文档库 最新最全的文档下载
当前位置:文档库 › 太阳能实验报告

太阳能实验报告

太阳能实验报告
太阳能实验报告

太阳能草坪灯的设计方案.(优选)

太阳能草坪灯的设计方案 随着经济的发展和社会的进步,人们对能源提出了越来越高的要求,寻找新能源已成为当前人类面临的迫切课题。由于太阳能发电具有火电、水电、核电所无法比拟的清洁性、安全性、资源的广泛性和充足性,太阳能被认为是二十一世纪最重要的能源。太阳能的存储是太阳能产品发展的关键,目前主要采用各种电池,但是电池的充电时间长、寿命短以及不环保一直是太阳能产品发展的瓶颈,而超级电容器作为一种充电快、寿命长、绿色环保型储能元件,它给太阳能产品的发展带来了新的活力。本文详细介绍了一种超级电容器太阳能草坪灯的设计及实现方法。该草坪灯很好的结合了太阳能和超级电容器的优势,它无需安装其他电源,就可以主动发光,还能够根据环境光线的强弱自动控制灯的开关,而且安装方便、不用布线、工作稳定可靠、免维护、环保无污染、使用寿命长,可广泛应用于广场绿地、小区草坪等场所。 1 设计选择 1.1光源的选择 由于LED技术目前已经实现了关键性突破,同时性能价格比也有较大地提高。现在的LED 寿命已可达到100 000h以上,而且工作电压低,非常适合应用于太阳能草坪灯上。另外,LED 由低压直流供电,其光源控制成本低,可以调节明暗,并可频繁开关,而且不会对LED的性能产生不良影响。因此,从可靠性、性价比、色温和发光效率等几个方面综合考虑,设计时可选择额定电压为3.3 V、工作电流为6 mA的超亮LED作为光源。由于草坪灯不但要有装饰作用,还要有一定的照明功能,故可选择8个LED使用。 1.2太阳能电池的选择 太阳能电池是依据半导体PN结的光伏效应原理把太阳光能转化为电能的半导体器件,是超级电容器太阳能草坪灯的核心器件。太阳能电池性能的好坏直接决定着能量的转换效率及输出电压的稳定性,同时也直接决定了超级电容器太阳能草坪灯的性能。因此,设计时应采用性价比比较好的单晶硅太阳能电池。 由于地球上各个地区的太阳年总辐射量与平均峰值日照时数不同,太阳能草坪灯的设计和灯的使用地理位置是有关系的,太阳能电池组件额定输出功率和灯具的输入功率之间的关系大约是2~4:1,具体比例要根据灯的每天工作时间以及对连续阴雨天的照明要求决定。本系统的太阳能电池的功率为3.3V×0.006×8=0.1584 W,假设每天工作12个小时,太阳能电池功的效率为4 0%,每天有效工作时间为5小时,则可选用3 W/6 V的太阳能电池。 1.3超级电容的选择

有机太阳能电池实验报告

有机太阳能电池实验报告 实验项目名称P3HT-PC61BM 体异质结聚合物太阳能 电池器件制作与性能测试 实验日期 指导老师 实验者 学号 专业班级 第一部分:实验预习报告 一、实验目的 通过在实验室现场制作P3HT-PC61BM 聚合物体异质结太阳能电池器件以及开展电池性能测试,了解有机太阳能电池的制作工艺与流程,熟悉相关的加工处理与分析测试设备工作原理与使用方法,加深对有机太阳能电池的感性认识,提高学生的实际操作能力,培养学生对科学研究的兴趣。 二、实验仪器 电子分析天平、加热磁力搅拌器、超声仪、紫外臭氧清洗系统、旋涂仪、 惰性气体操作系统、真空蒸镀系统、太阳光模拟器、数字源表、台阶仪 三、实验要求 1、严格按照实验室要求与规范开展实验,未经允许不得随意触摸或按动设备开关或按钮以及设备控制系统。 2、实验期间保持室内安静,保持实验室内清洁卫生。 3、熟悉有机太阳能电池加工与测试相关设备、原理与方法。 四、实验内容与实验步骤 1.聚合物体异质结加工溶液的配制(活性层P3HT:PCBM 溶液的配制) 在手套箱外称取所需的P3HT 5、6mg 与PCBM 5、6mg,混合好装入带有磁子的5mL 瓶子中,转移到手套箱中;用一次性注射器吸取0、33mL oDCB(邻二氯苯)溶剂,配成17mg mL-1的溶液,放到加热台(加热台需要 5 分钟的稳定时间)上,设置温度为85℃,搅拌1h 后,冷却至室温待用。 2.导电玻璃表面清洁与处理。 A.首先确认ITO 面,用万用电表(打到Ω档)测试其表面电阻,有电阻的一面为ITO,在其反面的边缘处刻‘上’字(见下图)。将ITO 依次放到去离子水、丙酮与异丙醇中超声清洗10 分钟。每次超声完毕,用镊子取出ITO,用同样的溶剂反复冲洗两面三次,之后用氮气枪迅速吹干,立刻放到盛有下一种溶剂的容器中清洗。最后将用氮气枪吹干的ITO 转移到六孔板中转移至紫外/臭氧清洗机(操作详见其说明)中,将ITO面朝上,表面清洁处理10 分钟后,将ITO 取出并置于六孔板中待旋涂PEDOT:PSS(ITO 面朝下)。

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

太阳能热水器控制系统设计

西安航空职业技术学院 毕业设计(论文) 论文题目:太阳能热水器控制器设计 所属学院:电子工程学院 指导老师:杨思俊职称:讲师 学生姓名:王游班级、学号: 15205109 专业:太阳能光热技术与应用 西安航空职业技术学院制 年月日 西安航空职业技术学院

毕业设计(论文)任务书 题目:太阳能热水器控制器设计 任务与要求: 时间: 2017 年 11 月20 日至 2018 年 1 月 20 日共 8 周所属学院:电子工程学院 学生姓名:王游学号:15205109 专业:太阳能光热技术与应用 指导单位或教研室: 指导教师:杨思俊职称:讲师 西安航空职业技术学院制 年月日 毕业设计(论文)进度计划表

本表作评定学生平时成绩的依据之一。

太阳能热水器控制系统设计 【摘要】 现在城市居民绝大部分都使用太阳能热水器,农村也有相当一部分人使用,太阳能热水器在技术上比较成熟,造价比较低廉,同时由于给人民提供绝对安全的热水而受到人们的欢迎,且具有节能、环保、安全、便利、长久等优点,所以它的应用也会越来越广,因此,研究和开发先进的太阳能热水器控制系统越来越重要。 该设计以单片机SST89E516RD为核心,结合单线数字温度传感器DS18B20、LCD1602液晶屏与蜂鸣器,设计一种数字化、智能化的太阳能热水器控制系统。该系统由主控芯片模块、DS18B20温度检测模块、LCD1602温度和水位显示模块、自动加水模块和水温超标警报模块组成。给出了各个模块的结构及其工作原理、系统硬件原理图、程序流程图和部分源程序,并结合理论设计进行仿真模拟测试。我们都知道,目前市面上大多数太阳能热水器都没有加水只能中断装置,并且只能在晴天使用,而阴天则无法加热。此系统将水温水位检测模块、水温水位显示模块与报警模块结合,LCD1602屏幕上会显示水位和温度,并且在水位低于设置值时可人控开启加水开关开始加水,LCD1602上显示水位变化情况,当水位到达标准水位时自动中断;当通电对水加热时,LCD1602屏幕上动态显示温度;当温度到达设定的标准温度时,触发警报系统,提示人关闭加热装置。此系统解除了太阳能热水器加水时无人守候造成水资源浪费和只能在晴天使用的问题,解决了人们常遇到的实际问题。该系统与传统的机械式控制系统相比较,具有结构简单,抗干扰能力强,使用方便等特点。 关键词:单片机SST89E516RD;温度传感器DS18B20; LCD1602液晶;警报

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式(图) 太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W÷12V=5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池=5A×7h×(5+1)天=5A×42h=210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V=(5A×7h×120%)÷4.5h WP÷17.4V=9.33 WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC、110VAC的交流电源。由于太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。 光伏系统的设计包括两个方面:容量设计和硬件设计。 在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。 蓄电池的设计包括蓄电池容量的设计计算和蓄电池组的串并联设计。首先,给出计算蓄电池容量的基本方法。 (1)基本公式

太阳能电池充电器设计方案

电源招聘专家太阳能电池充电器设计方案 太阳能电池板的泄漏问题传统上可以采用一个与太阳能电池板相串联的肖特基二极管来解决,但肖特基二极管的正向电压降使得它在高电流条件下会消耗大量的功率。因此,需要采用昂贵的散热器和精细的布局来把肖特基二极管保持于低温状态。那么,有没有低成本的解决方案?太阳能电池充电器设计最困扰设计师的“至满充电电池的浮动电压控制”和“在最佳发电点给电池板加载”问题又该如何解决?在下文中,Linear电源专家将为你介绍该公司最新的低成本解决方案。 作为在商业和住宅环境中均具实用性的一种发电方法而言,太阳能电池板已经被人们所广泛接受。然而,尽管在技术方面取得了进步,太阳能电池板的造价仍然很昂贵。这种高昂的成本有很大部分来自于电池板本身,这里,电池板的尺寸(因而也包括其成本) 将随着所需输出功率的增加而增加。因此,为了造就外形尺寸最小、成本效益性最佳的解决方案,最大限度地提升电池板性能是很重要的。 一般而言,太阳能电池板所获取的能量用于给电池充电,电池的储能反过来将在没有阳光照射的情况下为终端应用电路的操作提供支持。如欲实现太阳能电池充电器的最佳设计,则必需对太阳能电池板的特性有所了解。首先,由于具有很大的结合区,因此太阳能电池板会发生泄漏,在黑暗条件下电池将通过电池板放电。而且,每块太阳能电池板都拥有一个具最大功率点的特征IV曲线,所以,当负载特性与电池板特性不相匹配时,能量提取将有所减少。理想的情况是:电池板将在最大功率点上被持续加载,以充分地利用可用的太阳能,并由此最大限度地缩减电池板成本。 一般情况下,可以采用一个与电池板相串联的肖特基二极管来解决电池板的泄漏问题。反向泄漏被减小至一个很低的数值;然而,肖特基二极管的正向电压降(它在高电流条件下会消耗大量的功率) 仍然会造成能量损失。因此,需要采用昂贵的散热器和精细的布局来把肖特基二极管保持于低温状态。解决该功率耗散问题的一种更加有效方法是用一个基于MOSFET的理想二极管来替代肖特基二极管。这将把正向电压降减小到低至20mV,从而显著地减少功耗,同时降低散热布局的复杂性、外形尺寸和成本。幸运的是,由于已经有一些IC供应商制造出了具有这种规格的理想二极管(比如:由凌力尔特公司提供的LTC4412),因此上述目标得以轻松实现。 不过,有两个问题依然存在,即:“至满充电电池的浮动电压控制”和“在最佳发电点给电池板加载”。这些问题常常可以通过采用一个开关模式充电器和一个高效率降压型稳压器来加以解决。 凌力尔特已经开发出了这样一款电路,它由LTC1625 No RESNSE(无检测电阻器)同步降压型控制器、LTC1541微功率运算放大器、比较器和基准、以及LTC4412理想二极管组成。下面给出了该电路以供参考: 图1中的电路被置于太阳能电池板和电池之间,用于调节电池浮动电压。基于LTC1541的附加控制环路强制充电器在最大电池板功率点上运作。这种效率的提升缩减了所需的电池板尺寸,因而降低了总体解决方案的成本。当电池板峰值电源电压和电池电压之间存在失配时,这款电路的重要优点表现得尤为突出。

太阳能草坪灯的基本知识

太阳能草坪灯主要利用太阳能电池的能源来进行工作,当白天太阳光照射在太阳能电池上,把光能转变成电能存贮在蓄电池中,再由蓄电池在晚间为草坪灯的LED (发光二极管)提供电源。其优点主要为安全、节能、方便、环保等。 太阳能草坪灯控制器它包含一块我公司专项开发的集成电路(XD6601)以及部分外围元件。主要功能包含充电电路,驱动电路,光敏控制电路和脉宽调制电路等。 该控制器具有高转换效率:80~85%(典型值),可以减少太阳能电池版的 功率要求;低启动电压:0.9V (最大值);可调输出电流等特点。 XD6601D为DIP8封装,安装极为方便。 太阳能草坪灯光源及电源系统设计方法由于太阳能草坪灯独特的优点,近年来得到迅速发展。草坪灯功率小,主要以装饰为目的,对可移动性要求高。另外,电路铺设困难,防水要求高,这些使得由太阳电池供电的草坪灯显示出许多前所未有的优势。尤其国外市场对太阳能草坪灯需求十分巨大,2002年, 仅广东和深圳用于制造出口太阳能草坪灯消耗的太阳能电池就达到2MW,相当 于当年国内太阳能电池产量的,今年仍然保持强劲的发展势头,这是人们没有预料到的。同时,由于发展太快,有些产品技术上不够成熟,在光源的选择以及电路设计中存在许多缺陷,降低了产品的经济性和可靠性,浪费了许多资源。本文针对上述存在的问题,提出我们的看法,供生产太阳能草坪灯的工厂 太阳能xx光源的选择 目前多数草坪灯选用LED乍为光源,LED寿命长,可以达到1000h以上,工作电压低,非常适合应用在太阳能草坪灯上。特别是LED技术已经经历了其 关键的突破,并且其特性在过去 5 年中有很大提高,其性能价格比也有较大的提高。另外,LED由低压直流供电,其光源控制成本低,使调节明暗,频繁开关都成为可能,并且不会对LED的性能产生不良影响。还可以方便地控制颜色,改变光的分布,产生动态幻景,所以它特别适用在太阳能草坪灯上。但是LED 有它许多固有的特性,使用时如果不注意就会造成不良后果。LED目前市场上销 售的发光效率仅能达到15 Im W,只能达到三色基色高效节能灯 1 3,三色基

太阳能光伏发电原理与应用实验报告资料

太阳能光伏发电原理与应用 实验报告 课题名称:太阳能光伏发电原理与应用实验专业班级:12级应用光电子01 学生学号:1209040110 学生姓名:胡超 学生成绩: 指导教师:刘国华 课题工作时间:2015.6.1至2015.6.4

实验一、太阳辐射能的测量 下表是针对武汉市的日照情况,记录武汉市的某一天某一时段(每两分钟记 录一次)的太阳辐射强度: 太阳辐射监测系统 瞬时值累计值 时间 总辐射散射辐射直接辐射反射辐射净全辐射总辐射散射辐射直接辐射反射辐射净全辐射10:06 538 113 436 41 112 0.031 0.014 0.016 0.003 0.009 10:08 404 105 298 32 77 0.056 0.013 0.045 0.004 0.012 10:10 449 99 347 31 268 0.049 0.013 0.037 0.004 0.009 10:12 416 97 304 33 246 0.056 0.012 0.043 0.004 0.033 10:14 645 118 525 49 347 0.056 0.012 0.042 0.004 0.033 10:16 198 105 57 24 105 0.077 0.014 0.062 0.006 0.040 10:18 549 107 425 42 326 0.025 0.013 0.007 0.003 0.012 10:20 610 111 485 45 329 0.066 0.013 0.051 0.005 0.039 10:22 631 108 513 50 304 0.076 0.013 0.061 0.006 0.039 10:24 619 108 493 45 284 0.076 0.013 0.062 0.006 0.036 10:26 465 103 310 39 194 0.075 0.013 0.059 0.006 0.034 10:28 653 109 402 47 264 0.067 0.013 0.043 0.005 0.027 10:30 690 111 337 48 263 0.079 0.013 0.046 0.006 0.032 10:32 693 113 318 47 249 0.083 0.013 0.042 0.006 0.031 10:34 653 115 214 48 219 0.082 0.014 0.035 0.006 0.029 10:36 713 118 176 53 145 0.061 0.013 0.018 0.005 0.021 10:38 575 111 92 44 89 0.087 0.014 0.020 0.006 0.015 10:40 717 115 53 44 90 0.080 0.014 0.009 0.006 0.010

太阳能电池技术方案设计设计

技术方案 太阳能电池的分类 (一)单晶硅太阳能电池 单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。 (二)多晶硅太阳能电池 多晶硅太阳能电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电效率约12%左右(2004年7月1日日本夏普上市效率为14.8%世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单晶硅太阳能电池还略好。 (三)非晶硅太阳能电池 非晶硅太阳电池是1976年出现的新型薄膜式太阳电池,它与单晶硅和多晶硅太阳电池的制作方法完全不同,工艺过程大大简化,硅材料消耗很少,电耗更低,它的主要优点是在弱光条件也能发电。但非晶硅太阳电池存在的主要问题是光电转换效率偏低,目前国际先进水平为10%左右,且不够稳定,随着时间的延长,其转换效率衰减。

(四)多元化合物太阳电池 多元化合物太阳电池指不是用单一元素半导体材料制成的太阳电池。现在各国研究的品种繁多,大多数尚未工业化生产,主要有以下几种:a)硫化镉太阳能电池b)砷化镓太阳能电池c)铜铟硒太阳能电池(新型多元带隙梯度Cu(In,Ga)Se2薄膜太阳能电池)Cu(In,Ga)Se2是一种性能优良太阳光吸收材料,具有梯度能带间隙(导带与价带之间的能级差)多元的半导体材料,可以扩大太阳能吸收光硅薄膜太阳能电池明显提高的薄膜太阳能电池。可以达到的光电转化效率为18%,而且,此类薄膜太阳能电池到目前为止,未发现有光辐射引致性能衰退效应(SWE),其光电转化效率比目前商用的薄膜太阳能电池板提高约50~75%,在薄膜太阳能电池中属于世界的最高水平的光电转化效率。 工艺技术方案 根据产品方案,本项目主要生产工艺的流程采用国内较为成熟的工艺路线,基本上是从硅片的开箱检测与装盒开始,然后在加工车间去除油污及制裁、扩散制作表面PN结然后检测、等离子体刻蚀周边PN结及抽测效果、二次清洗,然后在表面处理车间完成制备薄膜减反射层、印刷背面电极、背电场、正面电极,然后经过高温烧结,最后经检测车间检测合格后入库。太阳能电池硅片生产工艺流程图如下:

光伏特性曲线实验报告

绪论 一实验目的 本实验课程的目的,旨在通过课内实验教学,使学生掌握太阳能发电技术方面的基本实验方法和实验技能,帮助和培养学生建立利用所学理论知识测试、分析和设计一般光伏发电电路的能力,使学生巩固和加深太阳能发电技术理论知识,为后续课程和新能源光伏发电技术相关专业中的应用打好基础。 二实验前预习 每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。三注意事项 1、实验开始前,应先检查本组的仪器设备是否齐全完备,了解设备使用方法及线路板的组成和接线要求。 2、实验时每组同学应分工协作,轮流接线、记录、操作等,使每个同学受到全面训练。 3、接线前应将仪器设备合理布置,然后按电路图接线。实验电路走线、布线应简洁明了、便于测量。 4、完成实验系统接线后,必须进行复查,按电路逐项检查各仪表、设备、元器件的位置、极性等是否正确。确定无误后,方可通电进行实验。 5、实验中严格遵循操作规程,改接线路和拆线一定要在断电的情况下进行。绝对不允许带电操作。如发现异常声、味或其它事故情况,应立即切断电源,报告指导教师检查处理。 6、测量数据或观察现象要认真细致,实事求是。使用仪器仪表要符合操作规程,切勿乱调旋钮、档位。注意仪表的正确读数。. 7、未经许可,不得动用其它组的仪器设备或工具等物。 8、实验结束后,实验记录交指导教师查看并认为无误后,方可拆除线路。最后,应清理实验桌面,清点仪器设备。 9、爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。 10、自觉遵守学校和实验室管理的其它有关规定。 四实验总结 每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括: 1.实验目的; 2.实验仪器设备(名称、型号); 3.实验原理; 4.实验主要步骤及电路图; 5.实验记录(测试数据、波形、现象); 6.实验数据整理(按每项实验的实验报告要求进行计算、绘图、误差分析等);.回答每项实验的有关问答题。7.

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W-12V= 5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00 开启,夜11:30 关闭1 路,凌晨4:30 开启2 路,凌晨5:30 关闭) 需要满足连续阴雨天5 天的照明需求。(5 天另加阴雨天前一夜的照明,计6 天) 蓄电池=5A X7h X(5 + 1)天=5A X42h= 210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为小时(h) ; 最少放宽对电池板需求20%的预留额。 W- = (5A X7h X120%— WP-= WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MV级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保 护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC 110VAC的交流电源。由于太阳能的直接输出一般 都是12VDC 24VDC 48VDC为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电 能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。光伏系统的设计包括两个方面:容量设计和硬件设计。

太阳能电池设计方案作业

编号: 审定成绩: 重庆邮电大学 课程设计(论文) 设计(论文)题目:太阳能电能收集充电器 学院名称:通信与信息工程学院 学生姓名:杨海,张强,马超,殷亮,余凌霄 专业:电子信息工程(通信技术方向) 班级: 指导教师:刘乔寿 答辩组负责人: 填表时间:2011 年12 月重庆邮电大学教务处制

【摘录】本文通过对电路设计的总体要求的把握和理解,在充分理解性能及设计要求指标的基础上,对元器件的选择做了比对和较为细致的研究,阐述了电路设计中对于升降压电路的选取带来的不同性能,从综合性比较的角度上,得出了自动切换升降压方案在性能,经济成本,适用范围,可操作性等方面相对更优性,并通过最后的测试方案在误差范围内验证了设计方案,完成了课程设计任务。 在具体设计过程中,主要使不同强度的太阳光所产生的不同大小电压,通过可编程输出电压的相关芯片,如TPS61200,LM317等芯片调整出适当的输出电压,使其符合锂电池充电所需的4.2V并且尽可能的稳定。 本系统的供电电源转换分为升压和降压两部分,升压部分是一节干电池作为供电电源,通过升压电路转换为可为手机充电的电压,降压部分是由太阳能电池板作为供电电源,通过降压电路之后转换为可为手机电池充电的电压。 【关键词】自动切换升降压方案综合性比较测试方案验证稳定性

目录 前言 (1) 第一章太阳能概述及应用 (2) 1.1 太阳能电池发展历史及趋势 (2) 1.1.1 发展历史简介 (2) 1.1.2 发展趋势预测 (3) 第二章电路设计总体方案概述 (4) 2.1 方案一降压电路方案概述 (4) 2.1.1 电路设计的原理 (4) 2.1.2 设计的主要器件选择 (4) 2.2. 方案二升压后降压方案概述 (4) 2.2.1 电路设计的原理 (5) 2.2.2 电路设计的主要器件选择 (5) 2.3 方案三自动切换升降压电路概述 (5) 2.3.1 电路设计的原理 (5) 2.3.2 电路设计的主要器件选择 (5) 第三章电池设计具体方案分析与讨论 (6) 3.1 降压电路具体设计探讨 (9) 3.2 升压后降压方案具体设计探讨 (12) 3.3 自动切换升降压电路具体设计探讨 (15) 3.4 本章小结 (16) 第四章设计实际测试结果分析 (16) 4.1 关于模拟测试的探讨与结果分析 (16) 4.1.1 模拟测试与实际充放电的区别与共性 (17) 4.1.2 测试的具体方法讨论 (17) 4.2 实际测试数据探讨与对比 (18) 4.2.1 测试模型的选取 (18) 4.2.2 实际测试数据分析 (19)

太阳能灯具和普通灯具效益分析表

太阳能灯具与普通灯具对比分析报告 山东皇明太阳能光电事业部是集科研、生产、销售于一体的大型太阳能高新技术企业。皇明太阳能光电事业部以高端战略为指导,以“倡导绿色生活、营造绿色家园”为使命,致力于改善人类的生存环境。主要产品有太阳电池组件系列、太阳能照明系统(太阳能庭院灯、太阳能草坪灯、太阳能次干道路灯等)、太阳能光伏发电系统、太阳能交通灯系列、太阳能玩具系列等产品。 中科院——皇明太阳能联合实验室的成立以及皇明“ODIC”技术战略的提出,充分展现了皇明集团以技术为根本的战略思想。在与中科院、澳大利亚悉尼大学、德国Fraunhofer研究院的合作中,皇明光电事业部大量引进国内外先进的太阳能光伏发电技术,经过长期的锤炼,皇明太阳能光电产品无论是质量、技术、造型、还是品味、档次都达到了世界领先水平。 站在科技前沿,皇明光电事业部在拥有年产10MW太阳电池组件生产设备的情况下,投资6000多万元,持续引进世界上最先进的全自动太阳电池组件生产设备。确保到2005年皇明太阳能电池组件全部实现自动化生产,年产量达到75MW。 先进的科技指导,一流的工艺保证,是皇明太阳能光电事业部营销定位为“我们提供的不是产品,而是解决方案”的基础。

处处高一步:技术高尖端;产品高品位;质量高标准;服务高效率;品牌高美誉;营销高精工 皇明光电永续世界光明 大服务理念:从售前、售中到售后,为顾客提供全套服务,让100%用户100%满意 快车服务:绿色服务快车,按用户需求,快速反应,快速行动,快速解决问题。 热线服务:24小时服务热线,及时、快捷保证信息畅通。 网络服务:遍布全国的服务网络,随时为您服务。 精工服务:精工专业队伍,365天随时待命;精工制造体系,专为您提供最适宜的产品。 专家服务:专业的顾问式营销系统,根据您的需求提供最适宜的方案建议。 1.高亮度:大功率太阳电池组件作为灯具的发电系统、太阳电池板角度最佳化设计等,为大功率光源提供了充足的能源,真正实现黑夜亮如白昼。 2.高质量:先进生产和检测设备,优质原材料,保证质量高可靠性和性能高稳定性。环境适应性强,抗结霜、抗

太阳能电池板日发电量简易计算方法

太阳能电池板日发电量简易计算方法 太阳能电池板日发电量 简易计算方法 太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。太阳能发电系统的设计需要考虑如下因素: Q1、太阳能发电系统在哪里使用?该地日光辐射情况如何? Q2、系统的负载功率多大? Q3、系统的输出电压是多少,直流还是交流? Q4、系统每天需要工作多少小时? Q5、如遇到没有日光照射的阴雨天气,系统需连续供电多少天? 下面以(负载)100W输出功率,每天使用6个小时为例,介绍一下计算方法: 1. 首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用6小时,则耗电量为111W*6小时=666Wh,即0.666度电。 2. 计算太阳能电池板: 按每日有效日照时间为5小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为666Wh÷5h÷70% =190W。其中70%是充电过程中,太阳能电池板的实际使用功率。 3. 180瓦组件日发电量 180×0.7×5=567WH=0.63度 1MW日发电量=1000000×0.7×5=3500,000=3500度 例2:安10w灯,每天照明6小时,3个连雨天,如何计算太阳能电池板wp?以及12V 蓄电池ah? 每天的用电量: 10W X 6H= 60WH, 计算太阳能电池板: 假设你安装点的平均峰值日照时数为4小时. 则:60WH/4小时, = 15WP 太阳能电池板. 再计算充放电损耗, 以及每天需要给太阳能电池板的补充: 15WP/0.6= 25WP, 也就是一块25W的太阳能电池板就够了. 再计算蓄电池. 60WH/12V=5AH. 每天要用12V5AH的电量. 三天则为12V15AH.

有机太阳能电池封装技术毕业设计

1有机太阳能电池概述 1.1研究背景 随着化石能源的日益枯竭,可再生能源的寻求已经迫在眉睫,太阳能作为一种取之不尽、用之不竭的绿色能源受到了人们的关注。据统计,地球表面接受的太阳能辐射达到全球需求能源的一万倍,地球每平方米平均每年受到的辐射可发电289kw.h,在全球4%的沙漠上装太阳光伏系统,就足以满足全球能源需求。因此光伏发电具有广阔的发展空间。目前占光伏市场主导地位的是单晶硅和多晶硅太阳能电池。但是,昂贵的成本是限制无机太阳能电池进一步发展的重要因素。并且,中国多晶硅价格从去年最高的超过300万元/吨,下降至目前大约120万元/吨。薄膜太阳能电池等由于成本低,市场份额迅速扩大,这不仅对传统晶硅电池价格形成压制,同时在一定程度上降低了太阳能发电成本。 从20世纪70年代开始人们就越来越关注有机太阳能的研制。在导电聚合物上的研发利用取得很大的进步,有机半导体成为硅半导体的替代品指日可待。机导电聚合物有其独特的优势:有机分子可以经过加工,不需要得到晶体状无机半导体。特别是聚合物半导体的优越性是与廉价的加工技术联系在一起。大量的研究表明,导电聚合物是集各种性能于一身的半导体材料。导电聚合物又称导电高分子,是通过参杂手段,能使得电导率在半导体和导体范围内的聚合物.自1970年代第一种导电聚合物—聚乙炔发现以来,一系列星星导电聚合物相继问世.常见的导电聚合物有聚乙炔,聚噻吩,聚吡咯,聚苯胺,聚苯撑,聚苯撑乙烯,和聚双炔等.有机薄膜聚合物的快速发展,为有机薄膜太阳能电池的发展,提供有力的支持。机薄膜太阳能电池也是一种薄膜器件,现在的各种成熟的薄膜制造技术为有机薄膜太阳能电池的发展提供技术保障。有机聚合物太阳能电池具有可重复利

太阳能草坪灯技术原理

太阳能草坪灯技术原理 一、LED太阳能照明的发展趋势 太阳能作为一种新兴的绿色能源,以其无可比拟的优势得到迅速的推广应用。作为第四代新光源,在城市亮化美化、道路照明、庭院照明、室内照明以及其他各领域的照明和应用中得到了有效的利用。尤其是在偏远无电地区,太阳能照明灯具更具有广泛的应用前景。一般人认为,节能灯可节能4/5是伟大的创举,但LED比节能灯还要节能1/4,这是固体光源伟大的革新。除此之外,LED还具有光线质量高,基本上无辐射,可靠耐用,维护费用极为低廉等优势,属于典型的绿色照明光源。超高亮LED的研制成功,大大地降低了太阳能灯具使用成本,使之达到或接近工频交流电照明系统初装的成本报价,并且具有保护环境、安装简便、操作安全、经济节能等优点。由于LED具有的光效率高,发热量低等优势,已经越来越多地应用在照明领域,并呈现出取代传统照明光源的趋势。在我国西部,非主干道太阳能路灯、太阳能庭院灯渐成规模。随着太阳能灯具的大力发展,“绿色照明”必将会成为一种趋势。而LED太阳能草坪灯作为其中的一个代表,也将得到大力的推广和应用,本文主要介绍它的一些知识,希望能给大家一些启发。 二、LED太阳能草坪灯简介 LED太阳能草坪灯是一种集节能环保、照明与美化环境为一体的新型的绿色能源景观照明灯具。太阳能草坪灯节能、环保、安全、美观。该太阳能草坪灯采用高效率单晶硅太阳能电池组件,白天可将太阳光光能转换成电能储存于蓄电池,夜晚天黑后则自动点亮灯管照明,广泛适用于公园草坪、花园别墅、广场绿地、旅游景点、度假村、高尔夫球场、企业工厂绿地亮化美化、住宅小区绿地照明、各种绿化带等的景观点缀、景观照明。太阳能系列草坪灯主要用来亮化点缀照明,采用高亮度LED发光二极管设计,具有亮度高、安装简便、工作可靠、不敷设电缆、不消耗常规能源、使用寿命长等优点。太阳能草坪灯光源及电源系统设计方法由于太阳能草坪灯独特的优点,近年来得到迅速发展。草坪灯功率小,主要以装饰为目的,对可移动性要求高,电路铺设困难,防水要求高的场地适用。

太阳能光伏发电项目设计方案

太阳能光伏发电项目设计方案梦之园太阳能光伏发电项目 设 计 方 案

编制单位:光宏照明有限公司 编制日期:2013年7月12日 1.综合说明 1.1.编制依据 光伏发电是节约能源利国利民的新型产业,本着从科学的角度展示他的价值作为主导思想为依据。根据国家现行的法规和规范编制: 1)IEC61215 晶体硅光伏组件设计鉴定和定型 2)IEC6173O.l 光伏组件的安全性构造要求 3)IEC6173O.2 光伏组件的安全性测试要求 4)GB/T18479-2001《地面用光伏(PV)发电系统概述和导则》 5)SJ/T11127-1997《光伏(PV)发电系统过电压保护—导则》 6)GB/T 19939-2005《光伏系统并网技术要求》 7)EN 61701-1999 光伏组件盐雾腐蚀试验 8)EN 61829-1998 晶体硅光伏方阵I-V特性现场测量 9)EN 61721-1999 光伏组件对意外碰撞的承受能力(抗撞击试验) 10)EN 61345-1998 光伏组件紫外试验 11)GB 6495.1-1996 光伏器件第1部分: 光伏电流-电压特性的测量 12)GB 6495.2-1996 光伏器件第2部分: 标准太阳电池的要求 13)GB 6495.3-1996 光伏器件第3部分: 地面用光伏器件的测量原理及标准光谱辐照度数据 14)GB 6495.4-1996 晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法 GB 6495.5-1997 光伏器件第5部分: 用开路电压法确定光伏(PV)器件的等效电池温度(ECT) 16)GB 6495.7-2006 《光伏器件第7部分:光伏器件测量过程中引起的

相关文档
相关文档 最新文档