文档库 最新最全的文档下载
当前位置:文档库 › 旋转导向钻井技术及Power-V

旋转导向钻井技术及Power-V

旋转导向钻井技术及Power-V
旋转导向钻井技术及Power-V

旋转导向钻井技术及Power-V导向系统介绍

摘要:旋转导向钻井技术主要指井眼轨迹自动控制的闭环自动钻井技术,是20世纪90年代初期发展起来的一项钻井新技术,代表着当今国际钻井技术的最新发展方向,对超深井、超薄油层水平井、大位移井、分支水平井等轨迹控制具有独特效果。本文分析了旋转导向钻井系统的技术特点,介绍了国内外旋转导向钻井系统的发展、应用情况。并详细介绍了斯伦贝谢公司旋转导向系统Power-V的组成和工作原理。

1.概述

所谓旋转导向钻井,是指钻柱在旋转钻进过程中实现过去只有传统泥浆马达才能实现的准确增斜、稳斜、降斜或者纠方位功能。旋转导向钻井技术的核心是旋转导向钻井系统,如图1所示。它主要由井下旋转自动导向钻井系统、地面监控系统和将上述2部分联系在一起的双向通讯技术3部分组成。旋转导向钻井系统的核心是井下旋转导向工具,旋转导向钻井系统主要由以下几部分组成:

①测量系统:包括近钻头井斜测量、地层评价测量,MWD/LWD随钻测量仪器等,用于监测井眼轨迹的井斜、方位及地层情况等基本参数。

②控制系统:接收测量系统的信息或对地面的控制指令进行处理,并根据预置的控制软件和程序,控制偏置导向机构的动作。

图1 旋转自动导向钻井系统功能框图

2.旋转导向钻井技术的特点

旋转导向钻井技术与传统的滑动导向方式相比有如下突出特点:

①旋转导向代替了传统的滑动钻进:一方面大大提高了钻井速度,另一方面

解决了滑动导向方式带来的诸如井身质量差、井眼净化效果差及极限位移限制等缺点,从而大大提高了钻井安全性,解决了大位移井的导向问题;

②具有不必起下钻自动调整钻具导向性能的能力,大大提高了钻井效率和井眼轨迹控制的灵活性,可满足高难特殊工艺井的导向钻井需要;

③具有井下闭环自动导向的能力,结合地质导向技术使用,使井眼轨迹控制精度大大提高。

旋转导向钻井技术的上述特点,使其可以大大提高油气开发能力和开发效率,降低钻井成本和开发成本,满足了油气勘探开发形势的需要。

3.国内外旋转导向钻井系统发展应用情况

目前,国外旋转自动导向钻井系统研究、应用成熟的有3种(如图2):Baker Hughes Inteq公司的Auto Trak系统,Halliburton Sperry-sun公司的Geo-Pilot

系统,以及Schlumberger Anadrill公司的Power Drive系统。其中,旋转导向钻井系统形成了两大发展方向:一、不旋转外筒式闭环自动导向钻井系统: Auto Trak 和Geo-Pilot;二、全旋转自动导向钻井统:Power Drive。

图2 国外3种旋转导向工具原理图

3.1 Auto Trak旋转导向钻井系统

Baker Hughes Inteq在1997年推出的Auto Trak。截止到2000年上半年,该系统已下井575次,井下工作时间累计7万小时,总进尺100万米。其6 3/4“系统创下了单次下井工作时间92h,进尺2986m的世界纪录,8 1/4”系统创下了单次下井工作时间167h,进尺3620m的世界纪录。

2000年8月,CACT公司在进行中国南海油田的1口侧钻水平井:HZ21一1一3SA 井的1400m的定向井段的施工中,应用Auto Trak RCLS系统,结果只用了1.5d的时间就完成了用常规方式需要10d才能完成的定向井段的施工。2008年中石化西南分公司的HJ203H水平井在四开3755—5289m井段采用AutoTrak旋转导向钻井系统进行施工,机械钻速明显高于采用传统导向方式施工。

3.2 Geo-Pilot旋转导向钻井系统

Sperry-sun在1999年推出新一代的Geo-Pilot旋转导向自动钻井系统,在美国墨西哥弯地区应用近50口井次,取得了良好的效果。

胜利油田于1998年引进了Halliburton公司的“AGS可变径稳定器+地层评价随钻系统FEWD”,并于2000年3月完成了胜利油田第1口位移超过3000m的海油陆采大位移水平井“埕北21一平1井”。2005年,中海油与Halliburton公司合作,在渤海的NB35-2油田水平分支井8-1/2〞井眼作业中,使用Geo-Pilot旋转导向工具,取得了预期的效果,完成了12口井作业。

3.3 Power Drive旋转导向钻井系统

CAMCO公司1994年研制开发了SRD系统。1999年5月,CAMCO公司与Schlumberger公司的Anadrill公司合并,其SRD系统注册为Power Drive,成功应用于现场。截至1999年底,该系统已下井138次,累计工作时间11610h,总进尺47780m。目前,世界上3口位移超过10000m的大位移井中,有2口应用了该系统。

2000年,PowerDrive SRD系统引入国内海上应用,在设计井深8800m,水平位移超过7500m的南海XJ24—3—A18井6871—8610m井段中成功应用。

4Power-V简介

Power-V是斯伦贝谢旋转导向系统PowerDrive(如图3)家族中的一员。PowerDrive把旋转钻井条件下测得的井斜角、方位角和工具面角等数据上传到地面,地面计算机监控系统根据实钻井眼与设计井眼的相对位置来产生改变工具面角等参数的下传指令,井下微处理器分析脉冲信号加以识别,与储存在仪器里的指令对比后,由井下旋转导向工具执行指令。

图3 PowerDrive系统主要组成部分

4.1 旋转导向系统PowerDrive的优点

(1) 反映和降低了所钻井段的真正狗腿度,使井眼更加平滑。用泥浆马达钻进30m井段,滑动钻进15m,旋转钻进15m,井斜角增加4°,得到平均狗腿度4°/30m。实际上,旋转钻15m井斜角几乎没有变化;而4°的井斜角变化是由滑动钻进15m产生的,这15m的实际狗腿度是 8°/30m。而用Power-V在同一设置下打出的每米都是同样均匀和平滑的,减少了井眼轨迹的不均匀度,从而减少了在起下钻和钻进过程中钻具实际所受的摩阻和扭矩。

(2) 使用Power-V钻出的井径很规则。使用传统泥浆马达在旋转井段的井径扩大很多,而滑动井段的井径基本不扩大。这种井径的忽大忽小是井下事故的隐患,也不利于固井时水泥量的计算。

(3) 由于Power-V钻具组合中的所有部分都在不停的旋转,大大降低了卡钻的机会。使用传统泥浆马达在滑动钻进时除钻头外,其它钻具始终贴在下井壁上,容易造成卡钻。

(4) 在钻进过程中,由于Power-V组合中的所有钻具都在旋转,这有利于岩屑的搬移,大大减少了形成岩屑床的机会,从而更好的清洁井眼。这对于大斜度井、大位移井、水平井意义很大。

(5) 由于Power-V钻具组合一直在旋转,特别有利于水平井、大斜度井和3000m以下深井中钻压的传递,可以使用更高的钻压和转盘转速,有利于提高机

械钻速。使用泥浆马达在大井斜的长裸眼段滑动钻进时送钻特别困难,经常是上

部的钻杆已经被压弯了,而钻压还没有传递到钻头上,还常常引发随钻震击器下击,损害钻头寿命。

4.2 Power-V 组成部分和工作原理简介

Power-V主要有两个组成部分,它们分别是上端的Control Unit (电子控制部分,简称CU) 和下端的Bias Unit (机械部分,简称BU)。在两者中间还有一个辅助部分Extension Sub(加长短接,简称ES)。

(1)电子控制部分CU

CU是Power-V的指挥中枢,它内部有泥浆驱动的发电机,还有陀螺、钻柱转速传感器、流量变化传感器、震动传感器、温度传感器以及电池控制的时钟等等。它可以独立于外面的钻铤而旋转或者静止不转。

工作原理:开泵后,发电机发电,陀螺测量到井底的井斜角和方位角(即高边),然后按照地面工程师的要求把其内部的电子控制部分固定在某一个方位上(即高边工具面角),从而实现无论钻柱如何旋转,CU内部的控制轴始终对准在需要的方位上,这个方位加上一个校对值后就是地面工程师所需要的高边工具面角的反方向。如果需要调整这个控制轴的方位角,可以由地面工程师给Power-V发送命令,方法是:按照一定的时间编排方式,在不同的时间开不同的工作排量,CU内部的传感器探测到这个排量的变化后,由其内部的程序对其进行核对,如果与预先设定的某个指令吻合,就开始执行这个新的工作指令。

(2) 机械部分BU

BU是一个纯机械执行装置,主要一个泥浆导流阀和三个由泥浆推动的pad (推力块或者叫伸缩片)。这个导流阀与电子控制部分CU的控制轴相连,其方向由控制轴的方位而定。有2%~5%的泥浆首先经过这个导流阀分流,然后流向转到该方向上的某个推力块A,推力块A就伸出,推挤井壁,井壁对钻头产生一个反作用力,这就是所谓的钻头侧向力,从而把钻头推向地面工程师所需要的方位。该推力块A转过这个位置后,泥浆的液压作用就转向下一个转到这里来的推力块B,从而推力块B伸出。而推力块A则会在井壁对其的挤压下缩回去,周而复始,由此实现旋转导向功能。推力块在那个方位伸出、伸出次数的几率(百分比)都是由地面工程师通过电子控制部分决定的。对井壁推力的大小是由钻头压降决定的,可以由地面人员通过调节排量而进行控制(如图4)。

图4PowerDrive盘阀控制机构示意图

(3) 加长短接ES

其内部装有一个泥浆滤网,负责过滤分流后驱动机械部分BU当中推力块(pad)的泥浆。

4.3 影响Power-V性能的有关因素和使用参数

(1)泥浆密度:它会影响钻头压降,必须在Power-V下井之前得到下一趟钻泥浆密度的平均值和可能的范围。其次还要知道进行水力计算所需的塑性粘度和屈服值。

(2)排量:在Power-V下井之前,必须得到井队泥浆泵可以提供的排量范围。每根仪器具体的工作排量由实验室确定。

(3)钻头水眼:根据上述各项数据进行水力计算,在总泵压允许的情况下,按照Power-V比较理想的工作压降选择钻头水眼,如果可能的话,兼顾钻头水马力。

(4)钻头压降:它决定着推力块对井壁的推力大小。压降太大会降低机械部分的寿命,甚至破坏机械部分;压降太小会降低Power-V的作用,达不到预期效果。它的工作范围为600~800psi,650~750psi 之间比较理想。需要根据当时井的具体情况选择一个合理值。一旦仪器下井,通常是通过改变排量来调节钻头压降。

(5)转盘转速。工作范围0~240r/min,转速太低,达不到预期效果;转速太高,则机械部分BU的磨损加快,需要根据当时井的具体需要而定。

(6)Power-V的性能与钻压没有直接关系。

(7)Power-V对牙轮钻头的要求比较简单:能够承受高钻压和高转速。对PDC

的要求比较严格:保径部分要短,保径部分上必须要有切削齿,Taper要短,钻头总长度要短,等等。

5.结论及认识

(1) 旋转导向技术和地质导向技术的结合提高油层暴露程度,大大提高油气资源勘探开发效率和钻井效率,降低钻井成本和勘探开发总成本,经济效益和社会效益十分显著。

(2) 旋转导向钻井配套特制的PDC钻头,可减少提下钻,大幅度提高钻速。

(3) 当前新疆油田每年钻大位移井、薄油层地质导向水平井、分支井的数量在增加,建议在各别区块引入旋转导向钻井技术。

(4) 目前国产的动力钻具还只局限于普通井下泥浆动力钻具,其它的如可变径稳定器、旋转导向工具、地质导向工具等国内还处于研究和实验阶段,旋转自动导向工具离国际水平相差甚远。

(5) 2009年我院的垂直导向钻井系统的实验成功为今后旋转导向工具的研制奠定了基础。

旋转导向钻井技术新进展

旋转导向钻井技术新进展 旋转导向系统(RSS)是在钻柱旋转钻进时,随钻实时完成导向功能的一种导向式钻井系统,是20世纪90年代以来定向钻井技术的重大变革。RSS钻进时具有摩阻与扭阻小、钻速高、成本低、建井周期短、井眼轨迹平滑、易调控并可延长水平段长度等特点,被认为是现代导向钻井技术的发展方向。 在RSS出现以前,多采用由泥浆马达驱动的滑动导向钻井系统实施导向钻井。该系统的特点是在钻井过程中钻柱不旋转,而是沿井壁轴向滑动,并通过滑动导向工具改变井眼的井斜角和方位角,从而控制井眼轨迹。旋转导向系统与滑动导向钻井系统相比,具有钻速快、井眼质量高、降低压差卡钻风险、可清洁井眼等优点。 旋转导向系统按其导向方式可分为推靠钻头式(Push the Bit)和指向钻头式(Point the Bit)两种系统。下面将通过对市场上最新型RSS系统的介绍,展示旋转导向钻井技术的进展。 1. AutoTrak X-treme系统 AutoTrak X-treme系统是由井下钻井马达驱动的旋转导向系统。其最大的优势是将普通转盘式RSS最高250rpm的转速提高到400rpm。该系统由旋转闭环导向系统Auto Trac和高效钻井马达X-treme组合而成。其特殊设计的模块化结构可以允许BHA持续高速旋转,而X-treme马达的设计也解决了导向数据通过马达传输的问题,真正实现了精确、实时的近钻头导向。 2. Revolution RSS Revolution旋转导向系统是一种“指向”式的旋转导向系统,导向的主要组件为不可旋转的套筒稳定器、近钻头旋转稳定器和旋转传动轴(drive shaft)。地面导航设施接收到泥浆脉冲传输的LWD信号后确定偏移方向和偏移角度,使传动轴产生偏移。传动轴在套筒稳定器中运转,将扭矩和载荷传递至钻头,“指引”钻头向既定方向前进。近钻头旋转稳定器起到支点的作用。 3. 3D旋转导向系统——Pathfinder RSS Pathfinder 3D旋转导向系统实现了在冲蚀井眼中的定向钻进。一般的旋转导向工具依靠与井壁的直接接触来施加导向力,或者通过这种接触来维持导向部件的稳定。Pathfinder RSS 采用特殊设计的导向垫块最多可以伸长1in,使121/4in的井眼工具在13in的井眼中仍能与井壁接触。 4. PowerDrive系统 PowerDrive旋转导向系统是通过高速旋转同时导向来进行钻进的,然而高速旋转下的定位比较困难。斯伦贝谢公司的PowerDrive采用了在RSS内部安装不旋转组件的方法解决该问题,因其外部钻杆始终处于旋转状态而大大提高了钻速。“让每个接触井壁的部分都在转动”的思想是斯伦贝谢旋转导向系统的核心,也是优于其它RSS系统的根

自动旋转导向钻井工具结构原理及特点

自动旋转导向钻井工具结构原理及特点 [摘要] 自动旋转导向钻井工具弥补了滑动式导向钻井工具在定向井钻井,特别是在大位移井及长距离水平井的使用中暴露的缺点与不足。浅显分析国内外在定向钻井工具技术差距,从结构原理和特点上出发阐述了自动旋转导向向钻井工具的。 [关键词] 自动旋转导向钻井工具 一.前言 现有的滑动式导向钻井工具在定向钻井,特别是在大位移井及长距离水平井的使用中暴露出不少缺点与不足。自动旋转导向钻井工具可以弥补这些缺点,是目前定向钻井工具发展的一个热点及方向。笔者据此介绍美国三家公司的自动旋转导向钻井工具的结构原理及特点。针对现有定向钻井工具的缺点和不足,浅析今后旋转导向钻井工具结构设计的发展趋势。 迄今为止,定向钻井技术经历了三个里程碑:①利用造斜器(斜向器)定向钻井; ②利用井下马达配合弯接头定向钻井(造斜率是弯接头弯角、井下马达刚度和地层岩石硬度的函数);③利用导向马达(弯壳体井下马达)定向钻井(弯角点离钻头的距离近得多,因此产生的造斜率大)。 目前这三种定向钻井工具在世界各地被广泛使用,并促进了定向钻井技术的快速发展,使得今天人们能够应用斜井、丛式井、水平井技术开发油田。 二.目前国内定向钻井工具现状 随着石油工业的发展,为了获得更好的经济效益,需要开发深井、超深井、大位移井和长距离水平井,而且常常要在更复杂的地层,如高陡构造带钻井。这些都对定向钻井工具提出了更高的要求。目前以井下马达为主的定向钻井工具已不能满足现代钻井技术的要求,主要存在以下缺点和不足: (1)利用井下马达导向时是滑动钻进,钻柱弯曲比旋转钻进时严重,井壁与钻柱间的轴向摩擦力大,使钻压很难加在钻头上。在大延伸井和水平井中这一情况更严重,在极端情况下会造成钻柱屈服,因此它限制了水平井和大斜度井的深度。 (2)在地面对井下马达进行扭方位操作时,旋转摩擦、钻头扭矩、钻杆的扭转弹性变形等都妨碍了工具面的控制,从而影响井下马达在大斜度井和水平井中的使用。 (3)在导向钻进时,钻柱的扭转弹性变形会引起工具面角不稳定,从而导致井眼轨迹扭曲,进一步加大钻柱受到的摩擦力,同样限制了钻井深度。

旋转导向钻井工具的研制原理

第26卷 第5期2005年9月 石油学报 AC TA PETROL EI SIN ICA Vol.26 No.5Sept. 2005   基金项目:国家高技术研究发展计划(863)“旋转导向钻井系统关键技术研究” (2003AA602013)和中国石油化工集团公司重大攻关项目(J P01005)联合资助。 作者简介:闫文辉,男,1965年9月生,1999年获西安石油学院硕士学位,现为西安石油大学副教授,硕士生导师,主要从事石油机械设计及设备 检测与故障诊断方面的教学和科研工作。E 2mail :ywh369@https://www.wendangku.net/doc/746889371.html, 文章编号:0253Ο2697(2005)05Ο0094Ο04 旋转导向钻井工具的研制原理 闫文辉 彭 勇 张绍槐 (西安石油大学机械工程学院 陕西西安 710065) 摘要:介绍了旋转导向钻井工具的工作原理及结构,指出了研制该工具的主要技术特点。旋转导向钻井工具主要由稳定平台单元、工作液控制分配单元和偏置执行机构单元3部分组成,其测试元件将测得的井眼参数通过短程通讯传输到随钻测量仪,再由随钻测量仪将信息传输到地面。同时,旋转导向钻井工具接收由地面发出的指令,并通过稳定平台单元调控工作液来控制分配单元中的上盘阀高压孔的位置。工作液控制分配单元将过滤后的泥浆依次分配到3个柱塞,给推板提供推靠动力,并使该推靠力的合力方向始终保持在上盘阀高压孔所对应的位置,在近钻头处形成拍打井壁的侧向力。通过对侧向力的大小、方向和拍打频率的调整,可直接控制该工具的导向状态。 关键词:旋转导向钻井工具;测试元件;导向控制;井眼参数;随钻测量中图分类号:TE82 文献标识码:A Mechanism of rotary steering drilling tool YAN Wen 2hui PEN G Y ong ZHAN G Shao 2huai (College of Mechanical Engineering ,X i πan S hi you Universit y ,X i πan 710065,China ) Abstract :The working principle and structure of a rotary steering drilling tool are introduced.The main technical properties of the tool are described.The tool mainly includes three parts :①unit of stabilization platform ;②unit for controlling and assigning work 2ing liquid ;③unit of Push 2the 2Bit working structure.The wellbore data can be transmitted to measurement while drilling (MWD )u 2nit f rom the test component in the tool through a short distance communication component and then transmitted to the instrument on ground by MWD unit.At the same time ,the receiver in the component receives the instruction f rom the instrument on ground ,and then control the high 2pressure hole located on the upper plate hose by controlling and assigning working liquid with a controller in the stabilization platform unit.The unit for controlling and assigning working liquid takes the filtered mud as the working liquid distribu 2ted in three mud pipes in turn.The mud provides the “pad ”with a motive force and maintains the direction of the join force on the position in accord with the high 2pressure hole on the upper valve all the time.Thus there will form a side force near the bit flapping the wall of the well.The adjustment of the size and direction of the side force acted on the wall and the flapping f requency could di 2rectly control the steering state of the drilling tool. K ey w ords :rotary steering drilling tool ;measurement unit ;steering control ;wellbore data ;measurement while drilling 旋转导向钻井技术是20世纪90年代初发展起来的一项自动化钻井新技术。国外钻井实践证明,在水平井、大位移井、大斜度井、三维多目标井中推广应用旋转导向钻井技术,既提高了钻井速度、减少了事故,也降低了钻井成本。国外目前主要有3种不同类型的旋转导向钻井系统,即:Auto Trak 旋转闭环钻井系统、Power Drive 调制式全旋转导向钻井系统和Geo 2Pilot 旋转导向自动钻井系统[1~8]。国内学者也对该 技术进行了介绍并开展了相关的研究工作[9~14]。胜利石油管理局与西安石油大学联合,研制和开发了具有自主知识产权的旋转导向钻井系统。该旋转导向钻 井技术主要包括井下旋转自动导向钻井系统、地面监控系统以及将上述两部分相结合的双向通讯技术[15]。笔者主要对井下旋转自动导向钻井系统中的旋转导向钻井工具进行了介绍。 1 旋转导向钻井工具工作原理 旋转导向钻井工具的最基本功能有2种:①导向功能;②稳斜或不导向功能。导向功能是指当需要向某一个井斜、方位导向时,可由稳定平台通过控制轴将上盘阀高压孔的中心即工具面角调整到与所需导向的井斜、方位相反的位置上,这时钻具沿所需的井斜及方位进行

Φ178旋转导向钻井工具机械结构设计说明书

Φ178旋转导向钻井工具机械结构设计 摘要:旋转导向钻井技术是石油工业工程技术领域的关键技术之一,得到了石油钻井工程界的极大关注,发挥着越来越重要的作用,主要应用于水平井、大位移井、超深井、三维多目标井等复杂结构的井作业。本文综述了旋转导向钻井工具的国内外现状,闸明了在我国发展旋转导向钻井技术的重要性和必要性,介绍了它的工作原理及结构组成,指出了研制该工具的主要技术特点。调制式旋转导向钻井工具的导向执行机构是靠内外泥浆液压力差驱动的原理来实现的,这是旋转导向钻井工具能否正常工作的关键。所以,对其液压盘阀分配系统进行分析计算,及其在井下不同工况下所受的力进行分析计算。分析了旋转导向钻井系统的井下钻井工具系的偏置方式和导向方式,完成了导向执行机构机械部分的设计。 关键词:旋转导向钻井工具;机械结构设计;压力差;

Φ178 Rotary Steerable Drilling Tool Mechanical Structure Design Abstract:In many oil industry engineering filed key technologies,rotary steerable drilling technology is one that has been paid much attention to in recent years and exhibits more and more importance in oil drilling industry, mainly used in horizontal well,extended reach well,ultra-deep well ,3D multi-target well the complex structure of multi-lateral wells in wells operating. This paper reviews the domestic and international drilling tool status, illustrates the development of rotary steerable drilling technology of the importance and necessity to introduce the working principle and its composition, that the development of the main technical features of the tool. Modulated rotary steerable drilling tool driven by the executing agency is the pressure difference between inside and outside the mud fluid-driven principles to achieve, which is whether the drilling tool to work the key. Therefore,its hydraulic disc distribution system analysis and calculation, and its different working conditions in underground analyzing and calculating the force. Analysis of downhole rotary steerable drilling tool drilling system orientation bias way. Complete guide the design of mechanical parts of the implementing agencies. Key words: Rotary steering drilling tool;Mechanical parts design;Pressure difference

33.适用于旋转导向钻井工具的非接触式电能传输方法

万方数据

万方数据

第21卷第2期陈红新等:适用于旋转导向钻井工具的非接触式电能传输方法115 L面di十虿1,id£+i(£)R—Vo(6)求解得 i=皂sin(叫t)e-÷(7) 6U』一 由式(7)可知,减小回路的电感对提高发射电流有着特别重要的意义。在设计时,发射线圈采用扁带线,以减小电感【4J。 在理论分析和计算的基础上,采用罗果夫斯基线圈【4’5]对发射线圈中的电流进行了测量。罗果夫斯基线圈的结构如图7所示,传输被测电流的导体从线圈中心穿过,设电流传输导线与罗果夫斯基线圈每匝中心的距离为r,被测电流为i(£),则穿过线圈每匝的磁感应强度B,为 B,=/zi(£)/(2丌,.)(8) 图7用罗果夫斯墨线圈测量发射电流 感应电压乱(£)与B,的关系为 “(£)一,zS挚(9)根据式(8)可推出 础)=筹掣tit=M警(10) Z丁cra£ 式(10)中,2为线圈匝数;S为每匝线圈的面积;M=pnS/(2rtr)。 式(10)中,示波器测出的电压配(£)与被测电流i(£)的导数成正比,为了得到U(£)与i(£)的正比关系,在电路中设置了R、C积分电路。当电缆的波阻抗Z远远大于罗果夫斯基线圈的感抗∞L时,可略去测量线圈的内压降,认为U(£)全部降落在Z上。另外,通过对积分电路中R、C的选择可使R》1/(cJC,因而可认为通过C的电流ic(£)≈“(£)/R,故C上的电压“c(£)为 “t)一钟幽)一志弘m 一志『M警一拦m,…, 测量过程中需要消除强磁场在电缆外皮中产生的噪声电流而引起的共模干扰,这种噪声电流引起的电压降将耦合到被测信号上。干扰信号的大小与电缆的耦合阻抗有关,即 Z—VN/tN(12)式(12)中,V。为噪声电压,JN为噪声电流。为消除干扰,采取了如下措施:采用双屏蔽电缆,减小感生电流和耦合阻抗;缩短接地回路,消除地电位升高而造成的影响。采用以上措施后获得良好的效果,对比情况如图8和图9所示。 8 4 -4 -8 八八/\八 .V1V2V卜“I 图8采取抗干扰措施后的测试结果 图9未采取抗干扰措施的测试结果 4结束语 针对导向钻井工具的特点,设计了一种适合于旋转件与非旋转件之间的非接触式电能发射系统。采用单片机、驱动电路、脉冲变压器、脉冲电容器等小体积、高电压、大电流器件,制作了高能量密度的电能发射装置,通过慢充电、快放电方式在发射线圈上产生冲击大电流。在理论分析和计算的基础上,采用罗果夫斯基线圈对发射电流进行了测量,测量过程中采用了良好的屏蔽和接地等噪声抑制措施,得到了满意的结果,发射线圈上的实测电流峰值为8kA。研究结果表明,包括发射线圈在内的电能发射电路的R、L、C等参数对发射电流的影响 (下转第119页)  万方数据

φ178旋转导向钻井工具设计说明书

φ178旋转导向钻井工具设计及控制轴的动力学分析 摘要:旋转导向钻井技术是现代导向钻井技术的发展方向,主要应用于大位移井、多分支井等复杂结构的井作业。本文综述了旋转导向钻井工具的国外现状,阐明了在我国发展旋转导向钻井技术的重要性和必要性,介绍了它的工作原理及结构组成 ,指出了研制该工具的主要技术特点。调制式旋转导向钻井工具的导向执行机构是靠外泥浆液压力差驱动的原理来实现的,这是旋转导向钻井工具能否正常工作的关键。所以,对其液压盘阀分配系统和控制轴进行分析计算,及其在井下不同工况下所受的力进行分析计算。分析了旋转导向钻井系统的井下钻井工具系统的测控方式,偏置方式和导向方式。完成了导向执行机构机械部分的设计,最后,对控制轴进行了动力学分析,并对工具进行了经济型评价和总结。 关键词:旋转导向钻井;设计;动力学分析

Design and Control of the Dynamic Analysis of Shaft of 178 mm Diameter Rotary Steerable Drilling Tool Abstract Rotary steerable drilling technology is the development of modern drilling technology-oriented direction, mainly used in extended reach well, the complex structure of multi-lateral wells in wells operating. This paper reviews the domestic and international drilling tool status, illustrates the development of rotary steerable drilling technology of the importance and necessity to introduce the working principle and its composition, that the development of the main technical features of the tool. Modulated rotary steerable drilling tool driven by the executing agency is the pressure difference between inside and outside the mud fluid-driven principles to achieve, which is whether the drilling tool to work the key. Therefore,its hydraulic disc distribution system and control valve axis analysis and calculation, and its different working conditions in underground analyzing and calculating the force. Analysis of downhole rotary steerable drilling tool drilling system monitoring and control system mode, manner and orientation bias way. Complete guide the design of mechanical parts of the implementing agencies, and finally, axis of the dynamic analysis of the control, and the tools of the economic evaluation and summary. Keywords Rotary Steerable Drilling; Design; Dynamic Analysis

Welleader旋转导向钻井系统

Welleader?旋转导向钻井系统 COSL的Welleader?旋转导向钻井系统可以在钻柱旋转同时实现井眼轨迹的自动控制。系统通过精准的导向力矢量控制实现钻头姿态的快速响应,具有高精度近钻头井斜角及工具面角测量能力,能够实现井斜自动闭环控制,可适应复杂地层条件及钻井条件,完成定向井,复杂三维轨迹定向井、大位移井等的钻井作业,井眼轨迹控制能力强,井身质量好。该系统可与COSL的Drilog?随钻测井系统组合实现精准的地质导向钻井。 n? 旋转定向钻井 Welleader?旋转导向钻井系统在钻具旋 转钻进过程中实现精确导向控制,扭矩、 摩阻小、钻出井眼平滑、建井周期短, 可有效降低钻井施工成本。 n? 地面实时控制 通过程控分流装置CDL,可将地面控制 指令下传到井下。Welleader?通过检测 泥浆排量的变化解析指令并执行。指令 下传可在钻进过程中进行,不影响钻井 时效。 n? 精确闭环控制 Welleader?系统的导向单元通过电机泵 液压系统驱动,闭环控制三个导向翼肋 的导向力,形成稳定的导向合力的大小 和方向。定向钻进过程中,导向数据和 仪器状态可通过MWD实时上传,定向 井工程师可根据需要实时下传指令,控 制井眼轨迹。

n? 近钻头测量 Welleader?近钻头测量模块位于钻头后1.3m以内(675规格仪器为1.1m),可在第一时 间得到仪器姿态和近钻头钻头井斜,为导向控制提供精确导航。 n? 多种控制模式 Welleader?支持导向模式、扶正器模式、稳斜模式等多种控制方式,除可通过设定导向 力方向和大小灵活调整井斜和方位,还可设定目标井斜控制钻头自动稳斜钻进。 n? 涡轮发电机供电 Welleader?自带大功率涡轮发电机,为导向控制单元提供稳定电源。发电机涡轮可根据 现场情况选配,适用多种排量范围。 n? 强大轨迹控制能力 Welleader?的稳定轨迹控制能力已先后在新疆、东北、华北、渤海等不同地质环境的实 际钻井中得到验证,其系列规格仪器可适用于8.5″和12.25″井眼,实钻30m控制狗 腿度可达6.5°。 n? 实时地质导向 Welleader?可与Drilog?无缝衔接,地质工程师可第一时间获得随钻测井数据,可实时决 策,优化调整井眼轨迹,以实现精确着陆和层中钻进。 仪器规格 675系列 950系列 仪器外径 178mm 244mm 仪器总长 8.03 m 10.24 m 适应井眼 215.9mm(8--‐1/2″) 标准 311mm(12--‐1/4″)标准 造斜率 0~6.5° 0~6° 连接扣型 上部:5--‐1/2″API I F. B ox 下部:4--‐1/2″API R eg.Box 上部:6--‐5/8″API R eg. B ox 下部:6--‐5/8″API R eg. B ox 适应排量 1500~2400 L/min 2200~5600 L/min 最大转速 160 r pm 最大扭矩 20 k Nm 45 k Nm 最大钻压 20 t 35 t 最高工作温度 150 ℃ 最高工作压力 20000 p si 最高振动 20 g rms(5Hz~1 k Hz) 最高冲击 500 g@1ms 半正弦 井斜 量程0~180°;精度±0.1°(井斜大于5°) 近钻头测量 距钻头距离 1.1 m 1.3 m

旋转导向钻井技术介绍

旋转导向钻井技术介绍 引言 近十几年来,水平井、大位移井、多分支井等复杂结构井和“海油陆采”的迅速发展。为了节约开发成本和提高石油产量,对那些受地理位置限制或开发后期的油田,通常通过开发深井、超深井、大位移井和长距离水平井来实现,进而造成复杂结构的井不断增多。目前通行的滑动钻井技术已经不能满足现代钻井的需要。于是,自20世纪80年代后期,国际上开始加强对旋转导向钻井技术的研究;到90年代初期,旋转导向钻井技术已呈现商业化。国外钻井实践证明,在水平井、大位移井、大斜度井、三维多目标井中推广应用旋转导向钻井技术,既提高了钻井速度,也减少了钻井事故,从而降低了钻井成本。旋转导向钻井技术是现代导向钻井技术的发展方向。 旋转导向钻井技术 旋转导向钻井法是在用转盘旋转钻柱钻井时随钻实时完成导向功能。钻进时的摩阻与扭阻小、钻速高、钻头进尺多、钻井时效高、建井周期短、井身轨迹平滑易调控。此外,其极限井深可达15 km,钻井成本低。旋转导向钻井技术的核心是旋转自动导向钻井统,如图1所示。它主要由地面监控系统、地面与井下双向传输通讯系统和井下旋转自动导向钻井系统3部分组成。 1、地面监控系统 旋转导向钻井系统的地面监控系统包括信号接收和传输子系统及地面计算存储分析模拟系统,有的还具有智能决策支持系统。旋转导向钻井系统的主要功能通过闭环信息流监视并随钻调控井身轨迹,其关键技术是从地面发送到井下的下行控制指令系统。 2、地面与井下双向传输通讯系统 目前已提出的信号传输方式有4种,即钻井液脉冲、绝缘导线、电磁波和声波。通过比较分析,笔者发现这4种传输方式各有优缺点和应用局限,如表1所示。

3、井下旋转自动导向钻井系统 井下旋转自动导向钻井系统是旋转自动导向系统的核心,它主要由3部分构成,即测量系统、导向机构、CPU和控制系统。 (1)测量系统测量系统主要用于监测井眼轨迹的井斜、方位及地层情况等基本参数,使钻井过程中井下地质参数、钻井参数和井眼参数能够实时测量、传输、分析和控制。它经历了随钻测量(MWD)、随钻测井(LWD)、随钻地震(SWD)、随钻地层评价测试技术(FEMWD)和地质导向技术(GST)几个阶段。 (2)导向机构导向机构代表了目前导向技术的先进水平。按原理不同,导向机构原理可分为: ①导向力原理。推力式(或称偏置式)旋转导向工具和指向式旋转导向工具。推力式旋转导向工具是通过侧向力推靠钻头来改变钻头的井斜和方位。而指向式旋转导向工具是预先定向给钻头一个角位移,通过为钻头提供一个与井眼轴线不一致的倾角来使钻头定向造斜。 ②控制原理。可变径稳定器式旋转导向工具和调制式旋转导向工具。前者是先通过电磁阀调节在伸缩块上的液压,以使导向力矢量满足所需导向目标;再通过定向控制系统进行方位与井斜的控制(图2)。而后者是通过调节涡轮发电机负载电流改变涡轮发电机绕组回路阻抗,以使携带高强度永磁铁的涡轮叶片与稳定平台内的扭矩线圈耦合产生不同的电磁转矩和加速度,进而使旋转换向阀保持一个相对于井壁的固定角度,即工具面角,最终实现控制轴在受控状态下的运动状态改变(图3)。 ③套筒旋转与否原理。全旋转导向工具和不旋转套筒旋转导向工具。全旋转导向工具与井壁动态接触,其旋转控制阀在垂直井段随钻柱一起旋转。不旋转套筒旋转导向工具与井壁静态接触,其外套不随钻柱旋转。

导向钻井技术

导向钻井技术 一概述 1.定义 钻井技术发展的新阶段是自动化钻井。所谓自动化钻井就是钻井的全部过程依靠传感器测量各种参数,并用计算机采集,进行综合解释与处理,然后再发出指令,最后由各相关设备自动执行,使整个钻井过程变成一个无人操作的自动控制过程。 自动化钻井的全过程分六个环节: (1)地面实时测量主要用综合录井仪。 (2)井下随钻测量目前主要用MWD/LWD/FEWD等。 (3)数据实时采集由相关计算机(井下或地面)完成。 (4)数据综合解释并发出指令应用人工智能优化钻井措施。 (5)地面操作自动化地面操作自动化(铁钻工/自动排管机) (6)井下操作自动控制钻头自动导向(轨迹自动控制)。 以上六个环节中,井下随钻测量和井下自动控制是关键环节,同时也是关键技术,二者结合起来实际上是井眼轨迹自动控制技术(即自动导向钻井技术)(AutoTrak自动跟踪/ClosedLoopSteeringDrilling 闭环钻井)。

导向钻井实际就是井眼轨迹控制问题,无论是常规直井或特殊工艺井,都需要井眼轨迹控制。直井需要防斜打直,定向井需要按设计井眼轨道控制钻头钻进的轨迹。传统的导向钻井(即井眼轨迹控制)是由井下导向工具配以适当的钻井参数来实现的,自动导向钻井是由井下计算机根据随钻采集的参数自动控制导向工具来实现的。 2.发展沿革 自动导向钻井技术是钻井工程领域的高新技术,代表着世界最先进的钻井技术发展方向。目前,在世界范围内水平井、大位移井、分支井等高难度的复杂井正蓬勃发展,常规钻井技术难以适应需要,必 须依靠先进的导向技术才能保证井眼轨迹的准确无误。

迄今为止,定向钻井技术经历了三个里程碑:(1)利用造斜器(斜向器)定向钻井;(2)利用井下马达配合弯接头定向钻井;(3)利用导向马达(弯壳体井下马达)定向钻井。这三种定向钻井工具的广泛使用,促进了定向钻井技术的快速发展,使得今天人们能够应用斜井、丛式井、水平井、水平分支井技术开发油田。 随着石油工业的发展,为了获得更好的经济效益,需要钻深井、超深井、大位移井和长距离水平井,而且常常要在更复杂的地层如高陡构造带钻井。这些都对定向钻井工具提出了更高的要求。 为了克服滑动导向技术的不足,从20世纪80年代后期,国际上开始研究旋转导向钻井技术,到20世纪90年代初期多家公司形成了商业化技术。旋转导向钻井系统实质上是一个井下闭环变径稳定器与测量传输仪器(MWD/LWD)联合组成的工具系统。它完全抛开了滑动导向方式,而以旋转导向钻进方式,自动、灵活地调整井斜和方位,大大提高了钻井速度和钻井安全性,轨迹控制精度也非常高,非常适

φ178旋转导向钻井工具设计开题报告材料

本科毕业设计(论文)开题报告 题目:φ178旋转导向钻井工具设计 及控制轴动力学分析 学生: 院(系):机械工程学院

专业班级: 指导教师: 完成时间:2011 年 3 月8 日

造斜率由工具本身确定,不受钻进地层岩性的影响,在软地层及不均质地层中效果明显,缺点是钻柱承受高强度的交变应力,钻柱容易发生疲劳破坏。另外,高精度加工是保证这种系统导向效果的关键。 2.1.2AutoTrak旋转导向钻井系统 AutoTrak系统是一套集钻进和随钻测量为一体的定向钻井系统,能够在旋转钻井过程向造斜钻进,主要是因为它有一个独特的非旋转可调扶正器滑套,此扶正器滑套并非真的不旋转,只是相对钻头驱动轴而言它几乎是不旋转,因此在旋转钻进过程中,此扶正器滑套可以保持一种相对静止的状态,从而保证钻头沿着某一特定的方向钻进.非旋转扶正器滑套有元件:近钻头井斜传感器、电子控制元件、液压控制阀和活塞,见图1.通过液压可推动活塞分别对3 个稳定块施加不同的压力,其合力就使钻具沿某一特定方向偏移,从而在钻进过程中使钻头产生1 个侧向力,保证钻头沿这一方向定向钻进. 图1 AutoTrak部结构 2.1.3 Power Drive旋转导向钻井系统 斯伦贝谢公司的旋转导向系统主要是指PowerDrive系统,包括PowerDrive X5110 、PowerDrive X5900 、PowerDrive X5 、PowerDrive X5675 、PowerDrive X5475 、PowerDrive Xceed 900、Power vorteX ,除了Power vorteX 是动力式旋转导向系统外,其他均为全旋转式旋转导向系统,PowerDrive X5 系列旋转导向工具可通过PowerPulse 和TeleScope工具实时测量井下数据,测量近钻头地层状态、钻头振动情况和钻头转速,利用近钻头伽马射线显示地质和井眼成像,自动纠斜。它适用的井眼尺寸为5.25~26 in ,可用常规钻井液,最高耐温150 ℃,流量围480 ~1900 gpm ,最高耐压20000 psi ,其中,PowerDrive X51100 型最大转速200 r/min ,最大造斜率3°/100 f t ,PowerDrive X5475 型最大转速250 r/min ,最大造斜率

旋转导向钻井技术及Power-V

旋转导向钻井技术及Power-V导向系统介绍 摘要:旋转导向钻井技术主要指井眼轨迹自动控制的闭环自动钻井技术,是20世纪90年代初期发展起来的一项钻井新技术,代表着当今国际钻井技术的最新发展方向,对超深井、超薄油层水平井、大位移井、分支水平井等轨迹控制具有独特效果。本文分析了旋转导向钻井系统的技术特点,介绍了国内外旋转导向钻井系统的发展、应用情况。并详细介绍了斯伦贝谢公司旋转导向系统Power-V的组成和工作原理。 1.概述 所谓旋转导向钻井,是指钻柱在旋转钻进过程中实现过去只有传统泥浆马达才能实现的准确增斜、稳斜、降斜或者纠方位功能。旋转导向钻井技术的核心是旋转导向钻井系统,如图1所示。它主要由井下旋转自动导向钻井系统、地面监控系统和将上述2部分联系在一起的双向通讯技术3部分组成。旋转导向钻井系统的核心是井下旋转导向工具,旋转导向钻井系统主要由以下几部分组成: ①测量系统:包括近钻头井斜测量、地层评价测量,MWD/LWD随钻测量仪器等,用于监测井眼轨迹的井斜、方位及地层情况等基本参数。 ②控制系统:接收测量系统的信息或对地面的控制指令进行处理,并根据预置的控制软件和程序,控制偏置导向机构的动作。 图1 旋转自动导向钻井系统功能框图 2.旋转导向钻井技术的特点 旋转导向钻井技术与传统的滑动导向方式相比有如下突出特点: ①旋转导向代替了传统的滑动钻进:一方面大大提高了钻井速度,另一方面

解决了滑动导向方式带来的诸如井身质量差、井眼净化效果差及极限位移限制等缺点,从而大大提高了钻井安全性,解决了大位移井的导向问题; ②具有不必起下钻自动调整钻具导向性能的能力,大大提高了钻井效率和井眼轨迹控制的灵活性,可满足高难特殊工艺井的导向钻井需要; ③具有井下闭环自动导向的能力,结合地质导向技术使用,使井眼轨迹控制精度大大提高。 旋转导向钻井技术的上述特点,使其可以大大提高油气开发能力和开发效率,降低钻井成本和开发成本,满足了油气勘探开发形势的需要。 3.国内外旋转导向钻井系统发展应用情况 目前,国外旋转自动导向钻井系统研究、应用成熟的有3种(如图2):Baker Hughes Inteq公司的Auto Trak系统,Halliburton Sperry-sun公司的Geo-Pilot 系统,以及Schlumberger Anadrill公司的Power Drive系统。其中,旋转导向钻井系统形成了两大发展方向:一、不旋转外筒式闭环自动导向钻井系统: Auto Trak 和Geo-Pilot;二、全旋转自动导向钻井统:Power Drive。 图2 国外3种旋转导向工具原理图 3.1 Auto Trak旋转导向钻井系统 Baker Hughes Inteq在1997年推出的Auto Trak。截止到2000年上半年,该系统已下井575次,井下工作时间累计7万小时,总进尺100万米。其6 3/4“系统创下了单次下井工作时间92h,进尺2986m的世界纪录,8 1/4”系统创下了单次下井工作时间167h,进尺3620m的世界纪录。

旋转导向系统介绍

旋转导向系统介绍 一、概述 随着科学技术的发展,石油钻井的勘探仪器的信息化、自动化有了长远的进步,从20世纪80年代后期,在国际上开始研究旋转导向钻井技术,到90年代初期多家公司形成了商业化技术并最终实现了信息化和自动化钻井,旋转导向钻井技术作为目前发展的前沿钻井技术之一,代表着世界钻井技术发展的最高水平。 旋转导向钻井技术可以自动、灵活地调整井斜和方位,大大提高钻井速度和钻井安全性,精确控制井眼轨迹,完全适合目前开发特殊油藏的超深井、高难定向井、水平井、大位移井、智能井等特殊工艺井导向钻井的需要,极大的降低了石油勘探、钻井的成本。 目前该项技术主要被斯伦贝谢、贝克休斯和哈里伯顿公司所垄断,而国内旋转钻井技术仅处于初级阶段,未实现商业化。 二、系统组成 1-固定钻铤 2-悬挂脉冲器 3-电池短节 4-测斜探管 5-无磁钻铤 6-无线接收短节 7-无线发射短节 8-转换接头 9-旋转导向工具 10-钻头 旋转导向钻井系统实质上是一个井下闭环变径稳定器与测量传输仪器(MWD/LWD)联合组成的工具系统。同时配有地面—井下双向通讯系统,可根据井下传来的数据,在不起钻的情况下从地面发出指令改变井眼轨迹。 旋转自动导向闭环钻井系统包括由井下导向工具、MWD系统、地面监控系统组成,实现了全井闭环控制的双向通讯。 1. 井下导向工具 导向工具采用推靠式,外壳不旋转,三个支腿(支撑力不低于2.5t)可独立控制;导向工具采用涡轮发电机供电(功率400-500W),发电机的交流电进行整流后,一部分为导向工具主控电路供电,另一部分再逆变为交流电通过无线方式传输到外壳中的执行电路; 导向工具需要计算自身井斜及高边,以便控制支腿,停泵再开泵后,各支腿恢复到停泵前的状态; 导向工具通过无线发射短节及无线接收短节向MWD系统索取仪器的方位信息后,根据地面指令调整三个支腿的收缩状态以实现导向功能。

相关文档