文档库 最新最全的文档下载
当前位置:文档库 › 蛋白质组学及其主要技术

蛋白质组学及其主要技术

蛋白质组学及其主要技术
蛋白质组学及其主要技术

蛋白质组学及其主要技术

朱红1 周海涛2 (综述) 何春涤1, (审校)

(1.中国医科大学附属第一医院皮肤科,辽宁沈阳110001; 2.北京大学深圳医院核医学

科,广东深圳518036)

【摘要】蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。蛋白质组学是以蛋白质组为研究对象的新兴学科,近年来发展迅速,已成为后基因组时代的研究热点。目前,蛋白质组学研究技术主要包括:样品的制备和蛋白质的分离、蛋白质检测与图像分析、蛋白质鉴定及信息查询。本文就蛋白质组学概念及主要技术进行综述。

【关键词】蛋白质组,蛋白质组学

1蛋白质组学的概念

随着人类基因组测序计划的完成,人们对生命科学的研究重点由结构基因组转向功能基因组,1994年Wilkins和Williams首先提出蛋白质组一词[1],蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。从基因到蛋白质存在转录水平、翻译水平及翻译后水平的调控,组织中mRNA丰度与蛋白质丰度不完全符合[2]。蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等也无法从DNA/mRNA水平来判断。因此,只有将功能基因组学与蛋白质组学相结合,才能精确阐明生命的生理及病理机制。

蛋白质组学是以蛋白质组为研究对象,对组织、细胞的整体蛋白进行检测,包括蛋白质表达水平、氨基酸序列、翻译后加工和蛋白质的相互作用,在蛋白质水平上了解细胞各项功能、各种生理、生化过程及疾病的病理过程等[3,4]。蛋白质组学有两种研究策略。一种是高通量研究技术,把生物体内所有的蛋白质作为对象进行研究,并建立蛋白质数据库,从大规模、系统性的角度来看待蛋白质组学,更符合蛋白质组学的本质。但是,由于剪切变异和翻译后修饰,蛋白质数量极其庞大,且表达随空间和时间不断变化,所以分析生物体内所有的蛋白质是一个耗时费力,难以实现的理想目标。另一种策略是研究不同状态或不同时期细胞或组织蛋白质组成的变化,主要目标是研究有差异蛋白质及其功能,如正常组织与肿瘤组织间的差异蛋白质,寻找肿瘤等疾病标记物并为其诊断治疗提供依据。

2蛋白质组学的常用技术

2.1样品的制备和蛋白质的分离技术

2.1.1样品的制备样品制备包括细胞裂解与蛋白质溶解,以及去除核酸等非蛋白质成分。

激光捕获显微切割(Laser-captured microdissection, LCM)[5]技术可大量获得足够用于蛋白质组学研究的单一细胞成分,避免其他蛋白成分对电泳结果的干扰。尤其是肿瘤的蛋白质组学研究常用LCM技术来获取单一的肿瘤细胞。

2.1.2蛋白质的分离技术

①双向凝胶电泳(Two-dimensional electrophoresis, 2-DE):双向电泳方法于

l975年由O'Farrell[6]首先提出,根据蛋白质等电点和分子量的差异,连续进行成垂直方向的两次电泳将其分离。

第一向为等电聚焦(Isoelectric focusing,IEF)电泳,其基本原理是利用蛋白质分子的等电点不同进行蛋白质的分离。较早出现的IEF是载体两性电解质pH梯度,即在电场中通过两性缓冲离子建立pH梯度;20世纪80年代初建立起来的固相pH梯度(Immobilized pH gradients,IPG)IEF,是利用一系列具有弱酸或弱碱性质的丙烯酰胺衍生物形成pH梯度并参与丙烯酰胺的共价聚合,形成固定的、不随环境电场条件变化的pH梯度。IPG胶实验的重复

性好。第二向为十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-polyacrylamide gel electrophoresis,SDS-PAGE),它是按蛋白质分子量的大小进行分离,双向电泳的最新进展是用IPG干胶条代替两性电解质加上与干胶条相配套的电泳仪如PROTEAN IEF Cell、IPG-phort等进行第一向等电聚焦[7,8],不仅极大地提高了电泳的分辨率,也提高了结果的重复性,尤其是不同实验室之间结果的可比性。2-DE最大的应用是能分离相同分子量的同分异构体以及经过翻译后修饰的蛋白质,蛋白质经过诸如磷酸化后,其电荷数量发生改变。通常蛋白质的磷酸化形式可以与未磷酸化的对应物分离开,在双向电泳胶上出现一串水平斑点。虽然该技术不断的发展,依然存在一些不足: 疏水性强及强酸强碱性蛋白质无法用2-DE 进行检测、低拷贝的蛋白质很难被检测到、检测分子量有一定范围、样品上样量相对少使得检测的灵敏度受到限制。而且电泳结果需染色处理,而不同蛋白质与染料的结合差异较大。另外该技术尚不能完全自动化,消耗时间长。

最近发展起来的差异凝胶电泳(Differences gel electrophore-

sis)[9]是将两种蛋白质样品分别用不同的染料进行荧光标记,混合后在一块胶上进行双向电泳。因此,该技术可用于蛋白质的差异鉴定,尤其是用于大样本实验。

②毛细管电泳(Capillary electrophoresis,CE): CE是20 世纪80 年代由Joenson 和Lukacs 提出的高效分离分析技术。即在高电场强度作用下,对毛细管(内径5~10 μm) 中的待测样品按分子质量、电荷、电泳迁移率等差异进行有效分离。主要包括毛细管区带电泳、毛细管等电聚焦和筛板SDS-毛细管电泳。该技术弥补了双向凝胶电泳无法实现自动化分析的不足,并可用于分子量范围不适用于双向电泳样品的检测,对单一样品尤为适用,但对复杂样品的分离尚不完全[10]。

③高效液相色谱(High performance liquid chromatography, HPLC):HPLC适用于单一蛋白质或简单样品蛋白质组的分离与纯化。它与质谱结合,利用蛋白质等电点、疏水性和分子量的特性进行蛋白质分离鉴定,借助计算机联机检索,实现蛋白质分离鉴定一次完成,能满足高通量、自动化分析的要求。与双向电泳比较,操作简单、速度快且灵敏度高。但由于一维的HPLC仅能分析一些不太复杂的蛋白质体系,而对复杂的多肽混合物常不能满足分离的要求。利用蛋白质不同特性,用多个分离柱对蛋白质进行多次高效液相分离的多维色谱(multi-LC)分离的方法在某种程度上满足了对复杂蛋白质混合分离鉴定的要求,常用于膜蛋白及低丰度蛋白质的分离鉴定[11]。

2.2蛋白质的检测与图像分析

蛋白质样品经双向电泳分离后,首先要经过染色再进行图像分析。常用方法有考马斯亮蓝染色、银染色。考马斯亮蓝染色因简单易行而常用,但灵敏度低。银染的机制是将蛋白带上的硝酸银(银离子)还原成金属银,以使银颗粒沉积在蛋白带上。其灵敏度比考马斯亮蓝染色高100倍,可以检测小至0.38 ng/mm2的牛血清白蛋白,但操作复杂,动态线性关系不明显,某些蛋白染色不明显甚至不染色。其他的方法也可以在特定情况下使用,包括 [35S]蛋氨酸或14C放射性标记,胶质金、锌咪唑、丽春红、氨基黑及印度红染色等。尽管蛋白质染色方法可以进行蛋白质的定量分析,但不能在一个广泛的浓度、等电点和氨基酸范围内进行蛋白质检测,尤其是对于大量翻译后修饰的蛋白质。

凝胶经过染色并显色后,通过专用扫描仪,将图像扫入计算机内,用特定分析软件进行分析,得到各个蛋白质点的相关数据(pI、分子量、密度等),然后对感兴趣的蛋白质点进行鉴定。

2.3蛋白质的鉴定

2.3.1肽质量指纹谱(peptide mass fingerprinting, PMF)技术指蛋白质被酶切位点专一的蛋白酶水解后,由于每种蛋白质的氨基酸序列不同,产生的肽片段序列也不同,其肽混合物的质量具有特征性,得到肽片段质量图谱,称为肽质量指纹谱,可用于蛋白质的鉴定。基质辅助激光解吸电离飞行时间质谱(Matrix assisted

laser desorption/ionization time-of-flight mass spectrometry,

MALDI-TOF-MS) 是一种常用的取得蛋白质PMF测定方法。基本原理是:将大分子待测样品与基质混合,通过基质分子吸收激光能量,转化为系统的激发能,导致大分子样品的电离和气化,生成的离子在真空无场区飞行并到达检测器,不同荷质比的离子到达检测器的时间不同从而得到该蛋白质PMF[12]。实验所得肽谱数据与数据库进行匹配,再采用一定的方法对匹配结果进行打分和排序,最后根据分值高低而确定所测的蛋白质[13,14]。该法灵敏度高,是大规模鉴定蛋白质的首选方法。

2.3.2同位素标记亲和标签(Isotope coded affinity tages, ICAT)鉴定蛋白质技术ICAT是一种人工合成的化学试剂,由三个功能区域:半胱氨酸反应区、8个H或2H的连接子和有亲和标签作用的生物素形成8个Da质量差异的亲和标签。实验时,两种不同细胞状态的蛋白质样品分别用不同的ICAT标记,等量混合并用蛋白酶消化,经过生物素亲和层析进行分离,标记的多肽由于生物素的作用被吸附下来,经过液相色谱-质谱(LC-MS)或液相色谱-串联质谱(LC-MS/MS)分析,经不同ICAT标记的相同肽段一前一后相邻分布在MS图谱上,经计算机数据库查询,得到在不同细胞状态下蛋白质的表达差异。该技术灵敏度及准确度均很高,主要用于研究蛋白质组差异,能够快速定性和定量鉴定多肽和翻译后修饰蛋白质、低丰度蛋白质,尤其是膜蛋白等疏水性蛋白[15]。但该技术只能对含半胱氨酸残基的蛋白质进行分析;ICAT

分子量约为500 Da,相对肽段来讲是一个很大的修饰物,增加了数据库搜索的难度;而且操作的步骤较多,对精确的定量分析有影响。

2.3.3肽序列标签(Peptide sequence tag, PST)技术蛋白质由20种氨基酸组成,5~6个氨基酸残基的序列片段在一个蛋白质组成中具有很高的特异性,这个片段称为PST,可用于蛋白质鉴定。色谱串联质谱(LC-MS/MS)及液相色谱-电喷雾-串联质谱(LC-ESI-MS/MS)能够检测离子结构碎片的质荷比及提供离子的结构信息,即得到肽段的分子量及部分PST信息,最后通过计算机联网查询,其信息在数据库查询中特异性更强,最后可对该蛋白质进行鉴定。该技术自动化程度高、重复性好,尤其是它能够分离鉴定低丰度蛋白质。

2.3.4蛋白质芯片(Protein chips)技术是指以蛋白质分子作为配基,将其固定在固相载体的表面,形成的蛋白质微阵列(Protein microarray) 。一个蛋白质芯片可以容纳一个蛋白质家族所有成员或一种蛋白质的所有变异体。根据检测目的不同,作为配基的蛋白质分子可以是酶、受体、抗原、抗体或抗体片断等。蛋白质芯片技术主要包括蛋白质微阵列的构建、样品的制备、芯片生化反应、信号检测及分析。实验时,将带有特殊标记的蛋白质分子与芯片反应,探针捕获样品中的待测蛋白质并与之结合,然后通过检测器对标记物进行检测,计算机分析出待测样品的结果。目前,对吸附到芯片表面的靶蛋白的检测主要有两种方式[16]:蛋白质标记法和直接检测法。前者将样品中的蛋白质预先用荧光物质或同位素等标记,结合到芯片上的蛋白质就会发出特定的信号,用CD (Charge-coupled device) 照相技术及激光扫描系统等对信号进行检测;后者以质谱技术为基础,采用表面增强激光解吸离子化-飞行时间-质

谱 ( SELDI-TOF-MS) 技术,使靶蛋白离子化,以分析蛋白质的分子量和相对含量。蛋白质芯片与质谱联合应用于蛋白质组研究领域,具有高通量、微型化、集成化、平行性检测等特点,逐渐应用于疾病检测、新药筛选等诸多领域,尤其成为肿瘤检测、分级、疗效及预后判定、寻找药物治疗特异性靶目标的关键技术。与DNA芯片比较,蛋白质芯片存在许多不足,还应该在以下几方面进行研究[17]:增加芯片蛋白质的种类和数量;加速探针蛋白质的制备和纯化研究;寻找更好的探针固定技术;研究新的检测仪器和方法,提高检测灵敏度;开发高度集成化生产的制备系统,便于推广应用。

2.4信息查询

生物信息学(Bioinformatics) 是生物与计算机以及应用数学相互结合而形成的一门新兴学科。它通过对生物学实验数据的获取、加工、存储、检索与分析, 达到解释数据所蕴含的

生物学意义的目的。蛋白质组学研究任一物种的基因组编码的全套蛋白质,它通常是高通量的,在进行蛋白质功能预测和结构分析时,生物信息学就成为蛋白质组学研究的核心技术之一。

常用几种软件进行分析[13,18,19]。PeptIdent是以肽质量指纹谱数据鉴定蛋白质的查询软件,是将数据库中的所有蛋白质用我们选定的酶进行"理论消化"形成肽片段,计算其理论肽段质量,建立索引,然后再与输入的实验数据进行对比,按实验数据匹配数的多少排列并输出匹配结果。蛋白质的等电点、分子量和种属可以详细限制候选蛋白,减少假阳性误差。MS-Fit 和Mascot软件利用了MOWSE得分法,特别考虑数据库中肽段分布频率的问题。Mascot 软件还把MOWSE得分转换为绝对概率,减少结果的不确定性。

在蛋白质组的研究中,生物信息技术应用主要包括以下内容[20]:①高效率的分析技术平台,即计算机和网络联合应用。②高通量技术,即运用信息技术去分析所得到的巨量数据。③数据挖掘技术,即可从存放在数据库或其他信息库中的大量数据中挖掘知识,应用于分析中。④数据可视化技术,有助于反映生物序列的三维结构模型,表现出生物体错综复杂的相互关系。⑤复杂系统理论:描述系统关系时,必须把核酸、蛋白质、细胞、器官、组织等的作用考虑在内,即用系统的方法来认识生命活动。

3结语

蛋白质组学作为仅有十年历史的新兴生命科学正迅速发展,在基础医学、临床医学已得到广泛应用,尤其在肿瘤的诊断及药物筛查方面已取得可喜的进展。然而,也存在许多亟待解决的问题,如强酸性、强碱性、难溶及低丰度蛋白质的分离鉴定问题,蛋白质分离鉴定中的通量问题,信息查询中的灵敏度和准确度问题等。随着相关技术的发展,蛋白质组学研究技术将不断完善,该学科必将在后基因组时代为其他生命科学的研究提供更加坚实的平台。

参考文献:

[1] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium[J]. Electrophoresis, 1995, 16(7):1 090-1 094.

[2] Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver[J]. Electrophoresis, 1997, 18(3-4): 533-537.

[3] Anderson NI, Anderson NG.Proteome and Proteomics: new technologi- es, new concepts, and new words[J]. Electrophoresis, 1998, 19: 1 853-1 861.

[4] Blackstock WP, Weri WP. Proteomics : quantitative and physical mapping of cellular proteins[J]. Trends Biotechnol, 1999, 17(3):121-127.

[5] Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser

capture microdissection[J]. Science, 1996, 274(5289):921-922.

[6] O'Farrell PH. High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem, 1975, 250(10): 4 007-4 021.

[7] Vitolins MZ,Anthony M, Burke GL Soy protein isoflavones, lipids, and arterial disease[J]. Curr Opin Lipidol, 2001,12:433.

[8] Barry RC, Alsaker BL, Robison-Cox JF,et al. Quantitative evaluation of sample application methods for semipreparative separations of basic proteins by two-dimensional gel electrophoresis[J]. Electrophoresis, 2003, 24(19-20): 3 390-3 404.

[9] Yan JX,Devenish AT, Wait R, et al. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli[J].Proteomics,2002,2(12):1 682-1 698. [10] Ana M, Laura GG,Willy RG, et

al. Derivatization of biomolecules for chemiluminesoent detection in capillary electrophoresis[J]. Analyt Tec-

hnol Biomed Life Sci, 2003, 793(1): 49-74.

[11] Fields S. Proteomics in Genomeland[J]. Science, 2001, 291(2): 1 221-1 224.

[12] Zhang W, Czernik AJ, Yungwirth T, et al. Matrix-assisted

laser desorption mass spectrometric peptide mapping of proteins separated by two-dimensional

gel electrophoresis:Determination of phosphorylation in synapsin I[J]. Protein Sci, 1994, 3(4): 677-686.

[13]Chamrad DC, Korting G, Stuhler K,et al.Evaluation of algorithms

for protein identification from sequence databases using mass spectrometry data[J]. Proteomics, 2004,4(3):619-628.

[14] Von Eggeling F, Davies H, Lomas L, et al.

Tissue-specific microdissection coupled with proteinchip array technologies: applications in cancerresearch[J]. Biotechniques, 2000, 29: 1 066- 1 070.

[15]Gygi SP, Corthals GL, Zhang Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology[J].

Proc Natl Acad Sci USA, 2000, 97: 9 390-9 395.

[16]钟春英, 彭蓉, 彭建新, 等. 蛋白质芯片技术[J].生物技术通报,2004,2: 34-37.

[17] 张艳,范学工. 蛋白质芯片技术及其在传染病研究中的应用进展[J]. 国外医学流行

病学传染病学分册, 2004, 31(5): 304-307.

[18] Wilkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods Mol Biol, 1999, 112: 531-552.

[19] Perkins DN, Pappin DJ, Creasy DM, et al. Probability-based protein identification by searching sequence databases using mass

spectrometry data[J]. Electrophoresis, 1999,20(18): 3 551-3 567. [20] 李科, 尧德中, 陈李容. 信息技术在后基因组学研究中的应用[J]. 电子科技大学

学报(社科版), 2003, 5: 64-67.

蛋白质组学与分析技术1

名词解释 蛋白质组学:是研究与基因对应的蛋白质组的学科。指一种基因组所表达的全套蛋白质,即包括一个基因组、一种细胞或组织,乃至一种生物所表达的全部蛋白质。 双向电泳原理:双向一般是指第一向为等点聚焦(IEF),根据蛋白质等电点进行分离;第二向为SDS凝胶电泳(SDS-PAGE),根据蛋白质的相对分子量进行分离。 三步纯化策略:第一步粗提,浓缩,稳定蛋白,去除蛋白酶,使用梯度洗脱来增加捕获步骤的速度和容量;第二步中度纯化,去除主要杂质,一般需要连续梯度洗脱; 第三步精纯,最终去除痕量杂质,如目标蛋白的结构变体。 高效液相色谱:是一种以高压输出液体为流动相的色谱技术。在技术上采用高压输液泵、高效固定相和高灵敏度检测器,克服了经典液相色谱固定相柱效低,分析周期 长的缺点,具有分析速度快、分离效率高、检出极限地的特点。 吸附色谱:吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸 附中心的过程。 PCR扩增:即聚合酶链式反应,是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等反应组成一个周期,循环进行,使目的DNA 得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。 基因组文库:基因文库是指整套由基因组DNA片段插入克隆载体获得的分子克隆的总和。 广义的基因文库指来于单个基因组的全部DNA克隆,理想情况下应含有这一 基因组的全部DNA序列(遗传信息),这种基因文库常通过鸟枪法获得。 狭义的基因文库有基因组文库和cDNA文库之分。 cDNA文库:按构建基因文库的类似方法对cDNA进行克隆,获得的克隆总称。 基因芯片:基因芯片又叫DNA芯片(DNA chip),DNA微阵列(DNA microarray), DNA集微芯片(DNA microchip),寡核苷酸阵列(oligonucleotide array)是一种将核酸分子杂交原理与微电子技术相结合而形成的高新生物技术。将靶标样品核酸或探针中的任一方按阵列形式固定在固相载体(硅片、尼龙膜、聚丙烯膜、硝酸纤维素膜、玻璃片等)上,另一方用荧光分子标记后,加样至微阵列上杂交,然后用荧光扫描或摄像技术记录,通过计算机软件分析处理,获得样品中大量的基因序列和表达信息。 基因敲除(gene knock out):又称基因打靶(gene targeting),是指用外源的DNA与受体细

蛋白质组学研究方法选择及比较

蛋白质组学研究方法选择及比较 目前研究蛋白组学的主要方法有蛋白质芯片及质谱法,本文将从多方面对两种研究方法进行了解与比较; 蛋白质芯片(Protein Array) 将大量不同的蛋白质有序地排列、固定于固相载体表面,形成微阵列。利用蛋白质分子间特异性结合的原理,实现对生物蛋白质分子精准、快速、高通量的检测。 主要类型: ●夹心法芯片(Sandwich-based Array) ●标记法芯片(Label-based Array) ●定量芯片(Quantitative Array) ●半定量芯片(Semi-Quantitative Array) 质谱(Mass Spectrometry) 用电场和磁场将运动的离子按它们的质荷比分离后进行检测,测出离子准确质量并确定离子的化合物组成,即通过对样品离子质荷比的分析而实现对样品进行定性和定量的一种方法。 主要类型:

●二维电泳+质谱(2D/Mass Spectrometry, MS) ●表面增强激光解吸电离飞行时间质谱(Surface-enhanced laser desorption/ionization- time of flight, SELDI) ●同位素标记相对和绝对定量(Isobaric tags for relative and absolute quantitation, iTRAQ) Protein Array or Mass Spectrometry? 如何选择合适的研究方法?以下将从六个方面进行比较与推荐: 1.筛查蛋白组学表达差异 建议选择:RayBiotech(1000个因子的芯片)+质谱 a)不同的方法学有不同的特点:对于质谱,可以筛查到未知的蛋白,但是对于分子量大、 低丰度的蛋白质,质谱的灵敏度和准确性有一定的限制。 b)不同的方法能筛查到的目标不同:根据Proteome Analysis of Human Aqueous Humor 一文中报道,质谱筛查到的差异蛋白集中在小分子与代谢物。而用RayBiotech芯片筛查到的结果,多是集中在细胞因子、趋化、血管、生长等等。 c)质谱筛查到355个蛋白,而RayBiotech抗体芯片也筛查到328个蛋白,且用定量芯片 验证25个蛋白有差异,这些蛋白是质谱找不到的。目前RayBiotech夹心法抗体芯片已经可以检测到1000个蛋白,采用双抗夹心法,尤其是对于低丰度蛋白,有很好的灵敏度和特异性,很多的低丰度蛋白是抗体芯片可以检测出来,而质谱检测不到的,且样品不经过变性和前处理,保持天然状态的样品直接检测,对于蛋白的检测准确度高。 d)质谱的重复性一直是质谱工作者纠结的问题,不同操作者的结果,不同样品处理条件, 峰值的偏移等影响因素都会产生大的影响;RayBiotech的夹心法芯片重复性高。

蛋白质组学及其在疾病研究中的应用

综述摘要 创新中药及其在我国的发展 邓文龙(四川省中药研究所,成都610041)本文就创新中药的定义、标准及创新中药在我国的发展进行了讨论。作者认为一流的临床疗效或独特的作用机理是创新中药的首要条件,按药物有效成分的有效剂量进行质量控制是创新中药的基础。 蛋白质组学及其在疾病研究中的应用 段春燕综述,何涛审校 (泸州医学院生物化学教研室,四川泸州646000) 目前人类基因组计划已进入后基因组时代,1994年Mac Wilkins与Keith Williams首先提出了蛋白质组学(prot eomics)的概念。依赖于二向电泳、质谱技术及生物信息学等多种手段的蛋白质组学分析在肿瘤、心血管系统、内分泌系统、神经系统及感染性疾病等的研究中得到了充分的应用,从整体的蛋白质水平上,在一个更深入、更贴切生命本质的层次上来探讨和发现生命活动的规律和重要生理、病理现象的本质。 蜂毒的现代药理研究及临床应用概况 夏隆江 (成都中医药大学药理教研室2004级博士生,成都610075)蜂毒是蜜蜂科昆虫中华蜜蜂Apis cerana F abricus等之工蜂尾部蛰刺毒腺和副腺分泌出的具有芳香气味的淡黄色透明毒液,是具有多种药理学和生物学活性的复杂混合物,主要由多种肽和酶类活性物质组成。它具有较广泛的药理作用:1、对心血管的作用:蜂毒有明显的降血压作用,其作用类似于组胺,是通过扩血管实现的;同时,蜂毒对心肌具有正性频率和负性肌力作用。2、对神经系统的作用:蜂毒有明显的镇痛作用和调节神经系统紧张度的作用。3、对血液的作用:蜂毒具有溶血、抗凝血和降低血栓素的作用。4、对呼吸系统的作用:蜂毒可使呼吸加快,大量的蜂毒可导致呼吸肌麻痹。5、对消化系统的作用:蜂毒有抗肝纤维化和吸收肝纤维化作用。6、对内分泌系统的作用:蜂毒对垂体、肾上腺皮质系统有明显的兴奋作用。7、对免疫系统的作用:蜂毒具有免疫抑制作用。8、抗炎镇痛作用:蜂毒肽对前列腺素合成酶的抑制作用是吲哚美辛的70倍,具有极强的抗炎镇痛效果。另外,蜂毒还具有抗肿瘤、抗辐射、抗菌等作用。在临床运用方面,临床上蜂毒被广泛地用于治疗风湿性、类风湿性疾病、多发性硬化病、艾滋病、高血压、哮喘、白塞病、寻常型银屑病等,具有较大的研究前景和临床运用价值。 瘦素的研究现状 龙中奇(四川省达州中医学校,达州635000)本文对瘦素的生物学性质及生理生化功能作一综述。 帕金森病的研究进展 唐宗琼(四川省达州中医学校,达州635000)多种因素导致帕金森病(PD)发病,归纳起来有以下几种学说:1遗传因素学说;环境因素学说;氧化应激学说;免疫学说;细胞凋亡学说;o对PD治疗的探索:细胞替代疗法(CRT)治疗PD是目前研究PD的热点,CRT治疗PD的目的是重建纹状体受损的多巴胺(D A)能神经支配,重建脑功能。根据供体的不同,PD的CRT治疗可分为:自体肾上腺髓质移植、同种异体胎脑移植、异种胎脑移植和干细胞移植。其中,自体肾上腺髓质移植经临床研究证实嗜铬细胞植入脑内后存活率极低,无肯定的治疗作用而已被淘汰。 胃肠肽类激素对摄食活动的调节 孙玉锦(雅安职业技术学院,雅安625000)摄食是复杂的行为,是一种精神活动,它包括觅食、食物的摄取、消化、吸收和利用,摄食是人类以及所有动物维持生命活动的最基本最重要的功能之一,摄入的食物经过消化和吸收过程为机体提供必须的能量和营养物质。虽然摄食作用作为一种本能生来即有,但实际上摄食活动是受体内复杂的神经和体液因素调节的,涉及到神经中枢、传入传出神经以及许多神经递质和激素。本文仅讨论胃肠肽类激素对摄食活动的调节。 将饱食大鼠的血液注入饿鼠血管内,可抑制饿鼠的摄食活动,这个事实提示血液中含有控制摄食的信息。这种信息是什么?推想饥饿使人或动物在短时间内大量进食,在食物未完全消化吸收之前,就因产生饱感而停止继续进食,究其原因很可能是食物与胃肠粘膜接触后,引起胃肠肽类激素释放,胃肠肽类激素通过血液循环,作用于下丘脑,兴奋饱中枢)下丘脑腹内侧核(VMH),抑制摄食中枢)下丘脑的外侧区(LHA),从而停止摄食。影响摄食活动的胃肠肽类激素较多,但其中只有少数胃肠肽类激素对摄食调节有生理意义,大多数胃肠肽类激素需要给予药理剂量才对摄食活动发生影响。本文介绍了体内多种胃肠肽类激素:胆囊收缩素、阿片肽、铃蟾肽、胰高糖素、胰岛素、酪神经肽、胃动素、甘丙素、生长抑素、雨蛙肽等对摄食有促进或抑制作用,目前对它们作用的许多环节还不完全清楚,但随着研究的不断深入,其与摄食有关的许多问题将会逐渐得到阐明。 实验研究摘要 松龄血脉康胶囊对自发性高血压 大鼠的降压作用及机制初探(摘要) 万莉红,熊文碧,朱玲,刘蓉,谢芬,刘嘉琴,周黎明*,李崇前1,张顺华1 (四川大学华西基础与法医学院药理教研室,四川成都610041;1成都康弘集团#博士后工作站,四川成都610036)目的:探讨中药松龄血脉康胶囊胶囊对自发性高血压大鼠是否具有降压作用,并初步探讨起作用的机制。方法:雄性自发性高血压大鼠(SHR)60只,随机分为高血压模型组、卡托普利组、Vc 组、松龄血脉康胶囊组四组,并设立正常血压大鼠(WKY)15只作为对照组,用BP26动物无创血压测试仪试验前测定各组动物的基础血压。(1)各组分别给予生理盐水、卡托普利12.5mg#kg-1、Vc50mg#kg-1、松龄血脉康胶囊胶囊750mg#kg-1灌胃,每日一 133 四川生理科学杂志2005;27(3)

蛋白质组学生物信息学分析介绍

生物信息学分析FAQ CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3) 什么是GO? (3) GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3) GO注释的意义? (3) GO和GOslim的区别 (4) 为什么有些蛋白没有GO注释信息? (4) 为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4) 什么是差异蛋白的功能富集分析&WHY? (4) GO注释结果文件解析 (5) Sheet TopBlastHits (5) Sheet protein2GO/protein2GOslim (5) Sheet BP/MF/CC (6) Sheet Level2_BP/Level2_MF/Level2_CC (6) CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7) WHY KEGG pathway annotation? (7) KEGG通路注释的方法&流程? (7) KEGG通路注释的意义? (7) 为什么有些蛋白没有KEGG通路注释信息? (8) 什么是差异蛋白的通路富集分析&WHY? (8) KEGG注释结果文件解析 (8) Sheet query2map (8) Sheet map2query (9) Sheet TopMapStat (9) CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10) WHY Feature Selection? (10)

聚类分析(Clustering) (10) 聚类结果文件解析 (10) CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12) 蛋白质相互作用网络分析的意义 (12) 蛋白质相互作用 VS生物学通路? (12) 蛋白质相互作用网络分析结果文件解析 (12)

蛋白质组学及其应用研究

现代商贸工业 2019年第16期 79 一间不了解,往往会错过报名时间而与心仪的证书擦肩 而过.2.4一学生缺乏清晰的职业规划 据调查,大多数的学生对自己的所学专业并不是很了解.并认为自己在大学期间对本专业的学习比较浅显,缺乏实践.对自身未来就业感到十分迷茫,对自己专业的就业前景知之甚少.这种没有结合自身实际的职业规划,就会对学生考取证书的选择有较大的影响.2.5一学生的考证成本较大 大学生目前的考证方式主要有两种:自学和报班.报班的话,费用和时间成本会较高.且社会上的考证机构参差不齐,学生较难判断.自学的话,难度较大.时间成本会更高.学生考取证书所付出的精力会更多.这可能会影响学校的正常学习.可能会出现本末倒置的情况.且社会上考取证书的参考资料品质不一.学生难以判断选择最适合的考证资料. 3一考证问题相应的对策 3.1一学生角度对策 (1)理性考证,切忌盲目跟风,证书并不是越多越好,分析自己所在的专业,了解与自己专业相关的证书,合理的安排考证和学校课程的时间,千万不要忽略学校授予的专业知识.证书或许能为你找工作提供一定的帮助,但真正让你立足于社会的是自身的能力,保持理智,不可本末倒置. (2 )做好自己的职业生涯规划,让自己对未来有一个明确的目标,然后根据这个目标,去选择能帮助到自己的证书,同时观察市场行情和国家形势,选择恰当的目标和时机去考取证书. (3)在考取证书的时候,一定要去了解该证书的详细信息,如考证费用二难易程度等,考取好的二知名度高的证书往往代表着你要投入大量的时间二金钱和精力,结合自身的实际情况来选择证书,适合自己的才是最好的.在选择培训机构的适合,一定要选择权威的二正式的机构,切勿贪小便宜而因小失大.3.2一学校角度对策 (1 )应帮助同学们建立起正确的三观二就业观,如东南大学成贤学院就应设立相应的讲座和课堂,为同学们讲解关于以后踏入社会的相关知识,培养大家独立二理性解决问题的能力. (2 )在校内设立与考证相关的导师机构,为同学们考证排忧解难,给出建议,避免学生盲目跟风,为考证不顾学业.同时要适当的疏导同学,避免对学习和就业产生过多的压力. (3 )学校需要做好一个合理引导的角色,应当不断完善学生的就业指导与服务体系,帮助学生树立正确的就业观念与明确的职业规划,端正考证动机,摒弃不良的考证心态,妥善处理好在校学习与考证学习的关系,让学生明白只有扎实提高自身能力与素质才会使自己终生获益.3.3一社会角度对策 (1 )用人单位应该完善用人的标准和要求,不以证书的数量来衡量学生的能力,用人标准和要求应多注重大学生的综合素质和实践能力. (2 )国家对于各种证书的认证要严格,对于各种培训机构要进行认真清理,不合法的要坚决取缔,考证不能成为不良居心的人利用应试考试赚取钱财的手段.同时加强考场管理,坚决反对作弊等现象的发生,为考证提供一个可信的平台,树立证书的权威性. (3)政府要做好用人单位和学校之间的沟通与交流,建立合作平台,保证人尽其用.优秀的大学生是社会紧缺的人力资源,为了避免这一人力资源的浪费,搭建企业与学校直接对接的桥梁是必不可少的,可以在为企业寻找需求的人才的同时,给予大学生实践和学习的机会. 参考文献 [1 ]关化少.我国本科应用型创新人才培养之特点二价值与理论期待[J ].北京教育,2015,(05).[2]舒程. 考证热 背景下大学生创业与就业能力培养分析[J ]. 赤峰学院学报,2017,(02). [3]费芳.大学生 考证热 亟需正确引导[J ].湘声报,2015,(01). [4]李晓娜.大学生 考证热 现象的经济学分析[J ]. 经济研究导刊,2014,(24). 蛋白质组学及其应用研究 魏东阳 (宝鸡中学,陕西宝鸡721000 )摘一要:蛋白质组学的概念最早是由澳大利亚学者W i l k i n s 和W i l l i a m s 于1994年提出, 细胞二组织或者机体的基因组所表达的全部蛋白就称为蛋白质组学.蛋白质组学是一个研究蛋白质组及大范围蛋白质的分离二分析二应用的学科.它不同于传统的利用生物化学的方法研究单个蛋白质或某一类蛋白,而是在大规模水平上研究体系内全部蛋白质及其动态变化规律.随着学科的发展,蛋白质组学的研究范围也在不断完善和补充,通过查阅大量文献,总结蛋白质组学技术,并研究蛋白组学在生物医学二转基因技术二生物制药技术等领域的. 关键词:蛋白质组;蛋白质组学;蛋白质组学应用 中图分类号:F 24一一一一一文献标识码:A一一一一一一d o i :10.19311/j .c n k i .1672G3198.2019.16.034一一蛋白质组(P r o t e o m e )是由蛋白质(P r o t e i n )和基因组(g e n o m i c )两个词的组合而来,是指生命体(包括细胞二组织等)的一个基因组所表达的所有蛋白质.其主 要研究内容就是能在大规模水平上研究蛋白质的表 达二翻译后的修饰以及蛋白质与蛋白质之间的相互作用,从而来了解蛋白质参与细胞二人体代谢及其他生命

蛋白质组学蛋白质组学相关技术及发展文献综述

蛋白质组学蛋白质组学相关技术及发展文献综述 蛋白质组学相关技术及发展文献综述张粒植物学211070161概念及相关内容1994年澳大利亚Macquaie大学的Wilkins和Williams等在意大利的一次科学会议上首次提出了蛋白质组proteome这个概念该英文词汇由蛋白质的“prote”和基因组的“ome”拼接而成并且最初定义为“一个基因组所表达的蛋白质”1。然而这个定义并没有考虑到蛋白质组是动态的而且产生蛋白的细胞、组织或生物体容易受它们所处环境的影响。目前认为蛋白质组是一个已知的细胞在某一特定时刻的包括所有亚型和修饰的全部蛋白质2。蛋白质组学就是从整体角度分析细胞内动态变化的蛋白质组成、表达水平与修饰状态了解蛋白质之间的相互作用与联系提示蛋白质的功能与细胞的活动规律。2蛋白质组学的分类蛋白质组学从其研究目标方面可分为表达蛋白质组学和结构蛋白质组学。前者主要研究细胞或组织在不同条件或状态下蛋白质的表达和功能这将有助于识别各种特异蛋白3目前蛋白质组学的研究在这方面开展的最为广泛其运用技术主要是双相凝胶电泳Two-dimensional gel electrophoresis2DE技术以及图像分析系统当对感兴趣的蛋白质进行分析时可能用到质谱。由于蛋白质发生修饰后其电泳特性将发生改变这些技术可以直接测定蛋白质的含量并有助于发现蛋白质翻译后的修饰如糖基化和磷酸化等4。结构蛋白质组学的目标是识别蛋白质的结构并研究蛋白质间的相互作用。近年来酵母双杂交系统是研究蛋白质相互作用时常用的方法同时研究者也将此方法不断改进5。有研究者最近发现在研究蛋白质相互作用时通过纯化蛋白复合物并用质谱进行识别是很有价值的4。3蛋白质组学相关技术目前蛋白质组学研究在表达蛋白质组学方面的研究最为广泛其分析通常有三个步骤第一步运用蛋白质分离技术分离样品中的蛋白质第二步应用质谱技术或N末端测序鉴定分离到的蛋白质第三步应用生物信息学技术存储、处理、比较获得的数据。3.1蛋白质分离技术这类技术主要是电泳其中应用最多的是双向电泳技术其他还有SDS-PAGE、毛细吸管电泳等。除了电泳外还有液相色谱通常使用高效液相色谱HPLC和二维液相色谱2D-LC。另外还有用于蛋白纯化、除杂的层析技术、超离技术等。 3.1.1双相凝胶电泳双相凝胶电泳two-dimensional gel elec—trophoresis2DE这是最经典、最成熟的蛋白质组分离技术产生于20世纪70年代中叶但主要的技术进步如实验的重复性、可操作性蛋白质的溶解性、特异性等是在近lO年取得的。它根据蛋白质不同的特点分两相分离蛋白质。第一相是等电聚焦IEF电泳根据蛋白质等电点的不同进行分离。蛋白质是两性分子根据其周围环境pH可以带正电荷、负电荷或静电荷为零。等电点pI是蛋白质所带静电荷为零时的pH周围pH小于其pI时蛋白质带正电荷大于其pI时蛋白质带负电荷。IEF时蛋白质处于一个pH梯度中在电场的作用下蛋白质将移向其静电荷为零的点静电荷为正的蛋白将移向负极静电荷为负的将移向正极直到到达其等电点如果蛋白质在其等电点附近扩散那么它将带上电荷重新移回等电点。这就是IEF的聚焦效应它可以在等电点附近浓集蛋白从而分离电荷差别极微的蛋白。pH梯度的形成最初是在一个细的包含两性电解质的聚丙烯酰胺凝胶管中进行。在电流的作用下两性电解质可形成一个pH梯度。但由于两性电解质形成的pH梯度不稳定、易漂移、重复性差80年代以后研究人员研制了固定pH梯度的胶条IPG。此种胶条的形成需要一些能与丙烯酰胺单体结合的分子每个含有一种酸性或碱性缓冲基团。制作时将一种含有不同酸性基团的此分子溶液和一种含有不同碱性基团的此分子溶液混合两种溶液中均含有丙烯酰胺单体和催化剂不同分子的浓度决定pH的范围。聚合时丙烯酰胺成分与双丙烯酰胺聚合形成聚丙烯酰胺凝胶。第二相是SDS聚丙烯酰胺凝胶电泳SDS-PAGE根据蛋白质的分子量不同进行分离。此相是在包含SDS的聚丙烯酰胺凝胶中进行。SDS是一种阴离子去污剂它能缠绕在多肽骨架上使蛋白质带负电所带电荷与蛋白质的分子量成正比在SDS聚丙烯酰胺凝胶中蛋白质分子量的对数与它在胶中移动的距离基本成线性关系。SDS-PAGE装置有水平和垂直两种形式垂直装置可同时跑多块胶如Amersham pharmacia Biotech的Ettan DALT II系统可同时跑12块胶提高了操作的平行性。经过2DE

比较蛋白质组学研究中的稳定同位素标记技术

进展评述 比较蛋白质组学研究中的稳定同位素标记技术 刘新1,2 应万涛1,2 钱小红1,23 (1军事医学科学院放射与辐射医学研究所 北京 100850;2北京蛋白质组研究中心 北京 102206) 摘 要 比较蛋白质组学是指在蛋白质组学水平上研究正常和病理情况下细胞或组织中蛋白质表达变化,以期发现具有重要功能的生物标识物,为疾病的早期诊断提供依据。近年来它正成为蛋白质组学研究的热点和发展趋势。比较蛋白质组学的研究方法和策略有多种,本文就最近几年来稳定同位素标记技术(体内代谢标记技术和体外化学标记技术)在比较蛋白质组学研究中的进展进行综述。 关键词 比较蛋白质组学 稳定同位素标记 体内代谢标记 体外化学标记 Application of Stable Isotope Labeling in Comparative Proteomics Liu X in1,2,Y ing Wantao1,2,Qian X iaohong1,23 (1Beijing Institute of Radiation Medicine,Beijing100850; 2Beijing Proteome Research Center,Beijing102206) Abstract C omparative proteomics is the research of protein expression changing between normal and pathological cell or tissue on the proteome level.P otential biomarkers w ould be discovered from the research by comparative proteomics, which will be helpful to the diagnosis and therapy of diseases.In the recent years,it has been becoming the hot spot of the proteomics research and many strategies used in comparative proteomics have been developed.During those approaches,the strategies based on stable is otopic labeling coupled with mass spectrometry have been extensively used and lots of success ful applications have been reported.In contrast to the traditional radioactive is otope labeling method,stable is otope labeling technique was not radioactive and the operation is simple.Metabolic labeling in viv o and chemical labeling in vitro are tw o parts of stable is otope labeling technique,which both have various advantages and disadvantages.This paper reviewed the progress of stable is otope labeling technique in comparative proteomics. K ey w ords C omparative proteomics,S table is otope labeling,Metabolic labeling in viv o,Chemical labeling in vitro 随着人类基因组精确图谱的公布,基因组功能的阐明已经成为生命科学研究中一项极重要的任务[1]。蛋白质是基因的最终产物同时也是基因功能的最终执行体,因而人类基因的表达及其功能有待于在蛋白水平上揭示。蛋白质组学的研究目的是分离和鉴定组织或细胞中的所有蛋白质。生物体在生长发育过程中,基因组是相对稳定的,而蛋白表达是高度动态变化的,并且具有严格调控的时间和空间特异性[2]。为了研究生物体在不同状态下表达的所有蛋白质的动态变化,比较蛋白质组学应运而生,即在蛋白组学水平上,研究在正常生理和病理状态,或受到不同的外部环境刺激下,或在突变等因素影响下,蛋白质表达的变化情况,以期发现生物体内关键的调控分子及与疾病相关的蛋白质标志物,最终为疾病的防诊治、新型疫苗的研发等提供理论依据。 为了研究蛋白质表达的动态变化,基因表达检测技术,如微阵列法[3]、DNA(脱氧核糖核酸)芯片法[4]等曾被广泛使用。这些方法虽然能够实现对mRNA(信使核糖核酸)进行定性和定量分析,但 刘新 男,27岁,博士生,现从事比较蛋白质组学研究。 3联系人,E2mail:qianxh1@https://www.wendangku.net/doc/746195850.html, 国家自然科学基金(20505019、20505018)、国家重点基础研究发展规划项目(2004C B518707)和北京市科技计划重大项目(H030230280190)资助项目 2006207220收稿,2006209221接受

蛋白质组学技术在各领域的解决方案

蛋白质组学技术在农业生物科研领域、疾病机理机制研究、药物研究、海洋环境、植物胁迫机制研究等方面具有广泛应用。蛋白组学的研究通常遵循以下思路: 蛋白质组学研究思路 图 1 蛋白质组学研究思路 一、蛋白质组学在农业生物科研领域的应用 蛋白质组学技术在农业生物科研领域的应用为作物生长发育、病虫害防治、遗传育种、畜牧兽医学疾病诊断和治疗等方面发挥重要的作用,为现代农业发展开辟新途径。 1 .蛋白质组学在农作物研究中的应用 农业是我国人口赖以生存的基础,而提高粮食产量和品质则是农业发展的关键。蛋白质组学关键技术在作物遗传育种、品系鉴定、品质改良、逆境胁迫应答等关键环节的应用,为农业作物的进一步开发利用提供巨大的参考价值。蛋白质组学可系统研究农作物在特定环境或某个发育阶段的组织和器官中蛋白质的表达变化,有助于作物发育过程机制的理解。 Jia等人利用SWATH等技术对四种玉米组织中的蛋白质进行定量分析:包括未成熟雌穗,未成熟雄穗,授粉后20天的幼胚和14日龄幼苗的根。在玉米的4种组织中总共鉴定到4551个蛋白质,其中在雌穗,雄穗,幼胚和幼根中分别鉴定到3916、3707、3702和2871种蛋白质。利用生物信息学技术将蛋白质组和转录组进行关联分析,并且进一步分析组织特异性高表达的基因和蛋白,以了解玉米组织结构和器官发生的调节机制,为研究玉米发育生物学研究提供了新的线索。相关成果2017年发表在Journal of Proteome Research上。

图 2 实验流程图 文献来源:Jia HT, Sun W, Li MF, et al. An integrated analysis of protein abundance, transcript level and tissue diversity to reveal developmental regulation of maize [J]. J. Proteome Res, December 18, 2017. 2.蛋白质组学在食品科学中的应用 在食品安全研究中,蛋白组学的出现为食品科学的研究指明了方向,同时也为食品科学的研究奠定了良好的发展平台。蛋白质组学在粮油食品、肉类食品、水产食品、乳品食品等方面的应用,不仅可以提高食品安全,并且在改善食品制作以及储存条件的同时,还可以提高食品的口感以及营养程度。 在热处理过程中,肉类的主要成分蛋白质会发生结构性变形,如氧化、降解、变性和聚集。蛋白质的这些变化对最终肉制品的质量、颜色、嫩度和风味有重要影响,并最终影响适口性和可接受性。Tian等人利用2-DE等技术手段研究了在加热中心温度为72℃时用不同的烹饪方法,例如水浴烹饪-WB、短时欧姆烹饪-STOH和长时间欧姆烹饪-LTOH,对牛肉的颜色、烹饪损失、剪切值和蛋白质组变化的影响。蛋白质组学分析表明,欧姆烹饪的烹饪损失、剪切值显著低于水浴烹饪(P<0.05)。利用2-DE蛋白组学技术成功鉴定到STOH和WB烹饪样品之间的17个差异蛋白质,并鉴定出LTOH和WB样品之间的13个差异蛋白质。大多数差异蛋白是肌原纤维和肌浆蛋白,可能与肉质的变化相关。WB烹饪可改变蛋白质溶解度并降低2-DE图像中的蛋白质斑点强度。应用欧姆烹饪会产生更高质量的牛肉产品,并减少烹饪时间。相关成果2016年发表在Innovative Food Science & Emerging Technologies上。

蛋白质组学与分析技术课复习思1考

蛋白质组学与分析技术课复习思考 一、名词解释 1、蛋白质组学: 蛋白质组学是研究与基因对应的蛋白质组的学科,蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。 2、二维(双向)电泳原理: 根据蛋白质的等电点和相对分子质量的特异性将蛋白质混合物在第一个方向上按照等电点高低进行分离,在第二个方向上按照相对分子质量大小进行分离。二维电泳分离后的蛋白质点经显色,通过图象扫描存档,最后是呈现出来的是二维方向排列的,呈漫天星状的小原点,每个点代表一个蛋白质。 3、三步纯化策略: 第一步:粗提。纯化粗样快速浓缩(减少体积) 和稳定样品(去除蛋白酶) 最适用层析技术: 离子交换/疏水层析 第二步:中度纯化。去除大部分杂质 最适用层析技术: 离子交换/疏水层析 第三步:精细纯化。达到最终纯度(去除聚合物,结构变异物) 最适用层析技术:凝焦过滤/离子交换/疏水层析/反相层析 4、高效纯化策略 在三步纯化蛋白质过程中,同时考虑到纯化的速度、载量、回收率及分辨率的纯化策略。5、离子交换色谱: 离子交换色谱中的固定相是一些带电荷的基团,这些带电基团通过静电相互作用与带相反电荷的离子结合。如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上的反离子进行交换。固定相基团带正电荷的时候,其可交换离子为阴离子,这种离子交换剂为阴离子交换剂;固定相的带电基团带负电荷,可用来与流动相交换的离子就是阳离子,这种离子交换剂叫做阳离子交换剂。阴离子交换柱的功能团主要是-NH2,及-NH3 :阳离子交换剂的功能团主要是-SO3H及-COOH。其中-NH3 离子交换柱及-SO3H离子交换剂属于强离子交换剂,它们在很广泛的pH范围内都有离子交换能力;-NH2及-COOH 离子交换柱属于弱离子交换剂,只有在一定的pH值范围内,才能有离子交换能力。离子交换色谱主要用于可电离化合物的分离,例如,氨基酸自动分析仪中的色谱柱,多肽的分离、蛋白质的分离,核苷酸、核苷和各种碱基的分离等。 6、吸附色谱 吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。洗脱次序∶一般为正相,即:极性低的先被洗脱。 7、PCR扩增 PCR技术(polymerase chain reaction)技术能把单个目的基因大量扩增,这个方法必须在已知基因序列或已知该基因所翻译的氨基酸序列。进而推断出因序列的情况下使用。PCR 的每次扩增循环包括三步:1)变性,在高温下把双链靶DNA拆开;2)在较低的温度下使

蛋白质组学及其主要技术

蛋白质组学及其主要技术 朱红1 周海涛2 (综述) 何春涤1, (审校) (1.中国医科大学附属第一医院皮肤科,辽宁沈阳110001; 2.北京大学深圳医院核医学 科,广东深圳518036) 【摘要】蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。蛋白质组学是以蛋白质组为研究对象的新兴学科,近年来发展迅速,已成为后基因组时代的研究热点。目前,蛋白质组学研究技术主要包括:样品的制备和蛋白质的分离、蛋白质检测与图像分析、蛋白质鉴定及信息查询。本文就蛋白质组学概念及主要技术进行综述。 【关键词】蛋白质组,蛋白质组学 1蛋白质组学的概念 随着人类基因组测序计划的完成,人们对生命科学的研究重点由结构基因组转向功能基因组,1994年Wilkins和Williams首先提出蛋白质组一词[1],蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。从基因到蛋白质存在转录水平、翻译水平及翻译后水平的调控,组织中mRNA丰度与蛋白质丰度不完全符合[2]。蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等也无法从DNA/mRNA水平来判断。因此,只有将功能基因组学与蛋白质组学相结合,才能精确阐明生命的生理及病理机制。 蛋白质组学是以蛋白质组为研究对象,对组织、细胞的整体蛋白进行检测,包括蛋白质表达水平、氨基酸序列、翻译后加工和蛋白质的相互作用,在蛋白质水平上了解细胞各项功能、各种生理、生化过程及疾病的病理过程等[3,4]。蛋白质组学有两种研究策略。一种是高通量研究技术,把生物体内所有的蛋白质作为对象进行研究,并建立蛋白质数据库,从大规模、系统性的角度来看待蛋白质组学,更符合蛋白质组学的本质。但是,由于剪切变异和翻译后修饰,蛋白质数量极其庞大,且表达随空间和时间不断变化,所以分析生物体内所有的蛋白质是一个耗时费力,难以实现的理想目标。另一种策略是研究不同状态或不同时期细胞或组织蛋白质组成的变化,主要目标是研究有差异蛋白质及其功能,如正常组织与肿瘤组织间的差异蛋白质,寻找肿瘤等疾病标记物并为其诊断治疗提供依据。 2蛋白质组学的常用技术 2.1样品的制备和蛋白质的分离技术 2.1.1样品的制备样品制备包括细胞裂解与蛋白质溶解,以及去除核酸等非蛋白质成分。 激光捕获显微切割(Laser-captured microdissection, LCM)[5]技术可大量获得足够用于蛋白质组学研究的单一细胞成分,避免其他蛋白成分对电泳结果的干扰。尤其是肿瘤的蛋白质组学研究常用LCM技术来获取单一的肿瘤细胞。 2.1.2蛋白质的分离技术 ①双向凝胶电泳(Two-dimensional electrophoresis, 2-DE):双向电泳方法于 l975年由O'Farrell[6]首先提出,根据蛋白质等电点和分子量的差异,连续进行成垂直方向的两次电泳将其分离。 第一向为等电聚焦(Isoelectric focusing,IEF)电泳,其基本原理是利用蛋白质分子的等电点不同进行蛋白质的分离。较早出现的IEF是载体两性电解质pH梯度,即在电场中通过两性缓冲离子建立pH梯度;20世纪80年代初建立起来的固相pH梯度(Immobilized pH gradients,IPG)IEF,是利用一系列具有弱酸或弱碱性质的丙烯酰胺衍生物形成pH梯度并参与丙烯酰胺的共价聚合,形成固定的、不随环境电场条件变化的pH梯度。IPG胶实验的重复

质谱技术在蛋白质组学研究中的应用

第35卷 第1期2011年1月 南京林业大学学报(自然科学版) Journa l o fN anji n g Forestry Un i v ersity (Natural Sc ience Ed ition) V o.l 35,N o .1Jan .,2011 htt p ://www.n l dxb .com [do :i 10.3969/.j issn .1000-2006.2011.01.024] 收稿日期:2009-12-31 修回日期:2010-10-26 基金项目:国家自然科学基金项目(31000287);江苏省高校自然科学基础研究项目(10KJ B220002) 作者简介:甄艳(1976)),副教授,博士。*施季森(通信作者),教授。E-m ai:l js h @i n jfu .edu .cn 。 引文格式:甄艳,施季森.质谱技术在蛋白质组学研究中的应用[J].南京林业大学学报:自然科学版,2011,35(1):103-108. 质谱技术在蛋白质组学研究中的应用 甄 艳,施季森 * (南京林业大学,林木遗传与生物技术省部共建教育部重点实验室,江苏 南京 210037) 摘要:随着蛋白质组学研究的迅速发展,质谱技术已成为应用于蛋白质组学研究中的强有力工具和核心技术。质谱技术的先进性在于为蛋白质组学研究提供的通量和分子信息。笔者重点概述了基于质谱路线的蛋白质组学研究,介绍了基于质谱的定量蛋白质组学﹑翻译后修饰蛋白质组学、定向蛋白质组学、功能蛋白质组学以及基于串联质谱技术的蛋白质组学数据解析的研究 进展。 关键词:质谱;蛋白质组学;定量蛋白质组学;翻译后修饰;定向蛋白质组学;功能蛋白质组学中图分类号:Q81 文献标志码:A 文章编号:1000-2006(2011)01-0103-06 Application of m ass spectro m etry i n proteo m ics studies Z HEN Yan ,SH I Jisen * (K ey Labo ra t o ry o f F orest G eneti cs and B i o techno l ogy M i n istry o f Educati on , N an ji ng Forestry U n i versity ,N an ji ng 210037,Chi na) Abstrac t :W ith the rap i d develop m ent o f pro teo m i cs ,m ass spec trom etry i s m aturi ng to be a po w erfu l too l and core tech -nology fo r proteo m ics st udies dur i ng the recen t years .The super i or ity o fm ass spectrom etry lies i n providi ng the through -pu t and the m olecu lar infor m ati on ,w hich no other techno logy can be m a tched i n proteom ics .In th i s rev ie w,w e m ade a g lance on the outli ne o fm ass spectrome try -based proteo m ics .A nd then w e addressed on t he advances o f data ana l y si s o f m ass spec trom etry -based proteom ics ,quantitati ve m ass spectro m etry -based pro teom i cs ,post -translati onal m odificati ons based m ass spectrom etry ,targeted proteo m ics and functiona l proteo m ics based -mass spectrome try .K ey word s :m ass spectrome try;proteo m ics ; quantitative pro teom i cs ; post -trans l ation m odifica ti on ; targ eted pro - teo m i cs ;f uncti ona l proteom ics 蛋白质组学(Pr o teo m ics)是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的学科。 目前蛋白质组学的研究主要有两条路线:一是基于双向电泳的蛋白质组学;二是基于质谱的蛋白质组学,其中基于双向电泳的蛋白质组学研究路线最终也离不开质谱技术的应用。自20世纪80年代末,两种质谱软电离方式即电喷雾电离(electro spray ion izati o n,ESI )和基质辅助激光解析离子化(m a -tri x assisted laser desorpti o n i o nization ,MALD I)的发明和发展解决了极性大、热不稳定蛋白质和多肽分 析的离子化和分子质量大的测定问题[1] ,蛋白质组学研究中常用的质谱分析仪包括离子阱(ion trap ,I T),飞行时间(ti m e of fli g h,t TOF),串联飞行时间(TOF -TOF),四级杆/飞行时间(quadr upo le /TOF hybrids),离子阱/轨道阱(I T /orbitrap hybri d )和离子阱/傅里叶变换串联质谱分析仪(I T /Four i e r transfor m ioncyclotron resonance m ass spectro m eters hybr i d s ,I T /FT M S),这些质谱仪具有不同的灵敏度、分辨率、质量精确度和产生不同质量的M S /M S 谱[2] 。质谱作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备及数据分析的信息学工具被广泛地应用。因此,有学者指出质谱技术 已在蛋白质组学研究中处于核心地位[3] 。目前在通量及所包含的分子信息内容上,基于质谱的蛋白质组学技术在细胞生物学研究中可以鉴定和量化

相关文档
相关文档 最新文档