文档库 最新最全的文档下载
当前位置:文档库 › 有限体积法介绍

有限体积法介绍

有限体积法介绍
有限体积法介绍

有限体积法

1 有限体积法基本原理

上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE 的近似。

在本章所要学习的有限体积法则采用了不同的离散形式。首先,有限体积法离散的是积分形式的流体力学基本方程:

?d q ds ds S

S

?

??Ω

Ω+??Γ=?φφρφn n v

(1)

计算域用数值网格划分成若干小控制体。和有限差分法不同的是,有限体积法的网格定

义了控制体的边界,而不是计算节点。有限体积法的计算节点定义在小控制体内部。一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。

积分形式的守恒方程在小控制体和计算域上都是成立的。为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。

2 面积分的近似

采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。计算节点用大写字母表示,控制体边界和节点用小写字母表示。为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。

控制体边界上的积分等于控制体个表面的积分的和:

∑??

=k

S S

k

fds fdS

(2)

上式中,f 可以表示n u ρφ或n

??Γ

φ。

显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。 整个近似过程分成两步

第一步:用边界上几个点的近似积分公式

第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分:

e e e e S e S

f S fds F e

≈==?

(3)

上式中e f 为边界中点出的函数值。近似为方格中心点的值乘以方格的面积。 三阶精度积分:

e se

ne S e S f f fds F e

2

+≈

=? (4)

四阶精度积分:

e se

e ne S e S

f f f fds F e

6

4++≈

=?

(5)

应该注意的是,采用不同精度的积分公式,在相应的边界点的插值时也应采用相应精度的插值函数。积分公式的精度越高,近似公式就越复杂。

3 体积分的近似

和面积分相似,体积分也有不同精度的近似公式 二阶精度积分公式

?Ω≈==?P e S q S q qds Q e

(6)

采用双二次样条函数

228272652423210),(y x a xy a y x a xy a y a x a y a x a a y x q ++++++++=

(7)

可以得到四阶精度的积分公式:

()nw ne sw se s n w s P S q q q q q q q q q qds Q e

444444441636

++++++++?Ω

=? (8) 4 函数的插值

在上节讲到的积分的近似公式中用到了非计算节点上的函数值,被积函数f 中包含了多个物理量及其偏微分,如对流项n v ?=ρφc

f

,扩散项φ??Γ=n d f ,在源项中也有类似情

况,这里假定流场和流体的物性参数是已知的,物理量φ及其偏导数在控制面上的值需要通过计算节点上物理量的插值得到。下面已e 面为例进行讨论。

4.1 迎风插值(UDS )

e φ用上游计算节点的函数值近似相当于对一阶偏导数采用迎风格式,因此用UDS 来表示这

种近似方法,在UDS 中:

()()??

??=00

e E

e P e i

f if n v n v φφφ (9)

UDS 是唯一无条件满足有界性要求的近似格式,在数值过程中不会产生数值振荡。UDS 存

在数值粘性。根据Taylor 公式,该格式具有一阶精度,并具有数值粘性:

()2/x u e num e ?=Γρ

(10)

在多维问题中,如果流动方向和网格是斜交的,截断误差会在垂直于流动方向以及流线方向产生扩散,这是一种非常严重的误差,函数的峰值或函数值的快速变化会被抹平,为了得到高精度结果需要采用非常精细的网格。

4.2 线性插值(CDS )

P E E E e φλλφφ)1(-+=

(11)

P

E P

e E x x x x --=

λ

(12)

线性插值具有二阶精度,线性插值相当于FDM 中的CDS 格式,因此用CDS 表示。CDS 格式会产生数值振荡。 对于扩散项

P

E P E e x x x --≈?

?? ????φφφ (13)

4.3 三阶迎风格式(QUICK )

和UDS 类似,QUICK 格式也和流动方向有关

()()??

??+-+-=0)1(0

)1(43432121e E EE P

e P W E e i

f

g g g g if g g g g n v n v φφφφφφφ (14)

其中:

()W

e P e P

e W e g ,,2

,,111λλλ

λ-+-=

;()()

W

e P e W

e P

e g ,,2

,,2111λλλλ-+--=

(15a)

()()P

e E e P

e W

e g ,,2

,,3

111λλλλ-+-+=

;P

e E e P

e E e g ,,,2,41λλλλ-+=

(15b)

4.4 高阶格式(4阶精度CDS )

采用三次曲线可拟合出四阶精度的中心插值公式,在均匀网格中,四阶公式为:

48

332727EE

W E P e φφφφφ--+=

(16)

x x EE W P E e

?-+-=

???

????242727φφφφφ (17)

5 边界的处理

对于对流项,在入口处一般给出了流量或函数值,在边界和对称面上流量为零,在出口

处假设和出口的法向坐标无关,因此可采用迎风格式。对于扩散项则可能需要采用偏心格式。

6 有限体积法应用举例

例:考虑一标量在已知流场中的输运过程(如图4.4所示),输运方程为:

????Γ=?S

S

dS dS n n v φρφ

(18)

边界条件:

0=φ;北部入口边界

y -=1φ;西部壁面边界

对称条件;南部边界 梯度为0;东部出口条件

x u x =,y u y -=,流线方程c xy =

对流项:e e S c e m

dS F e

φρφ ≈?=

?

n v (19)

()y u dS m

e x S e e

?=?=?ρρn v 为质量通量。 ??

?+-+=CDS

for )1UDS for )0,min()0,max(E E e P e e E e P e c e

m (m

m m

F φλφλφφ (20)

若采用UDS 格式,代数方程组中各项系数为:

)0,min(e c

E m A =;)0,min(w c W m A = )0,min(n c

N m A =;)0,min(s c S m A = (21)

)(c

S c N c W c E c P A A A A A +++-=

若采用CDS 格式,代数方程组中各项系数为

e e c E m A λ =;w w c

W m A λ = n n c N m A λ =;s s c

S m A λ = (22)

)(c

S c N c W c E c P A A A A A +++-=

根据连续性方程:

0=+++s n w e m m m m

(23)

相邻CV 之间的关系:

W e P w m m

,, -=;W e P w ,,1λλ-= (24)

其余相邻CV 有类似关系 扩散项采用CDS 格式

φ

0=φ

()P E P E e

S c e x x y y x dS F e

φφφφ--Γ?≈

????

????Γ≈??Γ=?n (25)

代数方程组中扩散项系数为:

P E d

E x x y A -Γ?-

=;W P d

W x x y A -Γ?-

= P N d

N x x x A -Γ?-

=;S

P d

W x x x A -Γ?-

= (26)

)(d S d N d W d E d P A A A A A +++-=

对于任意控制体

P E E N N P P S S W W Q A A A A A =++++φφφφφ (27) d l c l l A A A +=,l 为任意指标P ,E ,W ,S ,N 。

(28)

边界条件的处理:

对于西部和北部边界,由于给定了函数值,对流项可直接代入函数值而无需插值,扩散项则采用一侧差分

W

P W P W x x x --=?

?? ????φφφ (29)

这里,W 点和P 的w 边中点重合。

南边和西边的梯度为零,以南边为例,由于梯度为零,S P φφ=,代数方程变为:

P E E N N P P S W W Q A A A A A =++++φφφφ)(

(30)

6 SIMPLE 方法

考虑定常不可压流动问题,控制方程为: 连续性方程:

0=??

SV

dS n v ρ

(31)

动量方程:

????

Ω+-??=?CV

SV

SV

SV

d dS p dS dS b n v n n vv ρμρ

(32)

不可压缩问题求解的困难在于压力场的求解。主要原因在于压力p 没有独立的方程组。 先考虑一维问题: 对于动量方程:

()()w e w

e w e p p x u x u uu uu +-???

????-?

??

????=-μμρρ

(33)

若采用CDS 格式

()()()()2

22

2

W P E P W P P

E W

P E P p p p p x u u x u u uu uu uu uu +++-?--?-=+-

+μμ

ρρρρ 简化后得:

()()2

22

W E P w E W

E p p x u u u uu uu +-?-+=-μ

ρρ

(34)

根据连续性方程,c u u u i i i ===-+11,则有11+-=i i p p ,由于相邻节点之间的压力没有联系方程,容易造成压力交错现象。

为了解决这一问题,可采用交错网格技术,即速度场和压力场采用不同的网格。 以二维问题为例,交错网格的布置如下图所示:

主控制体为压力控制体(黑色实线网格),u 的控制体(红色虚线网格)的计算节点在主控制体的e 边,控制体的e ,w 边界通过主控制体的计算节点,v 控制体(蓝色双点划线网格)的计算节点在主控制体的n 边,该控制体的n ,s 面经过主控制体的计算节点。 在u 的控制体中,采用有限体积法离散可得u 的代数方程:

∑∑-++=-++=e

N P nb nb n n e E P nb nb e e A p p Q v a v a A p p Q u a u a )()( (35)

压力场的求解采用压力校正方法。即采用预估的压力场求速度,再用连续性方程校正压力场。当连续性方程得到满足时,压力场就是真实的压力场。 具体步骤如下 1. 预测压力场p

2. 将预测压力场代入动量方程,分别求解速度场v u ,

∑∑-++=-++=e

N P nb nb n n e E P nb nb e e A p p Q v a v a A p p Q u a u a )()( (36)

3. 用连续性方程校正压力 设方程的精确解为u ,v ,p

u u u '+=;v v v '+=;p p p '+=

(37)

其中p v u ''',,为校正量。则校正量满足方程:

∑∑'-'++'=''-'++'='e

N P nb nb n n e E P nb nb e e A p p Q v a v a A p p Q u a u a )()( (38)

略去相邻节点速度校正量的影响,可得:

()()E P e E P e

e

e

p p d p p a A u '-'≡'-'=' (39a)

()()N P n N P n

n

n

p p d p p a A v '-'≡'-'=' (39b)

代入连续性方程:

0)()()()(='+-'++'+-'+s s s n n n w w w e e e A v v A v v A u u A u u

(40)

整理得:

()()()()()

P s s p n n P w w P e e P S S n S n N P P e P n P W W e W e E P P e P e A v A v A u A u p p A d p p A d p p A d p p A d ,,,,,,,,,,,,-+--='-'-'-'+'-'-'-'

()()

P s s p n n P w w P e e P S n S n P e P n W e W e P e P e S S n S n N P e P n W W e W e E P e P e A v A v A u A u p A d A d A d A d p A d p A d p A d p A d ,,,,,,,,,,,,,,,,,,,,-+--='++++'-'-'-'-

(41)

求解压力校正方程(41)可得压力校正量,

4. 用(39)校正速度场。

5. 以p 为猜测值,重复1~5直至收敛 6. 计算其他物理量如温度场等。

有限元基础知识归纳

有限元知识点归纳 1.、有限元解的特点、原因? 答:有限元解一般偏小,即位移解下限性 原因:单元原是连续体的一部分,具有无限多个自由度。在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。 2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49 (1)在节点i处N i=1,其它节点N i=0; (2)在单元之间,必须使由其定义的未知量连续; (3)应包含完全一次多项式; (4)应满足∑Ni=1 以上条件是使单元满足收敛条件所必须得。可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。 4、等参元的概念、特点、用时注意什么?(王勖成P131) 答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。即: 为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即: 其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。称前者为母单元,后者为子单元。 还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。 5、单元离散?P42 答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。每个部分称为一个单元,连接点称为结点。对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。这种单元称为常应变三角形单元。常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。 6、数值积分,阶次选择的基本要求? 答:通常是选用高斯积分 积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。选择时主要从两方面考虑。一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

大涡模拟简单介绍

《粘性流体力学》小论文 题目:浅谈大涡模拟 学生姓名:丁普贤 学生学号:103911018 完成时间:2010/12/16

浅谈大涡模拟 丁普贤 (中南大学,能源科学与工程学院,湖南省长沙市,410083) 摘要:湍流流动是一种非常复杂的流动,数值模拟是研究湍流的主要手段,现有的湍流数值模拟的方法有三种:直接数值模拟、大涡模拟和雷诺平均模型。本文主要是介绍大涡模拟,大涡模拟的思路是:直接数值模拟大尺度紊流运动,而利用亚格子模型模拟小尺度紊流运动对大尺度紊流运动的影响。大涡模拟在计算时间和计算费用方面是优于直接数值模拟的,在信息完整性方面优于雷诺平均模型。本文还介绍了对N-S方程过滤的过滤函数和一些广泛使用的亚格子模型,最后简单对一些大涡模拟的应用进行了阐述。 关键词:计算流体力学;湍流;大涡模拟;亚格子模型

A simple study of Large Eddy Simulation DING Puxian (Central South University, School of Energy Science and Power Engineering, Changsha, Hunan, 410083) Abstract:Turbulent flow is a very complex flow, and numerical simulation is the main means to study it. There are three numerical simulation methods: direct numerical simulation, large eddy simulation,Reynolds averaged Navier-Stokes method. Large eddy simulation (LES) is mainly introduced in this paper. The main idea of LES is that large eddies are resolved directly and the effect of the small eddies on the large eddies is modeled by subgrid scale model. Large eddy simulation calculation in computing time and cost is superior to direct numerical simulation, and obtain more information than Reynolds averaged Navier-Stokes method. The Navier-Stokes equations filtering filter function and some extensive use of the subgrid scale model are simply discussed in this paper. Finally, some simple applications of large eddy simulation are told. Key words:computational fluid dynamics; turbulence; large eddy simulation; subgrid scale model

流体计算理论基础讲解

流体计算理论基础 1 三大基本方程 连续性方程 连续性方程也称质量守恒方程,任何流动问题都必须满足质量守恒定律,该定律可表示为:单位时间内流体微元中质量的增加等于同一时间间隔内流入该微元体的净质量,其形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 可以写成: ()0div u t ρ ρ?+=? 其中ρ密度,t 为时间,u 为速度矢量,u ,v 和w 为速度矢量在x ,y 和z 方向上的分量。 若流体不可压缩,密度为常数,于是: 0u v w x y z ???++=??? 若流体处于稳态,则密度不随时间变化,可得出: ()()() 0u v w x y z ρρρ???++=??? 动量守恒定律 该定律可以表述为:微元体中流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和,该定律实际是牛顿第二定律,按照这一定律,可导出x ,y 和z 三个方向上的动量守恒方程: ()()() ()()()yx xx zx x xy yy zy y yz xz zz z u p div uu F t x x y z u p div uv F t y x y z u p div uw F t z x y z τττρρτττρρτττρρ??????+=-++++? ?????????????+=-++++??????? ??????+=-++++???????? 式中,p 为微元体上的压力,xx τ,xy τ和xz τ等是因分子粘性作用而产生的作用在微元体表

面上的粘性应力τ的分量。x F ,y F 和z F 是微元体上的体力,若体力只有重力,且z 轴竖直向上,则:0,0x y F F ==,z F g ρ=-。 对于牛顿流体,粘性应力τ与流体的变形率成比率,有: x yy x 2();==()2();==()2();==()xx xy y xz z zz yz zy u u v div u x y x v u w div u x z x w v w div u x z y τμλττμτμλττμτμλττμ???? =++????? ???? =++????? ???? =++????? 其中,μ为动力粘度,λ为第二粘度,一般可取2 3 λ=- ,将上式代入前式中为: ()()()() ()()()()()u v w u p div uu div gradu S t x v p div uv div gradv S t y w p div uw div gradw S t z ρρμρρμρρμ???+=-+???? ???+=-+? ??????+=-+? ??? 其中: ()()/()/()/grad x y z =??+??+?? μ为动力粘度(dynamic viscosity),λ为第二粘度(second viscosity),一般可取: 2 3 λ=-(参考文献:,Boundary Layer Theory,8th ed,McGraw Hill, New York,1979)。u S ,v S 和w S 为动量守恒方程中的广义源项,u x x S F S =+,v y y S F S =+,w z z S F S =+,而其中 x S ,y S 和z S 表达式为: ()()()(())()()()(())()()()(()) x y z u v w S div u x x y x x x x u v w S div u x x y y x y y u v w S div u x z y z x z z μμμλμμμλμμμλ????????=+++????????????????? =+++????????????????? =+++????????? 一般来讲,x F ,y F 和z F 是体积力在x ,y ,z 方向上的分量。x S ,y S 和z S 是小量,对于粘性为常数的不可压缩流体,0x y z S S S ===,动量守恒,简称动量方程,也称N-S 方程。 关于牛顿体与非牛顿体的定义如下:

fluent-有限体积法

第4章 有限体积法 1.1 积分方程 守恒方程的形式为积分方程。 ???+?=?Ω S S Ωq S ΓS d d grad d φφρφn n v ( 4-1 ) 4.1 控制体积 求解区域用网格分割有限个控制体积(Control V olumes, CVs )。同有限差分不同的是,网格为控制体积的边界,而不是计算节点。为了保证守恒,CVs 必须是不重叠的,且表面同相邻CVs 是同一个。 i. 节点为中心 CVs 的节点在控制体积的中心。先定义网格,任何找出中心点。优点:节点值代表CVs 的平均值,可达二阶精度。 ii. 界面为中心 CVs 的边界线在节点间中心线上。先定义节点,再划分网格。优点:CV 表面上的CDS 差分精度比上面方法高。 两个方法基本一样,但在积分时要考虑到位置。但第一个方法用得比较多。 节点为中心 界面为中心

∑?? =k S S k fdS fdS ( 4-2 ) - 对流:n v ?=ρφf 在垂直于界面的方向 - 扩散:n ?=φgrad Γf 在垂直于界面的方向 如果速度也是未知的,则要结合其它方程一起求解。 考虑界面e ,通过表面的总通量为: 1. 基于界面中心值 中间点定理:(midpoint rule) 表面积分为格子表面上的中心点的值和表面积的乘积。 e e e S e e S f S f fdS F e ≈==? ( 4-3 ) 此近似为2阶精度。 由于f 在格子界面没有定义值,它必须通过插值来得到。为了保证原有的2阶精度,插值方法也须采用2阶精度的方法。 2. 基于界面顶角值 当已定义角上的值时,2阶精度的方法还有: ()?+= =e S se ne e e f f S fdS F 2 ( 4-4 ) 3. 高阶精度近似 ()?++= =e S se e ne e e f f f S fdS F 46 ( 4-5 ) 4阶精度Simpson 法。 4.3 体积积分近似 ??≈?==Ω P P Ωq Ωq qd ΩQ ( 4-6 ) q p 为CV 中心节点值。高阶精度要求为节点的插值或形状函数来表示。如 ),(),(y x f y x q =。然后对体积积分。

有限单元法

有限单元法 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。 (2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。 (3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。 (4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。 (5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

有限体积方法

第三讲 空间离散方法—有限体积法 由于控制方程的复杂性,很难求出其解析解,一般采用数值方法对其进行求解。采用数值求解方法,首先要对流场空间进行离散,即用一些基本体积单元对物理空间进行填充,要求这些体积单元既不能重叠,也不应有间隙,我们称这些体积单元为网格,或控制体积,填充的过程则称为网格生成。对于二维流动,基本的网格单元有三角形和四边形网格,而对于三维流动,则基本的网格单元可由四面体、三棱柱、金字塔和六面体单元组成,图3.1即为机翼附近网格。网格划分完成后,就可以应用相应的数值求解方法把每个网格单元中心点处的流动变量求解出来,也就完成了全部流场的计算。有限体积法就是针对每个控制体积直接对积分形式的控制方程进行离散,从而把积分型方程近似为代数方程进行求解的方法。 图3.1 机翼附近网格 3.1 N-S 方程的半离散形式 积分形式的N-S 方程为: ∫∫Ω?Ω =??+Ω??0)(dS n F F Qd t V c r (3-1) 针对空间某一控制体I Ω,首先对时间导数项进行处理,假设守恒变量Q 在控制体积内为常数分布,即等于控制体中心点处的值I Q (也即为控制体积内守恒变量的平均值),有 ∫Ω??Ω=Ω??t Q Qd t I (3-2) 式(3-1)变为 ∫Ω???Ω ?=??dS n F F t Q v c I r )(1 (3-3)

假设对流通量和粘性通量在控制体界面上为常值分布,且等于界面中心点(面心)处的值,则有 ?? ????Δ??Ω?=??∑=F N m m m v c I S F F t Q 1)(1 (3-4) 对式(3-3)右端项的近似称为空间离散,而式(3-4)时间方向暂时保留连续的形式,所以称该式为半离散控制方程。式(3-4)中的m S Δ为第m 个界面的有向面积,即该面的外法线矢量与界面面积的乘积,为一矢量,又称面积矢量。 仔细观察半离散方程可以发现:时间导数项是由单元中心点处的守恒变量值表示的,我们称其为单元中心法;式(3-4)右端项中的通量是关于界面处流动变量的函数,需由界面处的流动变量来确定,由此可看出,流动变量I Q 与流动通量m S F Δ?的空间存储位置不同,要想求出流动通量,需先假设流动变量在控制体积内的分布规律,这一过程称为重构,然后确定界面处的流动变量值,再求出界面处的流动通量。这是有限体积法的主要特点之一。根据界面处流动变量的确定方法,可将CFD 的空间离散中(主要指无粘通量的离散)的计算方法分为两大类:中心格式和迎风格式。 3.2 中心差分格式 在第m 个界面上的无粘通量为:m m c S Q F Δ?)(,即为界面上的守恒变量的函数。而在中心差分格式中,界面上的守恒变量的确定方法很简单,只需取界面两边单元中心点上的守恒变量的平均值即可。即该界面上的无粘通量为:m J I c S Q Q F Δ?+))(5.0(,其中I Q 和J Q 为与第m 个界面相邻的两边单元中心点上的守恒变量值。 对于粘性通量的计算,需要知道流动参数在界面面心处的空间导数,下面介绍一 种基于节点重构思想的空间导数计算方法。 图3.2 两个相邻网格单元节点图 在图3.2中,是两个相邻的四面体网格单元,网格节点为nl,n2,n3,n4,n5,网格的格心点是cl,c2,要求的是由节点n1,n2,n3所组成的公用面上的空间导数。

有限体积法介绍

有限体积法 1 有限体积法基本原理 上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE 的近似。 在本章所要学习的有限体积法则采用了不同的离散形式。首先,有限体积法离散的是积分形式的流体力学基本方程: ?d q ds ds S S ? ??Ω Ω+??Γ=?φφρφn n v (1) 计算域用数值网格划分成若干小控制体。和有限差分法不同的是,有限体积法的网格定 义了控制体的边界,而不是计算节点。有限体积法的计算节点定义在小控制体内部。一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。 积分形式的守恒方程在小控制体和计算域上都是成立的。为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。 2 面积分的近似 采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。计算节点用大写字母表示,控制体边界和节点用小写字母表示。为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。 控制体边界上的积分等于控制体个表面的积分的和: ∑?? =k S S k fds fdS (2) 上式中,f 可以表示n u ρφ或n ??Γ φ。

显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。 整个近似过程分成两步 第一步:用边界上几个点的近似积分公式 第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分: e e e e S e S f S f fds F e ≈==? (3) 上式中e f 为边界中点出的函数值。近似为方格中心点的值乘以方格的面积。 三阶精度积分: e se ne S e S f f fds F e 2 +≈ =? (4) 四阶精度积分: e se e ne S e S f f f fds F e 6 4++≈ =? (5) 应该注意的是,采用不同精度的积分公式,在相应的边界点的插值时也应采用相应精度的插值函数。积分公式的精度越高,近似公式就越复杂。 3 体积分的近似 和面积分相似,体积分也有不同精度的近似公式 二阶精度积分公式 ?Ω≈==?P e S q S q qds Q e (6) 采用双二次样条函数 228272652423210),(y x a xy a y x a xy a y a x a y a x a a y x q ++++++++= (7)

有限元法分析

有限元法的分析 从百度等搜索到的资料以及老师在课上对有限元法的相关介绍我们可以得知,有限元法是基于近代计算机的快速发展而发展起来的一种近似数值方法,用来解决力学、数学中带有特定边界条件的偏微分方程问题。而这些偏微分方程是工程实践中常见的固体力学和流体力学问题的基础。有限元法的核心思想是“数值近似”和“离散化”,所以它在历史上的发展也是围绕着这两个点进行的。 有限元法用于解决工程问题的微分方程的近似解,主要考虑怎么分割单元。比如,可以分割为长方形单元、三角形单元等形状的单元,不同形状的分割的出来的结果也是不尽相同的,边界条件也会影响有限元法的解。有限元法是将问题先分解,再进行合并,网格划分是分解,从单刚到总刚是合并,我们将这些复杂的处理量交给计算机处理,把一个困难的问题转化成一个个小的简单的问题交给计算机处理,最终得到问题的解,因此,有限元法可以说是将一个大问题转化为若干个简单问题的叠加的方法。

有限元法再物理原理上的理解可以概括为,“求解使系统能量泛函数极小值的系统状态”。这个角度是根据划分的网格和网格内部的特定点建立相应函数。在数学原理上,有限元法是求解满足特定微分方程的数值解。这个角度上可以看作是加权残值的一种形式,将甲醛积分时的权函数与拟合解函数的试函数取为相同的函数。 有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出一个近似解,再将所有单元按标准方法加以组合,从而形成原有系统的一个数值近似系统,也就是形成相应的数值模型。 有限元法的计算步骤归纳为以下3个基本步骤:网格划分、单元分析、整体分析。有限元法的基本做法是用有限个单元体的集合来代替原有的连续体。因此首先要对弹性体进行必要的简化,再将弹性体划分为有限个单元组成的离散体。单元之间通过节点相连接。由单元、节点、节点连线构成的集合称为网格。 通常把三维实体划分成四面体或六面体单元的实体网格,平面问题划分成三角形或四边形单元的面网格,如图

有限单元法

《有限元法》复习题 一. 单选题 1.平面刚架单元坐标转换矩阵的阶数为( ) A .2?2 B .2?4 C .4?4 D .6?6 2.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为( ) A.8?8阶矩阵 B.10?10阶矩阵 C.12?12阶矩阵 D.16?16阶矩阵 3.坐标转换矩阵可归类为( ) A.正交矩阵 B.奇异矩阵 C.正定矩阵 D.对称矩阵 4.图示弹簧系统的总体刚度矩阵为( ) A 111123 2224443400 0000k k k k k k k k k k k k k k -????-++-???? -+??-+?? B. 111122224443400 0000k k k k k k k k k k k k k -????-+-???? -+-??-+?? C. 111123 2322443 4 3400 00 k k k k k k k k k k k k k k k k -????-++--???? -+-??--+?? D. 111122322443 4 340 00 k k k k k k k k k k k k k k k -????-+--???? -+??--+?? 5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k 24应放在总体刚度矩阵的( )。 A.1行2列 B.3行12列 C.6行12列 D.3行6列 6.对一根只受轴向载荷的杆单元,k 12为负号的物理意义可理解为( ) A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同 B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反 C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同 D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反 7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的( ) A.第3行和第3列上的所有元素换为大数A B.第6行第6列上的对角线元素乘以大数A C.第3行和第3列上的所有元素换为零 D.第6行和第6列上的所有元素换为零 8.在任何一个单元内( ) A.只有节点符合位移模式 B.只有边界点符合位移模式 C.只有边界点和节点符合位移模式 D.单元内任意点均符合位移模式 9.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A.XY 平面内 B.XZ 平面内 C.YZ 平面内 D.XYZ 空间内 12.刚架杆单元与平面三角形单元( ) A.单元刚度矩阵阶数不同 B.局部坐标系的维数不同 C.无任何不同 D.节点截荷和位移分量数不同 13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K *]的元素总数分别是( ) A.400和200 B.400和160 C.484和200 D.484和160 14.在有限元分析中,划分单元时,在应力变化大的区域应该( ) A.单元数量应多一些,单元尺寸小一些 B.单元数量应少一些,单元尺寸大一些 C.单元数量应多一些,单元尺寸大一些 D.单元尺寸和数量随便确定 15.在平面应力问题中,沿板厚方向( ) A.应变为零,但应力不为零 B.应力为零,但应变不为零 C.应变、应力都为零 D.应变、应力都不为零 16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将( ) A. E 换成E/(1-μ2),μ换成μ/(1-μ2) B. E 换成E/(1-μ2),μ换成μ/(1-μ) C. E 换成E/(1-μ),μ换成μ/(1-μ2) D. E 换成E/(1-μ),μ换成μ/(1-μ) 17.图示三角形单元非节点载荷的节点等效载荷为( ) A.F yi =-100KN F yj =-50KN F yk =0 B. F yi =-80KN F yj =-70KN F yk =0 C. F yi =-70KN F yj =-80KN F yk =0

数值传热学习题集

简答题集锦 1.流动与传热数值模拟的基本任务是什么? (把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。) 2.数值模拟过程如何实现,主要步骤是那些? (建模、网格划分、坐标系、数学方程、求解、后处理) a.建立反映工程问题或物理过程本质的数学模型; b.选择与计算区域的边界相适应的坐标系; c.建立网格; d.建立离散方程; e.求解代数方程组; f.后处理,显示计算结果

3.建立离散方程有哪些主要方法?比较说明各种方法的优缺点?(有限差分、有限体积、有限元、有限分析等)

4什么叫控制方程?常见的控制方程有哪几个?各用在什么场合? 5试写出控制方程的通用形式,并说明通用形式中各项的意义?(写明通式,以及各个方程中通式的表达形式)

6推导x 方向的动量控制方程中的源项u S 的表达式。由此证明当密度和黏度为常数时,u S 变为0。 X 方向N-S 方程: Mx S x w z u z x v y u y divu x u x x p Dt Du +??+ ????+ ??+ ????+ +????+??- =)][()]( [)2(μ μλμ ρ )()())()())())()()()()()][()]( [)2(gradu div divu x z w y v x u x gradu div S divu x z w y v x u x S S divu x z w y v x u x gradu div S x w z x v y x u x z u z y u y x u x S x w z u z x v y u y divu x u x Mx u Mx Mx Mx μλμ μλμλμμμμμμμμμ μλμ +??+??+??+????=++?? +??+??+????=+?? +??+??+????+=+????+????+????+????+????+????= +??+ ????+ ??+ ????++????((()()( 因为0 =??+ ??+ ??z w y v x u ρρρ 推 得: =??+??+??z w y v x u 所以:Su= 0)()=?? +??+??+????divu x z w y v x u x λμ ( 7区域离散为分几种,说明各自的特点。 (内节点法、外节点法) 先节点后界面

有限元分析基础复习题

《有限元分析基础》复习题 1. 有限元法有什么特点和优势? 2. 简述有限元法的基本步骤和基本思想。 3. 有限元法有哪些热点问题? 4. 单元、节点、节点力和节点载荷分别是指什么? 5. 简要分析选择位移函数的一般原则。 6. 简要分析有限元法的收敛准则。什么叫协调元、非协调元和完备元? 7. 什么叫虚功原理和最小势能原理?并列出其一般表达式。 8. 分别列出平面杆、平面梁单元的形状函数列阵、应变矩阵和应力矩阵,并说明其 中各符号的含义。 9. 写出平面杆单元的坐标变换矩阵,并给出局部坐标系下单元刚度矩阵与总体坐标 系下单元刚度矩阵的变换关系,并说明其中各符号的含义。 10. 试用最小势能原理推导杆、平面梁单元的刚度方程,并给出单元刚度矩阵的具 体表达式,并说明其中各符号的含义。 11. 简要分析Mises等效应力准则,并说明其中各符号的含义。 12. 简述二维连续体问题虚功原理及其具体表达,并说明其中各符号的含义。 13. 列出二维连续体问题的单元平衡方程、几何方程以及物理方程,并说明其中各 符号的含义。 14. 试用最小势能原理推导二维连续体问题的单元刚度方程,并说明其中各符号的 含义。 15. 简述达朗贝尔原理,并给出二维问题的具体表达,说明其中各符号的含义。 16. 列出结构动力学方程和特征方程,并说明其中各符号的含义。 17. 给出结构振动平面弹性问题的几何方程和物理方程,说明其中各符号的含义, 并分析其与静力学问题的不同之处。 18. 简述一致质量矩阵和集中质量矩阵的含义,并用杆单元加以说明。 19. 简要分析传热过程分析的重要意义。 20. 给出热传导问题的控制方程,并说明其中各符号的含义。 21. 连续体的热问题包括哪两个部分?并分析其相互影响。 22. 列出下图所示2杆桁架结构各单元在总体坐标中的刚度矩阵,并将其组装成总 体刚度矩阵,再求出各节点位移。其中,θ=45o,X2=10×106 N,Y2=5×106 N,杆1横截面积为A1=0.15 m2,杆2横截面积为Array A2=0.1 m2,弹性模量为E=210 GPa,杆2的 长度为1 m。

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

数值分析之——有限体积法讲义

目录 目录 (1) 第8章有限体积法 (2) §8.1有限体积法的基本概念 (2) 8.1.1几个术语 (2) 8.1.2 控制体积的选择 (3) 8.1.3 结构与非结构网格 (5) §8.2 有限体积法构造 (7) 8.9-1 方程离散及基本格式 (7) 8.9-2物理特性要求 (11) 8.9-3 迎风型通量格式 (14) 8.9-3 TVD格式 (18) §8.3 非结构网格上的有限体积法 (23) 8.3.1 基本方程 (23) 8.3.2离散基本思路 (24) 8.3.3 数值通量近似 (25) 第9章在水力学问题中的应用 (29) §9.1渗流问题中的应用 (29) 9.1.1饱和—非饱和地下水运动基本控制方程 (29) 9.1.2方程的离散 (31) 9.1.3算例【陈扬硕士论文】 (33) §9.2二维明渠非恒定流计算 (38) 9.2.1水流基本方程 (38) 9.2.2控制方程的离散 (39) 9.2.3 计算实例 (53) §9.3三维紊动分层流计算 (64) 9.3.1紊动分层流基本方程 (64) 9.3.2 紊流模型及控制方程离散 (65) 9.3.3压力校正法 (66) 9.3.3边界条件 (69) 9.3.4盐度引起的负浮力流动 (71)

第8章有限体积法 有限差分方法是从描述各种物理现象的基本微分方程出发构造离散方程的,前文已经对其作了翔实、周密的论述。该部分将从基础算法入手分析介绍在计算流体力学界广为应用的有限体积法。基于有限体积法的实用算法在计算流体力学、计算传热学等领域得到了飞速发展 [1-3]。在水力学诸多问题,如水流物质输运模拟,水工水力学模拟以及溃坝洪水波演进等水流模拟中也得到了广泛应用。 §8.1有限体积法的基本概念 有限体积法,又称为有限容积法,它正是从物理量守恒这一基本要求出发提出的。这也是其受计算流体力学界广为称道和喜欢之处。其以守恒型的方程为出发点,通过对流体运动的有限子区域的积分离散来构造离散方程。有限体积法有两种导出方式,一是控制容积积分法,另一个是控制容积平衡法。不管采用哪种方式导出的离散化方程,都描述了有限各控制容积物理量的守恒性,所以有限体积法是守恒定律的一种最自然的表现形式。 该方法适用于任意类型的单元网格,便于应用来模拟具有复杂边界形状区域的流体运动;只要单元边上相邻单元估计的通量是一致的,就能保证方法的守恒性;有限体积法各项近似都含有明确的物理意义;同时,它可以吸收有限元分片近似的思想以及有限差分方法的思想来发展高精度算法。由于物理概念清晰,容易编程;有限体积法成为了工程界最流行的数值计算手段。 8.1.1几个术语 在进行数值计算时,要把计算区域划分成一系列互不重叠的离散小区域,然后在该小区域上离散控制方程求解待求物理量。在有限差分法中只涉及到网格节点的概念,而有限体积法因为物理解释需要,形成了以下几个常用几何要素的相关名词。

相关文档