=+∠--∠-=+∠-+-∠-++0000118054.790144.7p θ=+-=,

利用对称性,则02144.7p θ=-

7:根轨迹与实轴的交点(根轨迹在实轴上的分离点与分离角)

2(23)2s s k s ++=-+,则

2(23)[]02dk d s s ds ds s ++=-=+ 因此,2

410s s ++=,所以

求出123.72,0.268x x s s =-=-(舍) 8:根轨迹与虚轴的交点。

若将s j ω=代入特征方程2(2)

1023

k s s s ++

=++

223(2)0s s k s ++++= 所以令实部,虚部分别等于0得:

220

320

k k ωωω+=??-++=?与虚轴没有交点

分析系统的稳定性:——都稳定。

五、根据根轨迹分析系统性能---根据根轨迹判断稳定性※※※,求k 值范围※※※,超调量,系统型别(看根轨迹原点处开环极点的个数)等。

例2:2008考题 已知系统结构图如下,要求

1、绘制参数:0a →∞的根轨迹(要有主要步骤) (10分);

2、确定使系统稳定的参数的范围(2分);

3、确定使系统阶跃响应无超调的参数a 的范围(2分);

4、确定使系统出现阶跃响应出现等幅振荡时的频率(1分)。

5、确定使系统出现阶跃响应出现衰减振荡时的参数a 的范围(1分)。 解:

1、由题意得,系统特征方程为:

32()0.250.250D s s s s a =+++=

则 2

0.25(0.25)a s s s =-++

则根轨迹方程为:

2

0.251(0.25)

a

s s s =-++(2分)。 绘制参数:0a →∞的绘制0180根轨迹如下: (1)根轨迹的起点10p =,230.5p p ==-(1分),无开环有限零点; (2)根轨迹的分支数 3n =; (3)根轨迹的渐近线(1分):0m =,3n m -=。 与实轴的交点1

1

00.50.51

33

n m

i j

i j a p z

n m σ==---=

=

=--∑∑

与实轴的夹角,03(21),0,1,11

,3

a l l l l n m l π

π

?ππ??=?+==±==?-?=-?-?

(4)实轴上的根轨迹:(,0]-∞(1分) (5)根轨迹与实轴的分离点(1分)

2[4(0.25)]0da d

s s s ds ds

=-++= 212810s s ++=,求出与实轴交点:10.5s =-,2

s =(6)根轨迹与虚轴的交点(1分)

※应用劳斯稳定判据的特殊形式,列劳斯表:

321

010.2510.250.25(1)00.25s s a

s a s a

- 当1a =,1

s 为全零行,此时构筑辅助方程2

0.25s +=则根轨迹如下(3分):

2、01a <<系统稳定(2分);

3、当根轨迹在分离点21/6s =-处,对应的

216

24(0.25)|

27

s a s s s =-

=-++= 则当2

027

a <≤

阶跃响应无超调(2分)。 4、s j ω=,则系统出现等幅振荡时的振荡频率0.5ω=(1分) 5、

2

0.527

a <<(1分) [注]:如果是参数根轨迹,根据闭环系统特征方程得出根轨迹方程,并将其化成标准形式。

j

第五章 线性系统的频域分析法——第六章的基础

要求:1) 绘制出频率响应曲线开环幅相曲线或开环对数渐近幅频特性曲线(Bode 图)---补线-应用奈奎斯特稳定判据判断系统稳定性及系统稳定的参数范围。

2)※※※利用开环对数幅频渐近特性确定最小相位系统的传递函数 一、频域分析法中开环传递函数的标准形式为

11(1)

()(),(1)

m

j j n i i K s G s H s n m s T s ν

ντ=-=+=

>+∏∏——时间常数形式

二、最小相位系统开环幅相曲线的绘制

11(1)

()(),,0,0,0(1)

m

j j i j n i i K s G s H s n m K T s T s ν

νττ=-=+=

>>>>+∏∏

1)极坐标图的起点: 0

lim ()()()2

K K G j j υυωπωνωω+

→==∠- ,0

(0)90?ν+

=- 2)极坐标图的终点::当ω→∞时,1

01(1)lim ()0()90()(1)

m

j j n i i K j G j n m j jT νωντωωωω=-→∞

=+=

=∠--+∏∏。

3)与实轴交点 Im[()()]0G j H j ωω=----ω----Re[()()]G j H j ωω

4)从起点到终点的相角及与实轴交点位置共同决定曲线所在象限。K 值变化仅改变幅相曲线的幅值及与实轴交点的位置,不改变其形状。 [注]:用箭头表示频率ω增大的方向。

例1 (P198)I 型单位反馈控制系统开环传递函数为

12()(1)(1)

K

G s s T s T s =

++,12,,0K T T >;

绘制开环幅相曲线。

解:频率响应 2

121222221212[()(1)]()()(1)(1)(1)(1)

K T T j TT K G j H j j jT jT T T ωωωωωωωωωω-+--==

++++ 1)起点:0ω=+ ()A ω=∞,()2

π

?ω=-

2)终点:∞=ω ()0A ω=,3()2

π

?ω=-

(因为:()3n m -=),说明整个幅相曲线在II ,III 象限。

3)与负实轴的交点:令2

121Im 0TT ω=?=

,则1212

2222

1212

()Re (1)(1)K T T KTT T T T T ωωωω-+-==+++。则

可见,K 值变化仅改变幅相曲线的幅值及与负实轴交点的位置,不改变幅相曲线的形状。 三、最小相位系统开环对数渐近幅频特性曲线(Bode 图)的绘制

(1) 将开环传递函数分解成典型环节乘积的形式(尾“1”型);

11(1)

()(),,0,0,0()(1)

m

j j i j n i i K j G j H j n m K T j jT ν

ντωωωτωω=-=+=

>>>>+∏∏

(2)

将各典型环节的转折频率由低到高从左向右依次标注在横轴上(不妨设为:1234,,,,ωωωωL ),

将1ωω<(最小转折频率)的频率范围设为低频段。 (3)在低频段,开环对数渐近幅频特性

()20lg

20lg 20lg a v

K

L K v ωωω

==-

可见,其直线斜率为-20v 。但是要画出这低频段渐近特性直线,还必须确定该直线或其延长线上一点(P202):

法1:在小于第一个转折频率内任选一点01ωω<,计算 00()20lg 20lg a L K v ωω=-。--常用 法2:取特定频率01ω=,计算0()20lg a L K ω=。 法3:取0()a L ω为特殊值0,则

1K

ν

ω=,则计算出1

0K ν

ω=。

(4)从低频以后,沿频率增大的方向,每遇到一个转折频率就改变直线斜率,变化规律取决于该转折频率对应的典型环节种类。

如果典型环节为惯性环节或振荡环节,在交接频率之后,斜率要减小20dB/dec 或40 db/dec ;如果典型环节为一阶微分环节或二阶微分环节,在交接频率之后,斜率要增加20db/dec 或40 db/dec 。即一阶20dB/dec 的整数倍,二阶40dB/dec 的整数倍。

(5)绘出用渐近线表示的对数幅频特性以后,如果需要,可以进行修正。通常只需修正转折频率处幅值就可以了。对于一阶项,在转折频率处的修正值为±3dB ;对于二阶项,在转折频率处的修正值可由公式求出。 --一般不用修正。 例2 已知(501)

()(5001)(51)(1)

K s G s s s s s +=

+++,绘制Bode 图。

解:

ω

dec

四、※※※利用开环对数幅频渐近特性确定最小相位系统的传递函数

1)确定系统积分或微分环节的个数(利用低频段低频渐近线斜率为20/dB dec ν-)。

()20lg

20lg 20lg a v

K

L K v ωωω==-

2)确定系统其他环节(根据转折频率前后斜率变化判断对应的环节类型,利用转折频率倒数确定时间常数)

图中每次遇到一个交接频率改变一次分段直线的斜率。且斜率的变化对应这环节的类型。在交接频率之后,斜率要减小20db/dec 或40 db/de 为惯性环节或振荡环节;斜率要增加20db/dec 或40 db/dec 对应一阶微分环节或二阶微分环节。

3) ※※※参数K 的确定:已知低频段或其延长线上一点确定()20lg 20lg 20lg a v

K

L K v ωωω

==-)

。 例3

解:1) 1

(1)

100()1

(1)5

K s G s s s +=

+ 2) 20lg

20lg 20lg 0K

K ωω

=-= 10K =

3) 110(1)

100()1

(1)5

s G s s s +=+

特别指出,半对数坐标系中求斜率:

()()

2121

lg lg L L k =ωωωω--

例4 (见幻灯片) 已知最小相角系统开环对数渐近幅频曲线,求开环传递函数)。

解:1)确定结构: 最左端直线的斜率为-40 db/dec ,2040v -=-,故而有2个积分环节。因为从ω1起,近似对数幅频曲线斜率变化20 db/dec 和40 db/dec,故为1阶微分环节和2阶微分环节。于是系统的传递函数为:

223(/1)

()(/1)

K s G s s s ωω+=

+

2)确定K:

法一)最左端直线的延长线和零分贝线的交点频率为0ω,

0020lg 20lg 20lg 40lg 0K v K ωω-=-=,则2

0K ω=。

斜率:02040lg lg H -=ωω--,2020lg lg c H -=ωω--,则2022

()c =ωωωω,则2

02c K ωωω==。

ω

法二):

(已知c ω),在c ω处,直线1和2的纵坐标之和为0,即12()()()0c c c L L L ωωω=+=。

12()020lg lg c c L =

ωωω-- 20()0

40(lg lg )

c c L =ωωω---

因此0240(lg lg )20(lg lg )0c c ωωωω--+-=。则2

02

c ωωω=,则0ω=五. ※ ※※频率域稳定判据

1.奈奎斯特稳定判据:闭环系统稳定的充分必要条件是闭合曲线GH Γ不穿越(-1,j0)点,且逆时针围绕)0,1(j -点 P 次。记为:

(2)R P N ==

其中:N 为半闭合曲线ΓGH 穿越)0,1(j -点左侧的的次数和。相角增大为正穿越 ΓGH :当0ν=:通常,只需绘制0ω≤<∞的半条ΓGH 曲线,即开环幅相曲线。

当0ν≠:当G(s)H(s)有虚轴上的极点时,绘制0ω<<∞的半条ΓGH 曲线外,半闭合曲线还要从

0ω+=出发,以无穷大为半径,逆时针转过νπ/2 后的虚线圆弧, 箭头指向 0ω+=。箭头指向ω增大的

方向 。

例5 设某单位反馈系统的开环传递函数为 2

(41)()()(1)(21)

s G s H s s s s +=

++ 应用Nyquist 判据判别闭环系统的稳定性

解: ()2222222

110(18)

[(41

()(1)(21)

12)9]j j G j j j j ωωωωωωωωωωω+---+++==++ 1)绘制Nyquist 曲线

起点:

00,

()()180(2)A ωω?ων+==∞=-=

终点:0,

()0()270(3)A n m ωω?ω=∞==--=

幅相曲线与负实轴有交点,可令ImG(jω)H(jω)=0,得ω2=1/8,ω=0.354。此时, ReG(jω)H(jω)= -10.67,即幅相曲线与负实轴的交点为(-10.67, j0)。

2)补线:位由于有一个交点,因此ω=0+在实轴下面。开环系统有两个极点在s 平面的坐标原点,因此幅相曲线应从ω=0+开始,以无穷大半径逆时针补画180度,箭头指向ω=0+。如图。

ω3) 由图可见,N =-1,即R=-2。系统无开环极点位于s 平面的右半部,故P=0,所以Z=2,即系统不稳定,并有两个闭环极点在s 平面的右侧。

例5-2:设系统的开环传递函数为12()()(1)(1)

K

G s H s s T s T s =

++ ,试求使系统稳定的K 值范围。

解:1)首先作Nyquist 曲线图,只求图过)0,1(j -点的K 值范围。

2)代入s j ω=,2

1212

2222

1212[()(1)]()(1)(1)(1)(1)

K T T j TT K G j j jT jT T T ωωωωωωωωω-+-+==++++ 利用相频条件与幅频条件,则|()()|1G j H j ωω=,0()()180G j H j ωω∠=-。

因此,一定与与负实轴有交点,其交点坐标为: 令:2

121Im 0TT ω=?=

,因为()1A ω=,所以,12

12Re ()1KTT G j T T ω-=

=-+,因此,1212

T T K TT += 即此时满足正好穿过)0,1(j -点。

3)分析:因为P=0,要使系统稳定,则0N =,因此,GH Γ不包围)0,1(j -点,则幅相曲线

与实轴的交点在)0,1(j -的右边。

当1212T T K TT +=,正好穿过)0,1(j -,当1212

T T

K TT +<,正好在)0,1(j -的右边,此时0R N ==,

系统稳定。因此系统稳定的K 值范围为:12120T T

K T T +<<。

2007例:已知某系统当开环增益20K =时的开环频率特性Nyquist 图如下图所示。该系统

在右半平面的极点数0P =,试分析当开环增益K 变化时其取值对闭环稳定性的影响。(5分)

解:

分析:求与负实轴的交点:令:Im 0ω=?,代入Re =。

因为K 值变化仅改变幅相曲线的幅值及与负实轴交点的位置,不改变幅相曲线的形状。 所以:设A 点对应的频率为1ω,B 点对应的频率为2ω,则 A 点:20K =,1ωω=,||2OA =

求?K =,1ωω=,||1OA =,由此,10K =(1分)幅相曲线与负实轴交于A 点

B 点:20K =,2ωω=,||0.5OB =

求?K =,2ωω=,||1OB =,由此,40K =(1分)幅相曲线与负实轴交于B 点

注意:K ↑,表明与与负实轴的交点越负,即越往左边。 分析:因为0,P =所以

当010K <<,Nyquist 曲线不包围(-1,j0)点,系统稳定(1分);

当1040K <<,Nyquist 曲线顺时针包围(-1,j0)点,系统不稳定(1分); 当40K >,Nyquist 曲线不包围(-1,j0)点,上下穿越抵销,系统稳定(1分); 注意:求稳定的范围总是与临界稳定时的参数有关,所有域中的分析方法皆是如此。

,判断使得系统稳定的参数范围。

2.对数频率稳定判据:

极坐标图

伯德图

(-1,j0)点

0dB 线和-180相角线

(-1, -∞)段 0dB 线以上区域

结论:Nyquist 曲线自上而下(自下而上)穿越(-1,j0)点左侧负实轴相当于 Bode 图中当L(ω)>0dB 时相频特性曲线自下而上(自上而下)穿越-180°线。

π

-()

L ω()

?ω0

ω

例6: 一反馈控制系统,其开环传递函数为2()()(1)

K

G s H s s Ts =+,试用对数频率稳定判据

判断系统的稳定性(见幻灯片)。

解:系统的开环对数频率特性曲线如图所示。由于G(s)H(s)有两个积分环节,故在对数相频曲线ω很小处,由下而上补画了-180°到0°的虚线,作为对数相频曲线的一部分。显见N= -1,R=-2 P=0,所以,说明闭环系统是不稳定的,有2个闭环极点位于s 平面右半部。

φ(ω -90

五、稳定裕度---后面校正设计用

1. ※※※相角裕度: ()|()()|1c

A G j H j ωωω==

相角裕度γ2. 幅值裕度:()()()-180x x x G j H j ?ωω=∠=

1

()20lg

20lg ()()()()

x x x x h dB G j H j G j H j ωωωω==-

工程上一般相角裕度30~70γ=??,幅值裕度()20lg 6dB h dB h =≥ 例7 一单位反馈系统的开环传递函数为

(

),0(0.21)(0.051)

K

G s K s s s =

>++

解:试求K=1时系统的相位裕度和增益裕度。

? 频率特性()(0.21)(0.051)

K

G j j j j ωωωω=

++

1)c c c c 1()1(0.21)(0.051)G j j j j ωωωω=

==++

c 1ω≈

11180()180(90tan 0.2tan 0.05)18010476c c c γ?ωωω--=?+=?+-?--=?-?=?

2)11

()90tan 0.2tan 0.05180x x x ?ωωω--=-?--=-?

11tan 0.2tan 0.0590x x ωω--+=?

12

12120.20.05

tan tan tan()1

tan tan 10.20.05x x x x

ωωθθθθθθωω+++=

==∞-- 10.20.050x x ωω-?= 10x ω=

1

()20lg

10(12)(10.5)

20lg1020lg 207128h dB j j j dB

=-++=+=++=

六、※※开环对数幅频特性的※三频段理论---后面校正设计用 1.低频段决定了系统稳态精度。

低频段通常是指20lg |()()|G j H j ωω的开环对数渐近曲线在第一个转折频率以前的区段,这一段的特性完全由积分环节v 和开环增益K 决定。

()20lg 20lg 20lg a v K

L K v ωωω

==-

020lg 20lg 0K v ω-=

2.中频段是指()L ω穿过0dB 线(即c ω附近)的频段,其斜率及宽度(中频段长度)集中反映了动态响应中的平稳性和快速性(见幻灯片)。一般的,中频段在c ω附近以斜率为20/dB dec -下降的直线。

3. 高频段指()L ω曲线在中频段以后的区段,反映出系统的低通滤波特性,形成了系统对高频干扰信号的抑制能力(见幻灯片)。

第六章 线性系统的校正方法

要求: 1) ※※※※在三频段理论基础上,能够熟练应用基于频率法的串联超前、滞后和滞后—超前校正设计需要的系统。

2)至于根轨迹校正,要求掌握其基本原理(与基于频率法的串联超前、滞后和滞后—超前校正可以相对应),但是由于计算起来太繁杂,一般不采用。

一、基本控制规律 P 、 PI (滞后,改善稳态性能)、PD (超前,改善动态性能)、 PID 的特点 二、掌握基于频率法的串联超前、滞后和滞后—超前校正原理和特点 1.原理:0()()()C G j G j G j ωωω=

? 串联滞后校正:

保证动态性能不变情况下,提高系统稳态性能; 利用滞后校正装置高频幅值衰减特性--低频区;

? 串联超前校正:

提高相角裕度,改善系统动态性能; 利用超前校正装置相角超前特性--中频区;

? 两者可以放在同一个系统中使用,组成滞后—超前校正

2.典型的频率域指标是c ω,γ,K 等指标,一般选择c ω, K ,主要验证γ。

3.※※校正方法的选取:判断方法要会。如果题目已经明确要求采用何种校正装置,就不需要选择方法,即跳过这部分。

如果0c c ωω>-超前校正。

如果0c c ωω<,且0()c j γωγ>---滞后校正。 如果0c c ωω<,且0()c j γωγ<--滞后—超前校正。

[注]:要求串联超前、滞后和滞后—超前校正的原理

4.※※※※校正步骤:只需要记住一种就是滞后—超前校正步骤,所有的都包括了。但是注意,一定要验证※※※※。[注]:一般无需指标间的转换,一定要有步骤(因有步骤分)。 例:2007设单位反馈系统的开环传递函数为0()(1)(0.0071)

k

G s s s s =++,试采用滞后-超前校

正装置进行串联校正,要求:

1、当输入信号为()r t t =时,稳态误差0.001ss e ≤

2、截止频率10/s c rad ω≥

3、相角裕度035≥γ

解:因为0.001ss e ≤,所以1000v K =,取k=v K ,作0()G j ω图。

[注意: 本题已经给出具体装置类型,不用判断校正装置,如果没有明确,则: 由图可知,027c ω≈rad/s ,(或者用0()1c A ω=求) 000()90270.00727188.6c G j arctg arctg ω∠=-?--?=- 00180()8.645c G j γω=?+∠=-?

所以采用滞后-超前校正装置进行校正。(2分) 1、超前参数确定(5分)

0()90100.00710178.3c G j arctg arctg ω∠=-?--?=-

0[180()]35 1.7(510)40m c G j γωΦ=-?+∠=?-?+?=?:

则11sin 1.643

4.6021sin 0.357

m m ?α?+=

==-, 取10m c ωω==

,则10.047T ===

则超前校正为111110.21451

()10.0471

c T s s G s T s s α++==++

2、确定滞后校正参数:(5分)

此时,滞后校正的原系统为:'011000(0.21451)

()()()(1)(0.0071)(0.0471)

c s G s G s G s s s s s +==

+++

10c ω=

时,'

|()|21.366c G j ω=

=

2'11

0.047|()|21.366c G j αω=

=≈2(1)α<

2211

110

c T ωα≈=,则221T α=,所以221.366T ≈ 所以滞后校正为222211

()121.3661

c T s s G s T s s α++==++

01000(0.21451)

()()()()(0.0071)(0.0471)(21.3661)

cc cz s G s G s G s G s s s s s +==

+++

3、验证:(3分)

1)11000v K s -=,当输入信号为()r t t =时,稳态误差0.001ss e = 2)当10c ω=时, |()|1c G j ω≈

3

()900.245100.007100.0471021.36610141.11c G j arctg arctg arctg arctg ω∠=-?+?-?-?-?=-180()38.8935c G j γω=?+∠=?>?

所以,以(0.21451)(1)

()(0.0471)(21.3661)

c s s G s s s ++=++为串联校正装置,符合系统设计指标要求。

自动控制原理课程教学大纲

物理电子工程学院《自动控制原理》课程教学大纲课程编号:04210164 课程性质:专业必修课 先修课程:高等数学、函数变换、模拟电路、电路分析 总学时数:76 学分:4 适合专业:电子信息工程、机械与电子工程、机械自动化、电器自动化、通信、包装工程等专业 (一) 课程教学目标 自动控制理论是电子信息科学与技术专业的一门重要的专业基础课程。它侧重于理论角度,系统地阐述了自动控制科学和技术领域的基本概念和基本规律,介绍了自动控制技术从建模分析到应用设计的各种思想和方法,内容十分丰富。通过自动控制理论的教学,应使学生全面系统地掌握自动控制技术领域的基本概念、基本规律和基本分析与设计方法,以便将来胜任实际工作,具有从事相关工程和技术工作的基本素质,同时具有一定的分析和解决有关自动控制实际问题的能力。 (二) 课程的目的与任务 本课程是电子通信工程、机电一体化、包装工程等专业、工科及相关理科的必修基础课程。通过本课程的学习,使学生掌握自动控制的基础理论,并具有对简单连续系统进行定性分析、定量估算和初步设计的能力,为专业课学习和参加控制工程实践打下必要的基础。学生将掌握自动控制系统分析与设计等方面的基

本方法,如控制系统的时域分析法、根轨迹分析法、频域分析法、状态空间分析法、采样控制系统的分析等基本方法等。为各类计算机控制系统设计打好基础。 (三) 理论教学的基本要求 1、熟练掌握自动控制的概念、基本控制方式及特点、对控制系统性能的基本要求。 2、熟练掌握典型环节的传递函数、结构图化简或梅森公式以及控制系统传递函数的建立和表示方法,初步掌握小偏差线性化方法和通过机理分析建立数学模型的方法。 3、熟练掌握暂态性能指标、劳思判据、稳态误差、终值定理和稳定性的概念以及利用这些概念对二阶系统性能的分析,初步掌握高阶系统分析方法、主导极点的概念。 4、熟练掌握根轨迹的概念和绘制法则,并能利用根轨迹对系统性能进行分析,初步掌握偶极子的概念以及添加零极点对系统性能的影响。 5、熟练掌握频率特性的概念、开环系统频率特性Nyquist图和Bode图的画法和奈氏判据,掌握绝对稳定系统、条件稳定系统、最小相位系统、非最小相位系统、稳定裕量、频域性能指标的概念,以及频率特性与系统性能的关系。 6、熟练掌握校正的基本概念、基本校正方式和反馈校正的作用,初步掌握复合校正的概念和以串联校正为主的频率响应综合法,了解以串联校正为主的根轨迹综合法,掌握常用校正装置及其作用。 (四) 教学学时分配数

自动控制原理总经典总结

《自动控制原理》总复习

第一章自动控制的基本概念 一、学习要点 1.自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对 象、控制器、反馈、负反馈控制原理等。 2.控制系统的基本方式: ①开环控制系统;②闭环控制系统;③复合控制系统。 3.自动控制系统的组成:由受控对象和控制器组成。 4.自动控制系统的类型:从不同的角度可以有不同的分法,常有: 恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等。 5.对自动控制系统的基本要求:稳、快、准。 6.典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。 二、基本要求 1.对反馈控制系统的基本控制和方法有一个全面的、整体的了解。 2.掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制 系统稳、准、快三方面的基本要求。 3.了解控制系统的典型输入信号。 4.掌握由系统工作原理图画方框图的方法。 三、容结构图

四、知识结构图 第二章 控制系统的数学模型 一、学习要点 1.数学模型的数学表达式形式

(1)物理系统的微分方程描述;(2)数学工具—拉氏变换及反变换; (3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。 2.数学模型的图形表示 (1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。 二、基本要求 1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变 量、输出变量、中间变量等概念,要准确掌握。 2、了解动态微分方程建立的一般方法及小偏差线性化的方法。 3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入 响应、零状态响应等概念有清楚的理解。 4、正确理解传递函数的定义、性质和意义。熟练掌握由传递函数派生出来的系统开环传递 函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。(#) 5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构 图及结构图的简化,并能用梅逊公式求系统传递函数。(##) 6、传递函数的求取方法: 1)直接法:由微分方程直接得到。 2)复阻抗法:只适用于电网络。 3)结构图及其等效变换,用梅逊公式。 4)信号流图用梅逊公式。

燕山大学2018年《自动控制原理》考研大纲

燕山大学2018年《自动控制原理》考研大纲 一、课程的基本内容要求 1.掌握自动控制系统的工作原理、自动控制系统的组成与几种不同分类。重点掌握反馈的概念、基本控制方式、对控制系统的基本要求。 2.线性系统的数学模型 掌握传递函数;极点、零点;开环传递函数、闭环传递函数、误差传递函数的概念;典型环节的传递函数。掌握建立电气系统(有源网络和无源网络)、机械系统(机械平移系统)的微分方程和传递函数模型的方法。重点掌握方框图化简或信号流图梅森增益公式获得系统传递函数的建模方法。 3.控制系统时域分析 要求能够分析系统的三大基本性能,即系统的稳(稳定性)、准(准确性)、快(快速性)。掌握如下概念:稳定性;动态(或暂态)性能指标(最大超调量、上升时间、峰值时间、调整时间);稳态(静态)性能指标(稳态误差);一阶、二阶系统的主要特征参量;欠阻尼、临界阻尼、过阻尼系统特点;主导极点。重点掌握系统稳定性判别(Routh判据);稳态误差终值计算(包括三个稳态误差系数的计算);二阶系统动态性能指标计算。掌握利用主导极点对高阶系统模型的简化与性能分析。 4.根轨迹法 要求能够利用根轨迹(闭环系统特征方程的根随系统参数变化在S平面所形成的轨迹)分析系统性能。需掌握的概念:根轨迹;常规根轨迹;相角条件、幅值条件;根轨迹增益。重点掌握常规根轨迹的绘制(零度根轨迹不作要求)。掌握增加开环零、极点对根轨迹的影响;利用根轨迹分析系统稳定性与具有一定的动态响应特性(如衰减振荡、无超调等特性)的方法。 5.控制系统频域分析 要求能够利用频域分析方法对控制系统进行分析与设计。掌握如下概念:频率特性;开环频率特性、闭环频率特性;最小相位系统;幅值穿越频率(剪切频率)、相角穿越频率、相角裕度、幅值裕度;谐振频率、谐振峰值;截止频率、频带宽度;三频段。重点掌握开环频率特性Nyquist图、Bode图的绘制;由

自动控制原理课程总结1

HEFEI UNIVERSITY 自动控制原理课程总结 系别电子信息与电气工程系 专业自动化 班级 09自动化(1)班 姓名 完成时间 2011.12.29

自动控制原理课程总结 前言 自动控制技术已广泛应用于制造、农业、交通、航空及航天等众多产业部门,极大地提高了社会劳动生产率,改善了人们的劳动环境,丰富了人民的生活水平。在今天的社会中,自动化装置无所不在,为人类文明进步做出了重要贡献。本学期我们开了自动控制原理这门专业课,下面主要介绍下我对这门课前五章的认识和总结。 一、控制系统的数学模型 1.传递函数的定义: 在线性定常系统中,当初是条件为零时,系统输出的拉氏变换与输入的拉氏变换之比。 (1)零极点表达式: (2)时间常数表达式: 2.信号流图

(1)信号流图的组成 节点:用来表示变量或信号的点,用符号“○”表示。 支路:连接两节点的定向线段,用符号“→”表示。(2)信号流图与结构图的关系 3.梅逊公式

其中:Δ=1-La+LbLc-LdLeLf+...成为特征试。 Pi:从输入端到输出端第k条前向通路的总传递函数 Δi:在Δ中,将与第i条前向通路相接触的回路所在项除去后所余下的部分,称为余子式。 La:所有单回路的“回路传递函数”之和 LbLc:两两不接触回路,其“回路传递函数”乘积之和 LdLeL:所有三个互不接触回路,其“回路传递函数”乘积之和“回路传递函数”指反馈回路的前向通路和反馈通路的传递函数只积并且包含表示反馈极性的正负号。 二、线性系统的时域分 1.ζ、ωn坐标轴上表示如下: (1)闭环主导 极点:

当一个极点距离虚轴较近,且周围没有其他闭环极点和零点,并且该极点的实部的绝对值应比其他极点的实部绝对值小5倍以上。(2)对于任何线性定常连续控制系统由如下的关系: ①系统的输入信号导数的响应等于系统对该输入信号响应的导数; ②系统对输入信号积分的响应等于系统对该输入信号响应的积分,积分常数由初始条件确定。 2.劳斯判据: 设系统特征方程为 : 劳斯判据指出:系统稳定的充要条件是劳斯表中第一列系数都大于零,否则系统不稳定,而且第一列系数符号改变的次数就是系统特征方程中正实部根的个数。 劳斯判据特殊情况的处理 ⑴某行第一列元素为零而该行元素不全为零时——用一个很小的正数ε代替第一列的零元素参与计算,表格计算完成后再令ε→0。 ⑵某行元素全部为零时—利用上一行元素构成辅助方程,对辅助方程求导得到新的方程,用新方程的系数代替该行的零元素继续计算。 3.稳态误差 (1)定义: (2)各种误差系数的定义公式

自动控制原理知识点总结

~ 自动控制原理知识点总结 第一章 1、什么就是自动控制?(填空) 自动控制:就是指在无人直接参与得情况下,利用控制装置操纵受控对象,就是被控量等于给定值或按给定信号得变化规律去变化得过程。 2、自动控制系统得两种常用控制方式就是什么?(填空) 开环控制与闭环控制 3、开环控制与闭环控制得概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高. 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程得影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否得问题。 掌握典型闭环控制系统得结构。开环控制与闭环控制各自得优缺点? (分析题:对一个实际得控制系统,能够参照下图画出其闭环控制方框图。) 4、控制系统得性能指标主要表现在哪三个方面?各自得定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程得振荡倾向与系统恢复平衡得能力 (2)、快速性:通过动态过程时间长短来表征得 (3)、准确性:有输入给定值与输入响应得终值之间得差值来表征得 第二章 1、控制系统得数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2、了解微分方程得建立? (1)、确定系统得输入变量与输入变量 (2)、建立初始微分方程组.即根据各环节所遵循得基本物理规律,分别列写出相应得微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关得项写在方程式等号得右边,与输出量有关得项写在等号得左边 3、传递函数定义与性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量得拉普拉斯变换域系统输入量得拉普拉斯变

自动控制原理教学大纲-胡寿松

自动控制原理课程教学大纲 ◆层次:?本科?专科 ◆课程英文名称:Automatical control principle ◆课程类别:本科选?通识必修?通识选修?专业必修?专业选修 专科选?公共必修?公共选修?职业技术必修?职业技术选修 ◆适用专业:自动化 ◆配套教学计划:2011级教学计划 ◆开课系部:自动化系 ◆学分:5 ◆学时:80 其中:实验(实践)学时:10 ;课外学时:0 ◆执笔人:张海燕教研室审核人:张海燕系部审核人: 一、课程性质和教学目标 《自动控制原理》是自动化专业的一门必修课,通过本课程的学习,使学生掌握自动控制的基本原理和概念,并具备对自动控制系统进行分析,计算,实验的初步能力,为专业课的学习和参加控制工程实践提供必要的理论基础。 通过对本课程的学习,要求学生掌握自动控制的基本理论和基本分析方法,能应用控制理论对自动控制系统进行性能分析,能对系统进行校正和提出改善系统性能的途径和方法,具体要求如下: 1.掌握常规控制器和自动控制系统的组成及其相互关系。 2.了解对自动控制系统的性能要求及分析系统性能的方法。 3.掌握用传递函数,方框图,信号流图及状态空间描述建立系统数学模型的方法。 4.掌握常规控制器的基本控制规律、动态特性和对控制系统的作用。 5.掌握对控制系统进行分析和综合的方法:时域分析法、频域分析法、根轨迹法及状态空间分析法。6.初步掌握控制系统的校正和设计方法,为解决实际问题打好基础。 7.掌握脉冲传递函数的概念,了解离散控制系统的一般分析方法。 8.初步了解非线性系统的基本知识。 二、本课程与其他课程的联系与分工 本课程在自动化专业教学计划中被列为专业基础课,本课程以工程数学、电路、电机拖动等为前序课程,也是过程控制系统等课程必需的理论基础,因此本课程的学习对全面掌握各门专业课程起着重要的作用。本课程的重点是第三、第四、第五章章,次重点是第一、第二章,一般章节为六章。 三、教学内容和教学方式 第一章自动控制的一般概念(4学时) (一)教学要求

《自动控制原理》专科课程标准

《自动控制原理》课程标准 一、课程概述 (一)课程性质地位 自动控制原理是空间工程类、机械控制类、信息系统类等相关专业学历教育合训学员的大类技术基础课程。由于自动控制原理在信息化武器装备中得到了广泛的应用,因此,将本课程设置为大类技术基础课,对培养懂技术的指挥人才有着十分重要的作用。本课程所覆盖的知识面较宽,既有较深入的理论基础知识,也有较广泛的专业背景知识,因而,它在学员知识结构方面将起到加强理论深度和拓展知识广度的积极作用。 (二)课程基本理念 为了贯彻素质教育和创新教育的思想,本课程将在注重自动控制原理的基本概念和基本分析与设计方法的基础上,适当引入自动控制发展中的、学员能够理解的新概念和新方法;贯彻理论联系实际的原则,科学取舍各种主要理论、方法的比例,正确处理好理论与案例的关系,以适应为部队培养应用复合型人才的需要;适当引入和利用Matlab工具来辅助自动控制原理中的复杂计算与作图、验证分析与设计的结果;本课程应该既使学员掌握必要的基础理论知识,并了解它们对实际问题的指导作用,又要促进学员养成积极思考、长于分析、善于推导的能力和习惯。 (三)课程设计思路 本课程主要介绍自动控制原理的基本概念和基本的分析与设计方法。课程采用“一纵三横”的设计思路,具体来说,“一纵”就是在课程讲授中要求贯彻自动控制系统的建模、分析及设计方法这条主线;“三横”就是在方法讲授中要求强调自动控制系统的稳定性、快速性和准确性,稳准快三个字是分析的核心,也是设计的归宿。在课程讲授中,贯彻少而精的原则,即对重点、难点讲深讲透;注意理论联系专业实际,例子贴近生活,注重揭示抽象概念的物理意义;注意传统教法与现代教法的有机结合,充分运用各种教学手段,特别注重发挥课程教学网站的作用。在课程学习中,注重阅读教材、完成作业、课程实验及讨论问题等四个环节,深刻理解课程内容中的重点和难点,重点掌握自动控制原理的基本概念和基本分析与设计方法。

湖南大学自动控制原理复习总结(精辟)

自动控制理论(一)复习指南和要求【】

第二章 控制系统的数学模型复习指南与要点解析 要求: 根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同) 一、控制系统3种模型,即时域模型----微分方程;※ 复域模型 ——传递函数;频域模型——频率特性。其中重点为传递函数。 系统输出量的拉氏变换式与输入量的拉氏变换式之比)和性质。 零初始条件下:如要求传递函数需拉氏变换,这句话必须的。 二、※※※结构图的等效变换和简化--- 实际上,也就是消去中间变量求取系统总传递函数的过程。 1.等效原则:变换前后变量关系保持等效,简化的前后要保持一致(P45) 2.结构图基本连接方式只有串联、并联和反馈连接三种。如果结构图彼此交叉,看不出3种基本连接方式,就应用移出引出点或比较点先解套,再画简。其中: ※引出点前移在移动支路中乘以()G s 。(注意:只须记住此,其他根据倒数关系导出即可) 引出点后移在移动支路中乘以1/()G s 。 相加点前移在移动支路中乘以1/()G s 。 相加点后移在移动支路中乘以()G s 。 [注]:乘以或者除以()G s ,()G s 到底在系统中指什么,关键看引出点或者相加点在谁的前后移动。在谁的前后移动,()G s 就是谁。 例1: ) 解法 1: 1) 3()G s 前面的引出点后移到3()G s 的后面(注:这句话可不写,但是必须绘制出下面的结构图,) 2) 消除反馈连接

) 3) 消除反馈连接 4) 得出传递函数 123121232123()()()() ()1()()()()()()()()() G s G s G s C s R s G s G s H s G s G s H s G s G s G s =+++ [注]:可以不写你是怎么做的,但是相应的解套的那步结构图必须绘制出来。一般,考虑到考试时间限制,化简结构图只须在纸上绘制出2-3个简化的结构图步骤即可,最后给出传递函数 () () C s R s =。。。。) 解法 2: 1()G s 后面的相加点前移到1()G s 前面,并与原来左数第二个相加点交换位置,即可解套,自己试一下。 [注]:条条大路通罗马,但是其最终传递函数 () () C s R s =一定相同) [注]:※※※比较点和引出点相邻,一般不交换位置※※※,切忌,否则要引线) 三. ※※※应用信号流图与梅森公式求传递函数 梅森公式: ∑=??=n k k k P P 1 1 式中,P —总增益;n —前向通道总数;P k —第k 条前向通道增益; △—系统特征式,即Λ+-+-=?∑∑∑f e d c b a L L L L L L 1 Li —回路增益; ∑La —所有回路增益之和; ∑LbLc —所有两个不接触回路增益乘积之和; ∑LdLeLf —所有三个不接触回路增益乘积之和; △k —第k 条前向通道的余因子式,在△计算式中删除与第k 条前向通道接触的回路。 [注] :一般给出的是结构图,若用梅森公式求传递函数,则必须先画出信号流图。 注意2:在应用梅森公式时,一定要注意不要漏项。前向通道总数不要少,各个回路不要漏。 例2: 已知系统的方框图如图所示 。试求闭环传递函数C (s )/R (s ) (提示:应用信号流图及梅森公式) 解1) [注]

自动控制原理考研大纲

《自动控制原理》考研大纲 科目名称:控制理论 适用专业:仿生装备与控制工程 参考书目:《自动控制原理》第六版,胡寿松编,科学出版社; 《自动控制理论》第二版,邹伯敏编,机械工业出版社; 《现代控制理论基础》第二版,王孝武主编,机械工业出版社 考试时间:3小时 考试方式:笔试 总分:150分 考试范围:包括经典控制理论(不包含非线性部分)与现代控制理论两部分,经典控制理论内容占70%,现代控制理论内容占30%。 经典控制理论部分 第一章绪论 1. 掌握自动控制系统的工作原理、自动控制系统的组成与几种不同分类。 2. 重点掌握反馈的概念、基本控制方式、对控制系统的基本要求。 第二章线性系统的数学模型 控制理论的两大任务是系统分析与系统设计,系统分析和设计中首先要建立被研究系统的数学模型。本章主要给出古典控制理论使用的系统数学模型——传递函数的建立。 本章要求: 1.掌握的概念:传递函数;极点、零点;开环传递函数、闭环传递函数、误差传递函数;典型环节的传递函数。 2.重点掌握建立电气系统、机械系统的微分方程和传递函数模型的方法。 3.重点掌握方框图化简或信号流图梅森增益公式获得系统传递函数的建模方法。 第三章控制系统时域分析 根据研究系统采用的不同数学模型,分析方法是不同的,本章给出利用系统传递函数数学模型求取时间响应的系统时域分析法。主要是分析系统的三大基本性能,即系统的稳(稳定性)、准(准确性)、快(快速性)。稳定性是系统工作的必要条件;快速性和相对稳定程度(振荡幅度)是评价系统动态响应的性能指标;准确性是指系统稳态响应的稳态精度,用稳态误差来衡量,需注意:讨论的稳态误差是指由输入信号和系统结构引起的系统稳态时的误差。 本章要求: 1.掌握的概念:稳定性;动态(或暂态)性能指标(最大超调量、上升时间、峰值时间、调整时间);稳态(静态)性能指标(稳态误差);一阶、二阶系统的主要特征参量;欠阻尼、临界阻尼、过阻尼系统特点;主导极点。 2.重点掌握系统稳定性判别(Routh判据);稳态误差终值计算(包括三个稳态误差系数的计算);二阶系统动态性能指标计算。 3.掌握利用主导极点对高阶系统模型的简化与性能分析。 第四章根轨迹法 闭环系统特征方程的根(系统闭环极点)在S平面的分布完全决定了系统的稳定性、主要决定了系统的动态性能,因此利用根轨迹(闭环系统特征方程的根随系统参数变化在S 平面所形成的轨迹)可对系统性能进行分析。根轨迹法是经典控制理论系统分析与设计的两大主要方法之一,是利用开环传递函数分析闭环系统性能。根轨迹绘制依据根轨迹方程(由

2018年浙江大学845自动控制原理考研大纲

《自动控制原理》(科目代码845)考试大纲这个大纲是2017年9月25日浙大控制官网才出的,虽然是新的,但是和以前基本 一模一样,没有变化。 参考书目: (1)各出版社出版的各种自动控制原理教材及习题集 (2)孙优贤、王慧主编. 自动控制原理.北京:化工出版社,2011年6月 (3)胡寿松主编. 自动控制原理(第四版、第五版、第六版). 分别于2001年2月、 2007年6月、2013年5月由科学出版社的(该书初版于1979年,前三版均由国防工业出版社出版,亦可作为参考书) 特别提醒:本考试大纲仅适合报考2018级浙江大学控制科学与工程学院硕 士研究生、专业课考《自动控制原理》(科目代码845)的考生。该门课程的 满分为150分。 一、总的要求 全面掌握自动控制系统的基本概念与原理,深入理解与掌握自动控制系统分析与 综合设计的方法,并能用这些基本的原理与方法举一反三地分析问题、解决问题。 二、基本要求 (1)自动控制的一般概念:掌握自动控制的基本概念、基本原理与自动控制系统组 成、分类,能熟练地将具体对象的控制系统物理结构图表示抽象成控制系统的方块图表示,能清楚地分析其中各种物理量、信息流之间的关系。 (2)动态系统的数学模型:能建立给定典型环节与系统的数学模型,包括微分方程、 传递函数、状态空间等模型;能熟练地通过方块图简化方法与信号流图等方法获得系统总的传递函数;能根据要求进行各种数学模型之间的相互转换。 (3)线性时不变连续系统的时域分析:熟悉一阶、二阶及高阶系统的特征,掌握基 于微分方程模型的时域分析,包括微分方程的求解、拉普拉斯变换的应用;状态空间模型的求解与分析;系统时间响应的性能指标计算;系统的稳定性分析、稳态误差系数与稳态误差的计算等。 (4)根轨迹:掌握根轨迹法的基本概念、根轨迹绘制的基本法则及推广法则;能正 确绘制根轨迹并利用根轨迹分析方法进行系统性能的分析,根据性能要求进行设计。

重庆大学 自动控制原理课程设计

目录 1 实验背景 (2) 2 实验介绍 (3) 3 微分方程和传递函数 (6)

1 实验背景 在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。自动控制原理是相对于人工控制概念而言的,自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。 在自动控制原理【1】中提出,20世纪50年代末60年代初,由于空间技术发展的需要,对自动控制的精密性和经济指标,提出了极其严格的要求;同时,由于数字计算机,特别是微型机的迅速发展,为控制理论的发展提供了有力的工具。在他们的推动下,控制理论有了重大发展,如庞特里亚金的极大值原理,贝尔曼的动态规划理论。卡尔曼的能控性能观测性和最优滤波理论等,这些都标志着控制理论已从经典控制理论发展到现代控制理论的阶段。现代控制理论的特点。是采用状态空间法(时域方法),研究“多输入-多输出”控制系统、时变和非线性控制系统的分析和设计。现在,随着技术革命和大规模复杂系统的发展,已促使控制理论开始向第三个发展阶段即第三代控制理论——大系统理论和智能控制理论发展。 在其他文献中也有所述及(如下): 至今自动控制已经经历了五代的发展: 第一代过程控制体系是150年前基于5-13psi的气动信号标准(气动控制系统PCS,Pneumatic Control System)。简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。 第二代过程控制体系(模拟式或ACS,Analog Control System)是基于0-10mA或4-20mA 的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。它标志了电气自动控制时代的到来。控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。 第三代过程控制体系(CCS,Computer Control System).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,Computer Control System)。这个被称为第三代过程控制体系是自动控制领域的一次革命,它充分发挥了计算机的特长,于是人们普遍认为计算机能做好一切事情,自然而然地产生了被称为“集中控制”的中央控制计算机系统,需要指出的是系统的信号传输系统依然是大部分沿用4-20mA的模拟信号,但是时隔不久人们发现,随着控制的集中和可靠性方面的问题,失控的危险也集中了,稍有不慎就会使整个系统瘫痪。所以它很快被发展成分布式控制系统(DCS)。 第四代过程控制体系(DCS,Distributed Control System分布式控制系统):随着半导体制造技术的飞速发展,微处理器的普遍使用,计算机技术可靠性的大幅度增加,目前普遍使用的是第四代过程控制体系(DCS,或分布式数字控制系统),它主要特点是整个控制系统不再是仅仅具有一台计算机,而是由几台计算机和一些智能仪表和智能部件构成一个了控制

自动控制原理课程教学大纲

物理电子工程学院《自动控制原理》课程教学大纲 课程编号:04210164 课程性质:专业必修课 先修课程:高等数学、函数变换、模拟电路、电路分析 总学时数:76 学分:4 适合专业:电子信息工程、机械与电子工程、机械自动化、电器自动化、通信、包装工程等专业 (一)课程教学目标 自动控制理论是电子信息科学与技术专业的一门重要的专业基础课程。它侧重于理论角度,系统地阐述了自动控制科学和技术领域的基本概念和基本规律,介绍了自动控制技术从建模分析到应用设计的各种思想和方法,内容十分丰富。通过自动控制理论的教学,应使学生全面系统地掌握自动控制技术领域的基本概念、基本规律和基本分析与设计方法,以便将来胜任实际工作,具有从事相关工程和技术工作的基本素质,同时具有一定的分析和解决有关自动控制实际问题的能力。 (二)课程的目的与任务 本课程是电子通信工程、机电一体化、包装工程等专业、工科及相关理科的必修基础课程。通过本课程的学习,使学生掌握自动控制的基础理论,并具有对简单连续系统进行定性分析、定量估算和初步设计的能力,为专业课学习和参加控制工程实践打下必要的基础。学生将掌握自动控制系统分析与设计等方面的基本方法,如控制系统的时域分析法、根轨迹分析法、频域分析法、状态空间分析法、采样控制系统的分析等基本方法等。为各类计算机控制系统设计打好基础。(三)理论教学的基本要求 1、熟练掌握自动控制的概念、基本控制方式及特点、对控制系统性能的基本要求。 2、熟练掌握典型环节的传递函数、结构图化简或梅森公式以及控制系统传递函数的建立和表示方法,初步掌握小偏差线性化方法和通过机理分析建立数学模型的方法。 3、熟练掌握暂态性能指标、劳思判据、稳态误差、终值定理和稳定性的概念以及利用这些概念对二阶系统性能的分析,初步掌握高阶系统分析方法、主导极点的概念。 4、熟练掌握根轨迹的概念和绘制法则,并能利用根轨迹对系统性能进行分析,初步掌握偶

自动控制原理知识点总结

@~@ 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 e来表征的 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边

3.传递函数定义和性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比 5.动态结构图的等效变换与化简。三种基本形式,尤其是式2-61。主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。(化简) 等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。串联,并联,反馈连接,综合点和引出点的移动(P27) 6.系统的开环传递函数、闭环传递函数(重点是给定作用下)、误差传递函数(重点是给定作用下):式2-63、2-64、2-66 系统的反馈量B(s)与误差信号E(s)的比值,称为闭环系统的开环传递函数 系统的闭环传递函数分为给定信号R(s)作用下的闭环传递函数和扰动信号D(s)作用下的

自动控制原理 教学大纲

《自动控制原理》课程教学大纲 一、课程的地位、目的和任务 本课程地位: 自动控制原理是机械设计制造及其自动化专业的专业方向课。自动控制技术是现代化技术中重要的一个方面,本课程主要讲述现代自动控制技术的基本原理与结构模型,自动控制系统的分析方法与设计方法,使学生具备自动化控制的基础理论知识以及实践能力。 本课程目的: 通过本课程的学习,要求学生理解自动控制的基本概念,掌握简单系统的建模方法,掌握对线性定常系统的稳定性、快速性和准确性的基本分析方法以及设计和校正方法,能熟练使用根轨迹法和频率特性法分析与设计控制系统和控制器,对非线性系统也能进行初步的分析。 本课程任务: 1.掌握自动控制的基本概念、原理,学会对实际物理系统进行数学抽象,并用已学过的数学工具进行系统分析和综合,能灵活应用各种理论知识来解决实际问题的综合设计能力。 2.不仅为后续课程的学习奠定基础,而且直接为解决实际控制系统问题提供理论和方法,养成将来在工程实际中经常进行理性思维的习惯。 3.培养学生在掌握课程知识、概念、原理方法基础上,独立思考、独立解决问题、实验与仿真实现的能力。 二、本课程与其它课程的联系 本课程的先修课是高等数学(上、下)、大学物理、电工电子技术(Ⅰ、Ⅱ)。这些课程的学习,为本课程学习奠定数学基础和分析系统建立数学模型提供必要的电学知识。本课程学习为后续课程的学习提供所应用的系统分析、设计的基本理论和基本方法,掌握必要的基本技能,为进一步深造打下必要的理论基础。 三、教学内容及要求 第一章控制系统导论 教学要求: 通过本章教学,使学生理解自动控制的定义、组成、基本控制方式及特点,对控制系统性能的基本要求,自动控制系统的分类,自动控制系统实例有一定掌握。使学生对反馈控制的基本理论和方法有一全面、整体的了解。 重点:自动控制的定义、组成、基本控制方式、特点及基本要求

自动控制原理知识点总结

河南省郑州市惠济区河南商业高等专科学校,文化路英 才街2号 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 2.自动控制系统的两种常用控制方式是什么?(填空) 3.开环控制和闭环控制的概念?掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) sa 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) 第二章 1.控制系统的数学模型有什么?(填空) 2.了解微分方程的建立? 3.传递函数定义和性质?认真理解。(填空或选择) 4.七个典型环节的传递函数(必须掌握)。了解其特点。(简答) 5.动态结构图的等效变换与化简。三种基本形式,尤其是式2-61。主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。(化简) 6.系统的开环传递函数、闭环传递函数(重点是给定作用下)、误差传递函数(重 点是给定作用下):式2-63、2-64、2-66 第三章 1.P42系统的时域性能指标。各自的定义,各自衡量了什么性能?(填空或选择) 2.一阶系统的单位阶跃响应。(填空或选择) 3.二阶系统: (1)传递函数、两个参数各自的含义;(填空)

(2)单位阶跃响应的分类,不同阻尼比时响应的大致情况(图3-10);(填空)(3)欠阻尼情况的单位阶跃响应:掌握式3-21、3-23~3-27;参考P51例3-4的欠阻尼情况、P72习题3-6。 4.系统稳定的充要条件?劳斯判据的简单应用:参考P55例3-5、3-6。(分析题) 5.用误差系数法求解给定作用下的稳态误差。参考P72习题3-13。(计算题) 第四章 1.幅频特性、相频特性和频率特性的概念。 2.七个典型环节的频率特性(必须掌握)。了解其伯德图的形状。(简答题) 3.绘制伯德图的步骤(主要是L(ω)) 4.根据伯德图求传递函数:参考P110习题4-4。(分析题) 5.奈氏判据的用法:参考P111习题4-6。(分析题) 6.相位裕量和幅值裕量的概念、意义及工程中对二者的要求。(填空或判断) 7.开环频率特性与时域指标的关系中低频段、中频段、高频段各自影响什么性能?注意相位裕量和穿越频率各自影响什么性能?(填空或判断) 第五章 1.常用的校正方案有什么?(填空) 2.PID控制: (1)时域表达式P122式5-18 (2)P、PI、PD、PID控制各自的优缺点?(简答题) 第六章 填空

2018年中国计量大学821自动控制原理2考研真题

设一单位反馈控制系统的开环传递函数为: 1 9 )(+= s s G 求系统在)452cos(2)( -=t t r 输入信号作用下的稳态输出。 二、(15分) 画出如下系统的信号流图并求出系统的传递函数) ()(s R s C 。 ???????+==-=--=) ()()()()()()()()()()()()()()()()()(33242232112311s X s G s X s G s C s X s G s X s C s H s X s G s X s X s H s C s R s X 三、(20分) 反馈系统中,前向传递函数为)10() 40()(++= s s s k s G ,反馈回路传递函数为20 1)(+=s s H 1.试确定使系统稳定的k 的取值范围; 2.确定能使系统临界稳定的K 值,并计算此时系统的根。 四、(20分) 机器人控制系统结构图如图1所示。试确定参数K1,K2值,使系统单位阶跃响应的峰值时间s t p 5.0=,超调量%2=p σ。 图1

单位反馈系统的开环传递函数为: 8 4)1()(2+-+= s s s K s G 1.绘制系统的根轨迹; 2.确定使系统闭环稳定时开环增益K 的取值范围。 六、(20分) 系统的开环传递函数为 ) 12.0(4)()(2+= s s s H s G 1.绘制系统的Bode 图,并求系统的相角裕度γ; 2.在系统中串联一个比例加微分环节(s+1),绘制此时系统的Bode 图,并求系 统的相角裕度γ; 3.说明比例加微分环节对系统性能的影响。 七、(20分) 设一单位反馈控制系统的开环传递函数为 4 ()(s 2) G s s = + 试设计一超前校正装置,使校正后系统的静态速度误差系数120v K s -=,相位裕量50γ=。增益裕量20lgK g = 10dB 。

《自动控制原理》课程标准

《自动控制原理》课程标准 一、课程基本信息 课程名称:自动控制原理课程代码:011087 课程类别:专业核心课 课程类型: B类(理论+实践课) 是否为精品课程:否 总学时:64(理论学时数:32,实践学时数:32)学分4分 二、课程定位与设计思路 1.1课程定位 《自动控制原理》课程是电气自动化技术专业的一门专业核心课程,专业必修课程。本课程的作用是通过学习性的工作任务教学方式,采取情境教学方法培养学生具有相应的自动控制理念和综合分析能力。本课程通过前修课程《电工基础》、《模拟电子技术》、《传感器与自动检测A》的学习,将传感器的自动控制理念和电学相关的简单电路知识融合在本课程的教学中,使复杂的理论知识变的简单,便于学生理解和掌握;通过前修课程《电机与电气控制B》理论知识的学习,培养学生对直流调速系统理论知识和实践技能的综合应用能力。同时为后续课程《电气传动新技术》、《生产过程自动控制实训》、《电机调速综合实训》的学习打下必要的理论知识和实践基础。 1.2设计思路 通过对本专业安装电工、维修电工、电气系统线路及器件(自动生产线)操作员工作岗位分析,确定了课程的设计思路为:根据本专业的基础能力目标、单项能力目标、综合能力目标,将本课程的学习领域划分成四个学习项目。学习项目一中,以电阻炉温控制系统和一汽大众汽车有限公司中汽车内饰装配控制系统的认识与描述为载体,学习自动控制系统的常用术语,引导学生学习自动控制系统的基本组成和工作过程。学习项目二中,以简单电路为载体,建立自动控制系统的数学模型,学习自动控制系统的常见环节。学习项目三中,以典型环节为载体,引导讲授分析自动控制系统性能的常用方法;以长春轨道客车股份有限公司生产控制线路为载体,可实现对不良的自动控制系统实行校正,确保控制的正常运行。学习项目四中,以简易直流调速的组装、调试、运行与检修为载体,学习直流调速的方法、简易调速系统的组装、调试、运行与基本检修方法。

自动控制原理总总结

自动控制原理总总结集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

《自动控制原理》总复习 1. 2. 3. 4. 5. 对自动控制系统的基本要求:稳、快、准。 6. 典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。 二、基本要求 1. 对反馈控制系统的基本控制和方法有一个全面的、整体的了解。 2. 掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自 动控制系统稳、准、快三方面的基本要求。 3. 了解控制系统的典型输入信号。 4. 掌握由系统工作原理图画方框图的方法。 三、内容结构图

1 (1 (3 2 (1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。 二、基本要求 1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变 量、输出变量、中间变量等概念,要准确掌握。 2、了解动态微分方程建立的一般方法及小偏差线性化的方法。 3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入 响应、零状态响应等概念有清楚的理解。 4、正确理解传递函数的定义、性质和意义。熟练掌握由传递函数派生出来的系统开环传 递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。(#) 5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结 构图及结构图的简化,并能用梅逊公式求系统传递函数。(##) 6、传递函数的求取方法: 1)直接法:由微分方程直接得到。 2)复阻抗法:只适用于电网络。

3)结构图及其等效变换,用梅逊公式。 4)信号流图用梅逊公式。 4.一般了解高阶系统的暂态响应,掌握闭环主导极点的概念。

5.自动控制原理考试复习笔记--本科生总结

自动控制原理复习总结笔记 一、 自动控制理论的分析方法: (1)时域分析法; (2)频率法; (3)根轨迹法; (4)状态空间方法; (5)离散系统分析方法; (6)非线性分析方法 二、系统的数学模型 (1)解析表达:微分方程;差分方程;传递函数;脉冲传递函数;频率特性;脉冲响应函数;阶跃响应函数 (2)图形表达:动态方框图(结构图);信号流图;零极点分布;频率响应曲线;单位阶跃响应曲线 时域响应分析 一、对系统的三点要求: (1)必须稳定,且有相位裕量γ和增益裕量g K (2)动态品质指标好。p t 、s t 、r t 、σ% (3)稳态误差小,精度高 二、结构图简化——梅逊公式 例1、 解:方法一:利用结构图分析: ()()()()[]()()[]()s X s Y s R s Y s X s R s E 11--=+-=

方法二:利用梅逊公式 ? ? = ∑=n k K K P s G 1 )( 其中特征式 (11) ,,1 ,1 +- + -=?∑∑∑===Q f e d f e d M k j k j N i i L L L L L L 式中: ∑i L 为所有单独回路增益之和 ∑j i L L 为所有两个互不接触的单独回路增益乘积之和 ∑f e d L L L 为所有三个互不接触的单独回路增益乘积之和 其中,k P 为第K 条前向通路之总增益; k ? 为从Δ中剔除与第K 条前向通路有接触的项; n 为从输入节点到输出节点的前向通路数目 对应此例,则有: 通路:211G G P ?= ,11=? 特征式:312131211)(1G G G G G G G G ++=---=? 则: 3 121111)() (G G G G P s R s Y ++?= 例2:[2002年备考题]

“自动控制原理”课程教学中的几个关键问题

“自动控制原理”课程教学中的几个关键问题 摘要:本文探讨了经典控制理论和基于状态空间的现代控制理论融合讲授和分开讲授的两种教学体系及其优缺点。提出在已有状态空间分析与设计方法的基础上,应该将一些在工程中已经成功应用的现代控制方法,引进现代控制教学内容,探讨控制理论的工程化教学方法。根据自动控制理论的发展,梳理精简了教学内容。探讨根据不同专业、不同类型大学的学生编写教材的方法以及增加学生阅读兴趣的教材设计方法。 关键词:自动控制原理;教学改革;教学体系;教学方法;教材建设 一、“自动控制原理”教学内容的体系 “自动控制原理”大部分教材主要介绍以传递函数、频率特性等为数学模型的所谓“经典控制理论”和以状态方程为数学模型的所谓“现代控制理论”。目前已有教材基本上分为两种体系: 1、经典控制理论和状态空间理论融合 “经典控制理论”和“现代控制理论”实际上是交替发展的,早期的著作也不是分开介绍的。例如,钱学森的《工程控制论》。蔡尚峰于1980年、黄家英于1991编著的《自动控制原理》也进行了一定的融合。本文作者2001年编著的《自动控制原理》力图以系统的观点和统一的框架介绍经典与现代控制理论、连续与离散控制理论、线性与非线性系统理论,揭示各种系统的内在联系。 将“经典控制理论”和“现代控制理论”融合讲授体系的优点是按照自动控制理论本身的内在联系展开的,逐步展示控制理论各种方法,能够训练学生学会从系统的角度、全局的高度来思考问题,使学生掌握控制理论的实质,掌握这种系统分析和研究问题的方法。这种能力正是自动化类学生的核心竞争力,是自动化类学生相比较其他专业学生的最大优势所在。这种融合讲授方法的缺点是刚开始就接触多种数学模型,要比较多的学时才能够完整掌握控制系统的稳定性、暂态性能、稳态性能等分析,对控制理论分析才有一个完整的认识。 2、经典控制理论和状态空间理论分开

相关文档
相关文档 最新文档