文档库 最新最全的文档下载
当前位置:文档库 › 轴对称最值问题

轴对称最值问题

轴对称最值问题
轴对称最值问题

轴对称最值问题(线段和最小或差最大)

1.已知A和B两地在一条河的两岸,现要在河上建造一座桥MN,使从A到B的路径AM-MN-NB最短(假定河的两岸是平行直线,桥要与河岸垂直)

2.如图,已知A(1,3),B(5,1),长度为2的线段PQ在x轴上平行移动,当AP+PQ+QB的值最小时,点P的坐标为( )

3.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A,B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E,F为边OA上的两个动点,且EF=2,则当四边形CDEF的周长最小时,点F的坐标为( )

4.如图,当四边形PABN的周长最小时,a的值为( )

5.如图,两点A,B在直线MN的同侧,A到MN的距离AC=8,B到MN的距离BD=6,CD=4,P在直线MN上运动,则的最大值为( )

6.已知两点A,B在直线的异侧,A到直线的距离AC=6,B到直线的距离BD=2,CD=3,点P在直线上运动,则的最大值为( )

7.在平面直角坐标系中,已知A(0,1),B(3,-4),在x轴上有一点P,当的值最大时,点P的坐标是( )

利用展开图求立体图形表面上小虫的最短路线问题。通过展开立体图形的表面或侧面,化立体为平面,化曲线或折线为直线,利用两点之间线段最短解决问题。

1.台阶问题

(1)如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?

析:展开图如图所示,

AB=1312522=+cm

(2)如图,在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方

体的木块,它的棱长和场地宽AD 平行且>AD ,木块的正视图是边长为0.2

米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是 米.(精

确到0.01米)

分析:解答此题要将木块展开,然后根据两点之间线段最短解答.

解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,

∴长为2+0.2×2=2.4米;宽为1米.

于是最短路径为:

=2.60米.

2.圆柱问题 、点在圆柱中可将其侧面展开求出最短路程 将圆柱侧面展成长方形,圆柱体展开的底面周长是长方形的长,圆柱的高是长方形的宽.可求出最短路程

(1)如图所示,是一个圆柱体,ABCD 是它的一个横截面,AB=

,BC=3,一只

蚂蚁,要从A 点爬行到C 点,那么,最近的路程长为( )

A .7

B .

C .

D .5 分析:要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果. 解:将圆柱体展开,连接A 、C ,

∵==?π?=4,BC=3,

根据两点之间线段最短,AC=

=5. 故选D .

(2)有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为多少?

析:展开图如图所示,

AB=1312522=+m

变式1

:有一圆柱形油罐,已知油罐周长是12m

,高AB 是5m ,要从点A 处开始绕油罐一周建造梯子,正好到达A 点的正上方B 处,问梯子最短有多长?

析:展开图如图所示,AB=1312522=+m

A B A

B c

利用轴对称求最短距离问题

利用轴对称求最短距离问题 基本题引入:如图(1),要在公路道a上修建一个加油站,有A,B两人要去加油站加油。加油站修在公路道的什么地方,可使两人到加油站的总路程最短? 你可以在a上找几个点试一试,能发现什么规律? 思路分析:如图2,我们可以把公路a近似看成一条直线,问题就是要在a上找一点M,使AM与BM的和最小。设A′是A的对称点,本问题也就是要使A′M与BM的和最小。在连接A′B的线中,线段A′B最短。因此,线段A′B与直线a的交点C的位置即为所求。 如图3,为了证明点C的位置即为所求,我们不妨在直线a上另外任取一点N,连接AN、BN、A′N。 因为直线a是A,A′的对称轴,点M,N在a上,所以AM= A′M,AN= A′N。 ∴AM+BM= A′M+BM= A′B 在△A′BN中, ∵A′B

中考复习-利用轴对称性质求几何最值(完整资料).doc

此文档下载后即可编辑 轴对称中几何动点最值问题总结 轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。 利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短; (2)三角形两边之和大于第三边; (3)垂线段最短。 初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。下面对三类线段和的最值问题进行分析、讨论。 (1)两点一线的最值问题: (两个定点+ 一个动点) 问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。 核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1. 如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC 边上一点,

若AE=2,EM+CM的最小值为( ) A.4 B.8 C. D. 2.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15° B.22.5° C.30° D. 45° 3.如图,Rt△ABC中,AC=BC=4,点D,E分别是AB,AC的中点,在CD上找一点P,使PA+PE最小,则这个最小值是_____________.

与轴对称相关的最值问题

图(5) C B 与轴对称相关的最值问题 【典型题型一】 :如图,直线 l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使PA+PB 【典型题型二】如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使PA+PB 最小。 【练习】1、(温州中考题)如图(5),在菱形ABCD 中,AB=4a,E 在BC 上, EC=2a ,∠BAD=1200 ,点P 在BD 上,则PE+PC 的最小值是( ) 解:如图(6),因为菱形是轴对称图形,所以BC 中点E 关于对角线 BD 的对称点E 一定落在AB 的中点E 1,只要连结CE 1,CE 1即为PC+PE 的最小值。这时三角形CBE 1是含有300 角的直角三角形,PC+PE=CE 1=23a 。所以选( D )。 2、如图(13),一个牧童在小河南4英里处牧马,河水向正东方流去,而他正位于他的小屋B 西8英里北7英里处,他想把他的马牵到小河边去饮水,然后回家,他能够完成这件事所走的最短距离是( ) (A ) 4+185英里 (B ) 16英里 (C ) 17英里 (D ) 18英里 3.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC 。 已知AB=5,DE=1,BD=8,设CD=x. 请问点C 满足什么条件时,AC +CE 的值最小? 4.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上 一动点,则EC +ED 的最小值为_______。 即是在直线AB 上作一点E ,使EC+ED 最小作点C 关于直线AB 的对称点C',连接DC'交 AB 于点E ,则线段DC'的长就是EC+ED 的最小值。在直角△DBC'中DB=1,BC=2, 根据勾股定理可得,DC'= 5 5.如图,等腰Rt △ABC 的直角边长为2,E 是斜边AB 的中点,P 是AC 边 上的一动点,则PB+PE 的最小值为 即在AC 上作一点P ,使PB+PE 最小 作点B 关于AC 的对称点B',连接B'E ,交AC 于点P ,则B'E = PB'+PE = PB+PE B'E 的长就是PB+PE 的最小值 在直角△B'EF 中,EF = 1,B'F = 3根据勾股定理,B'E = 10 6.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内, 在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .2 3 B .2 6 C .3 D . 6 即在AC 上求一点P ,使PE+PD 的值最小点D 关于直线AC 的对称点是点B , 连接BE 交AC 于点P ,则BE = PB+PE = PD+PE ,BE 的长就是PD+PE 的最小值BE = AB = 2 3 7.如图,若四边形ABCD 是矩形, AB = 10cm ,BC = 20cm ,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC+PD 的最小值; 作点C 关于BD 的对称点C',过点C',作C'B ⊥BC ,交BD 于点P ,则C'E 就是PE+PC 的最小 值直角△BCD 中,CH = 20 5 错误!未定义书签。直角△BCH 中,BH = 8 5 △BCC'的面积为: BH ×CH = 160 所以 C'E ×BC = 2×160 则CE' = 16 ' B A

轴对称中几何动点最值问题总结

轴对称中几何动点最值问题总结 轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。 利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个: (1)两点之间线段最短; (2)三角形两边之和大于第三边; (3)垂线段最短。 初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线, 点两线三类线段和的最值问题。下面对三类线段和的最值问题进行分析、讨论。 问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。 核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。 方法:1.定点过动点所在直线做对称。 2. 连结对称点与另一个定点,则直线段长度就是我们所求。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1.如图,直线I和I的同侧两点A B,在直线I上求作一点P,使PA+PB最小。 问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个

动点使线段和最短核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。 变异类型: 1.如图,点P是/ MON内的一点,分别在OM ON上作点A, B。使△ PAB的周长最小。 (3)两点两线的最值问题:(两个动点+两个定点) 问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点 间的距离保持不变。 核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。 变异类型: 1.如图,点P, Q为/ MON内的两点,分别在OM ON上作点A,B。使四边形PAQB勺周长最小。 2.如图, 点A是/ MON外的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最 小。 、1 —

轴对称最值问题专项提升附答案

学员姓名:________________ 学员年级:________________ 授课教师:_________________ 所授科目:_________ 上课时间:______年____月____日 ( ~ ); 共_____课时 (以上信息请老师用正楷字手写) 轴对称最值问题专项提升 【知识点】最短路径 两点之间,线段最短 例:四边形ABCD 中,∠BAD=0120,∠B=∠D=0 90,在BC ,CD 上分别找一点M ,N ,使?AMN 周长最小,则∠AMN+∠ANM 的度数是( ) A.0130 B.0120 C.0110 D.0100 例:如图,P ,Q 分别为?ABC 的边AB ,AC 上的定点,在BC 上求作一点M ,使?PQM 周长最小。 一.解答题(共6小题) 1.已知:如图所示,M (3,2),N (1,﹣1).点P 在y 轴上使PM+PN 最短,求P 点坐标. 2.如图,△ABC 的边AB 、AC 上分别有定点M 、N ,请在BC 边上找一点P ,使得△PMN 的周长最短. 保留作图痕迹) 3.如图△ABC 是边长为2的等边三角形,D 是AB 边的中点,P 是BC 边上的动点,Q 是AC 边上的动点,当P 、Q 的位置在何处时,才能使△DPQ 的周长最小?并求出这个最值.

4.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R.若△PQR周长最小,求它的最小值. 5.如图,已知A、B是锐角α的OM边上的两个定点,P在ON边上运动.问P点在什么位置时,PA2+PB2的值最小? 6.如图,两个生物制药厂A与B座落于运河河岸的同一侧.工厂A和B距离河岸l分别为4千米和2千米,两个工厂的距离为6千米.现要在运河的工厂一侧造一点C,在C处拟设立一个货物运输中转站,并建设直线输送带分别到两个工厂和河岸,使直线运送带总长最小.如图建立直角坐标系. (1)如果要求货物运动中转站C距离河岸l为a千米(a为一个给定的数,0≤a≤2),求C点设在何处时,直线输送带总长S最小,并给出S关于a的表达式. (2)在0≤a≤2范围内,a取何值时直线输送带总长最小,并求其最小值.

第7讲轴对称最值模型(原卷版)

中考数学几何模型7:轴对称最值模型名师点睛拨开云雾开门见山

B' Q D A' A P B C

典题探究启迪思维探究重点例题1. 如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为. 变式练习>>> 1.如图Rt△ABC和等腰△ACD以AC为公共边,其中∠ACB=90°,AD=CD,且满足AD⊥AB,过点D 作DE⊥AC于点F,DE交AB于点E,已知AB=5,BC=3,P是射线DE上的动点,当△PBC的周长取得最小值时,DP的值为()

A.B.C.D. 例题2. 如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB=,若点M、N分别为边CD,AD上的动点,求△BMN的周长的最小值. 变式练习>>> 2.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()

A.140°B.100°C.50°D.40° 例题3. 如图,在△ABC中,∠C=90°,CB=CA=4,∠A的平分线交BC于点D,若点P、Q分别是AC 和AD上的动点,则CQ+PQ的最小值是. 变式练习>>> 3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小

值是() A.3B.2C.D.4 例题4. 如图,∠MON=30°,A在OM上,OA=2,D在ON上,OD=4,C是OM上任意一点,B是ON上任意一点,则折线ABCD的最短长度为. 变式练习>>> 4. 如图,在长方形ABCD中,O为对角线AC的中点,P是AB上任意一点,Q是OC上任意一点,已知:

轴对称最值问题(辨识求解)(北师版)(含答案)

轴对称最值问题(辨识求解)(北师版) 一、单选题(共8道,每道12分) 1.如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,则PB+PE的最小值是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:轴对称最值问题 2.如图,在△ABC中,∠ACB=90°,以AC为一边在△ABC外侧作等边三角形ACD,过点D 作DE⊥AC,垂足为F,DE与AB相交于点E.AB=10cm,BC=6cm,P是直线DE上的一点,

连接PC,PB,则△PBC周长的最小值为( ) A.16cm B.cm C.24cm D.26cm 答案:A 解题思路: 试题难度:三颗星知识点:轴对称最值问题 3.如图,在平面直角坐标系中,A,B两点的坐标分别为A(2,-3),B(4,-1), 若C(a,0),D(a+3,0)是x轴上的两个动点,当四边形ABDC的周长最短时,a的值为( )

A. B.1 C. D. 答案:C 解题思路: 试题难度:三颗星知识点:轴对称最值问题 4.如图,在四边形ABCD中,AD∥BC,AB=AD=CD=1,∠ABC=60°,EF垂直平分AD,分别交AD,BC于点E,F,P是EF上一点,则PA+PB的最小值为( )

A. B. C.2 D. 答案:D 解题思路: 试题难度:三颗星知识点:轴对称最值问题 5.如图,正方形ABCD的边长为a,点M是AB的中点,,P是直线AC上的一

点,则的最大值是( ) A.a B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:轴对称最值问题 6.如图,∠AOB=45°,角内有一点P,OP=10,在角的两边上有两点Q,R(均不同于点O),

轴对称最值问题专项提升附答案教学提纲

轴对称最值问题专项提升附答案

授课教案 学员姓名:________________ 学员年级:________________ 授课教师:_________________ 所授科目:_________ 上课时间:______年____月____日 ( ~ ); 共_____课时 (以上信息请老师用正楷字手写) 轴对称最值问题专项提升 【知识点】最短路径 两点之间,线段最短 例:四边形ABCD 中,∠BAD=0120,∠B=∠D=0 90,在BC ,CD 上分别找一点M ,N ,使 ?AMN 周长最小,则∠AMN+∠ANM 的度数是( ) A.0130 B.0120 C.0110 D.0100 例:如图,P ,Q 分别为?ABC 的边AB ,AC 上的定点,在BC 上求作一点M ,使?PQM 周长最小。 一.解答题(共6小题) 1.已知:如图所示,M (3,2),N (1,﹣1).点P 在y 轴上使PM+PN 最短,求P 点坐标. 2.如图,△ABC 的边AB 、AC 上分别有定点M 、N ,请在BC 边上找一点P ,使得△PMN 的周长最短. 保留作图痕迹) 3.如图△ABC 是边长为2的等边三角形,D 是AB 边的中点,P 是BC 边上的动点,Q 是AC 边上的动点,当P 、Q 的位置在何处时,才能使△DPQ 的周长最小?并求出这个最值.

4.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R.若△PQR周长最小,求它的最小值. 5.如图,已知A、B是锐角α的OM边上的两个定点,P在ON边上运动.问P点在什么位置时,PA2+PB2的值最小? 6.如图,两个生物制药厂A与B座落于运河河岸的同一侧.工厂A和B距离河岸l分别为4千米和2千米,两个工厂的距离为6千米.现要在运河的工厂一侧造一点C,在C处拟设立一个货物运输中转站,并建设直线输送带分别到两个工厂和河岸,使直线运送带总长最小.如图建立直角坐标系. (1)如果要求货物运动中转站C距离河岸l为a千米(a为一个给定的数,0≤a≤2),求C点设在何处时,直线输送带总长S最小,并给出S关于a的表达式. (2)在0≤a≤2范围内,a取何值时直线输送带总长最小,并求其最小值.

利用轴对称知识求线段和的最小值问题透析

利用轴对称知识求线段和的最小值问题透析 求线段和的最小值问题,在初中数学中经常会遇到,利用轴对称知识可以比较简单的解决。我们先通过一个非常典型的例题来推导一个性质: 一、性质推导 例题:如图所示,在河岸L的一侧有两个村庄A、B,现要在河岸L上修建一个供水站,问供水站应建在什么地方,才能到A,B两村庄的距离之和最短? 首先,我们来推导一个轴对称的性质,如图,作B点关于L的对称点B1, 在直线L上任意定一点M,连接B B1,BM,B1M,根据轴对称知识,我们可以求证BM=B1M, 所以,我们可以得出这样的性质:成轴对称的两个对应点到对称轴上任意一点的距离相等。 在该例题中,利用这一性质,我们可得出:点B到河岸L上任意点M的距离等于对称B1到点M的距离。 要使AM+ B1M最小,必须使A、M、B1三点共线, 也就是说,必须使点M,与A B1连线和L的交点N重合, 所以,河岸上的N点为到A、B的距离之和最小的点。 B1 证明:M为L上的任意点 因为BM=B1M 所以,BM+AM=B1M+AM,而B1M+AM大于B1A, 所以,结论成立 二、应用 1:在图(1)中,若A到直线L的距离AC是3千米,B到直线L的距离BD是1千米,并且CD的距离4千米,在直线L上找一点P,使PA+PB的值最小。求这个最小值。 解:作出A1B(作法如上图) 过A1点画直线L的平行线与BD的延长线交于H, 在Rt△A1BH中,A1H=4千米,BH=4千米, 用勾股定理求得A1B的长度为42千米, 即PA+PB的最小值为42千米。

A1 2、 如图(1),在直角坐标系XOY 中,X 轴上的动点M (x ,0)到定点P (5,5)和到Q (2,1)的距离分别为MP 和MQ ,那么当MP+MQ 取最小值时,点M 的横坐标x=__________________。 解:如图(2),只要画出点Q 关于x 轴的对称点Q1(2,-1),连结PQ1 交x 轴于点M ,则M 点即为所求。点M 的横坐标只要先求出经过PQ1两点的直线的解析式,(y=2x-5),令y=0,求得x=5/2。(也可以用勾股定理或相似三角形求出答案)。 3、 求函数 解:方法(Ⅰ) 把原函数转化为y= 1 )3(2+-x ,因此可以理解为在X 轴上找一个 点,使它到点(3,1)和(-3,5)的距离之和最小。(解法同上一题)。 方法(Ⅱ) 如图(9),分别以PM=(3-x )、AM=1为边和以PN=(x+3)、BN=5为边构建使(3-x )和

几何最值—轴对称求最值(含答案)

学生做题前请先回答以下问题 问题1:几何最值问题的理论依据是什么? 答:两点之间,________________;(已知两个定点) _______________最短(已知一个定点、一条定直线); 三角形____________________(已知两边长固定或其和、差固定). 答: 问题2:做题前,读一读,背一背: 答:直线L及异侧两点A B 求作直线L上一点P,使P与A B 两点距离之差最大 作A点关于L的对称点A1,连接A1B,并延长交L的一点就是所求的P点. 这样就有:PA=PA1,P点与A,B的差PA-PB=PA1-PB=A1B. 下面证明A1B是二者差的最大值. 首先在L上随便取一个不同于P点的点P1,这样P1A1B就构成一三角形,且P1A1=P1A. 根据三角形的性质,二边之差小于第三边,所以有: P1A1-P1B

几何最值—轴对称求最值 一、单选题(共7道,每道14分) 1.如图,正方形ABCD的面积为12,△ABE是等边三角形,且点E在正方形ABCD的内部,在对角线AC上存在一点P,使得PD+PE的值最小,则这个最小值为( ) B. . 答案:C 《 解题思路:

试题难度:三颗星知识点:轴对称—线段之和最小 2.如图,在△ABC中,∠ACB=90°,以AC为一边在△ABC外侧作等边三角形ACD,过点D作 DE⊥AC,垂足为F,DE与AB相交于点E.AB=10cm,BC=6cm,P是直线DE上的一点,连接PC,PB,则△PBC 周长的最小值为( ) 答案:A 解题思路:

2020年初中数学最值问题典型例题(含答案分析)

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

利用轴对称解决最值问题

九年级数学专题复习 利用轴对称解决最值问题学案 学习目标: 1.借助中考真题的探究,掌握处理最值问题的基本知识源,明确解决图形几何最值问题的思考方向、思路方法,并感受体验其解题策略; 2.体验变化中寻找不变性的数学思想方法, 能将最值问题化归与转化为相应的数学模型进行分析与突破. 学习重难点: 1.借助相关概念、图形性质、定理,探寻几何图形最值问题中化归与转化的关键. 2.知识溯源,借助中考真题的研究,从知识转化角度,掌握处理最值问题的基本知识源,归纳总结其解题策略. 教学过程: 一、真题探究 真题示例1 (2016?福建龙岩)如图1,在周长为12的菱形ABCD 中,AE=1,AF=2,若P 为对角线BD 上一动点,则EP+FP 的最小值为( ) A .1 B .2 C.3 D .4 【基本模型(一)】 变式1:正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________ 变式2:在等边三角形ABC 中,AB =4,点E 是AB 的中AD 是高,在AD 上找一点P ,使BP +PE 的值最小 . 变式3:已知二次函数 的图象与坐标轴交于点 A (-1, 0)点B (0,-5)和点C . (1)求抛物线的解析式; (2)已知该函数图象的对称轴上存在一点P ,使 的周长最小,求出点P 的坐标。 (1) (2) (3) (图1 ) c x ax y +-=42PAB ?N M D C B A

真题示例2 (2016?四川内江)如图2所示,已知点C(1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是______. 【基本模型(二)】 变式:45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,则PQR △周长的最小值为_________. 真题示例3 (2012?浙江宁波)如图4,△ABC 中,?=∠60BAC ,?=∠45ABC ,AB=22,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为 . 【基本模型(三)】 变式:如图,在△ABC 中,AB=3,AC=4, BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为 . (图3) (图2 )

轴对称最值问题(讲义)(含答案)

轴对称最值问题(讲义) ?课前预习 1.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶,奶站应建在什么地 方,才能使A,B到奶站的距离之和最小? 街道 居民区B 居民区A ?知识点睛 1.轴对称最值问题基本结构分析 (1)求和最小: ①特征:有定点,有动点,动点在____________上运动,求线段和(周长)最 小. ②解决方法:以动点所在的直线为对称轴,作定点的对称点, ________________,利用两点之间线段最短进行处理. 例题:在直线l上找一点P,使得在直线同侧的点A,B到点P的距离之和AP+BP 最小. B A l (2)求差最大: ①特征:有定点,有动点,动点在____________上运动,求线段差最大. ②解决方法:以动点所在的直线为对称轴,作定点的对称点, __________________,利用三角形两边之差小于第三边进行处理. 例题:在直线l上找一点P,使得在直线两侧的点A,B到点P的距离之差AP BP 最大.

A B l 2. 解决几何最值问题的理论依据: ①___________________________________(已知两个定点) ②___________________________________(已知一个定点、一条定直线) ③___________________________________(已知两边长固定或其和、差固定) ? 精讲精练 1. 某平原上有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向 这两个村庄供水,某同学用直线l (虚线)表示小河,P ,Q 两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是( ) A .M l B . M Q P l C . l D . l 2. 已知:如图,点P ,Q 分别是△ABC 的边AB ,AC 上的两个定点,在BC 上求作一 点R ,使△PQR 的周长最小.

利用轴对称求最小值重点

利用轴对称求最小值 山东省章丘市绣水中学 李爱芸 文章来源:2008年下半年度《试题与研究》 中考数学题中有些求两线段之和最小的题目,同学们感到找不到思路,其实它是利用轴对称求最短距离的变形,现以部分中考题为例加以分析,希望能对同学们有所帮助。 例:如图,草原上两居民点A ,B 在笔直河流l 的同旁,一汽车从A 处出发到B 处,途中需要到河边加水,问选在何处加水可使行驶的路程最短?并在途中画出这一点。 理解转化题意:将这一问题转化为数学问题,即已知直线l 及l 同侧的点A 和点B ,在l 上确定一点C,使AC+BC 最小。 首先我们思考若点A 和B 点分别在直线l 的两侧,则点C 的位置应如何确定,根据两点之间线段最短,点C 应是与AB 直线l 的交点,如图(2),这就是说,设线段AB 交l 于点C ,点C /是直线上异于点C 的任意一点,总有AC+BC <AC /+BC /。因此,解决上述问题的关键是将点A (或点B )移至l 的另一侧(设点A 移动后的点为A /),且使A 、A /到直线l 上任意点的距离相等,利用轴对称可达到这一目的。 解:如图(3),作点A 关于直线l 的对称点A /,连接A /B 交l 于点C ,则点C 的位置就是汽车加水的位置,即汽车选在点C 处可使行驶的路程最短。 变形1: 已知:如图,正方形ABCD 的边长为8,M 在BC 上,N 是AC 上的一动点,则BN+MN 的最小值为多少? 理解转化题意:点B 、M 都在直线AC 的同旁,因此利用轴对称找点B 的对称点,在此题中由正方形的性质可知点B 的对称点是点D ,所以连结DM,DM 的长就是BN+MN 的最小值。 解:连结MD 交AC 于N /点 ∵四边形ABCD 是正方形 ∴点D 与B 关于AC 对称 ∴N /B=N /D ∴DM=DN / +MN / =N /B+N /M 在直角三角形MBC 中由勾股定理求得 DM=10 ∴BN+MN 的最小值为10. 变形2: 如图MN 是⊙O 的直径,MN=2点A 在⊙O 上,∠AMN=30°B 为弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为多少? 理解转化题意:利用圆的轴对称性过点B 作BC ⊥MN 得点B 的 对称点C, 连结AC 与MN 交点即为P 点. 解:过点B 作BC ⊥MN 交⊙O 于点C 连结AC 交MN 于点P 则 AC=PA+PB A B A B C C / (2) (3) C D A M N B N

轴对称最值问题专项提升附答案解析

授课教案 学员:________________ 学员年级:________________ 授课教师:_________________ 所授科目:_________ 上课时间:______年____月____日 ( ~ ); 共_____课时 (以上信息请老师用正楷字手写) 轴对称最值问题专项提升 【知识点】最短路径 两点之间,线段最短 例:四边形ABCD 中,∠BAD=0120,∠B=∠D=0 90,在BC , CD 上分别找一点M ,N ,使?AMN 周长最小,则∠AMN+∠ANM 的度数是( ) A.0130 B.0120 C.0110 D.0100 例:如图,P ,Q 分别为?ABC 的边AB ,AC 上的定点,在BC 上求作一点M ,使?PQM 周长最小。 一.解答题(共6小题) 1.已知:如图所示,M (3,2),N (1,﹣1).点P 在y 轴上使PM+PN 最短,求P 点坐标. 2.如图,△ABC 的边AB 、AC 上分别有定点M 、N ,请在BC 边上找一点P ,使得△PMN 的周长最短. 保留作图痕迹) 3.如图△ABC 是边长为2的等边三角形,D 是AB 边的中点,P 是BC 边上的动点,Q 是AC 边上的动点,当P 、Q 的位置在何处时,才能使△DPQ 的周长最小?并求出这个最值.

4.如图,∠AOB=30°,∠AOB有一定点P,且OP=10,OA上有一点Q,OB上有一定点R.若△PQR周长最小,求它的最小值. 5.如图,已知A、B是锐角α的OM边上的两个定点,P在ON边上运动.问P点在什么位置时,PA2+PB2的值最小? 6.如图,两个生物制药厂A与B座落于运河河岸的同一侧.工厂A和B距离河岸l分别为4千米和2千米,两个工厂的距离为6千米.现要在运河的工厂一侧造一点C,在C处拟设立一个货物运输中转站,并建设直线输送带分别到两个工厂和河岸,使直线运送带总长最小.如图建立直角坐标系. (1)如果要求货物运动中转站C距离河岸l为a千米(a为一个给定的数,0≤a≤2),求C点设在何处时,直线输送带总长S最小,并给出S关于a的表达式. (2)在0≤a≤2围,a取何值时直线输送带总长最小,并求其最小值.

初中数学《几何最值问题》典型例题精编版

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

利用轴对称性质求几何最值

利用轴对称性质求几何最值

————————————————————————————————作者: ————————————————————————————————日期: ?

轴对称中几何动点最值问题总结 轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。 利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个: (1)两点之间线段最短; (2)三角形两边之和大于第三边; (3)垂线段最短。 初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。下面对三类线段和的最值问题进行分析、讨论。 (1)两点一线的最值问题:(两个定点+ 一个动点) 问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。 核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1. 如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点, 若AE=2,EM+CM的最小值为() A.4 B.8 C.D.

2.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为() A.15°B.22.5° C.30° D. 45° 3.如图,Rt△ABC中,AC=BC=4,点D,E分别是AB,AC的中点,在CD上找一点P,使PA+PE 最小,则这个最小值是_____________.

专题复习1:利用轴对称求最值

专项复习一:距离和最小问题 班级 姓名 基础知识: 直线外一点和直线上各点的所连线中, 最短.简称: 最短。 平面上连接两点的所有线中, 最短. 简称:两点之间, 最短。 知识探索: 一、关于 一 条变化线段最短问题 思路指导:此类问题一般应用垂线段最短来解决 例 1.如图1,一次函数122 y x =-交两坐标轴与A ,B 两点,M 点坐标为(445-,0),N 为直线AB 上的一个动点,当MN 取最小值时MN= , 此时N 点坐标为 . 练习: 1. 如图2,矩形ABCD 中AB=6,tan ∠ADB=34 ,E 为对角线BD 上一个动点,则AE 的最小值为 . 2. 如图3,菱形ABCD 中,AB=10,∠B=45°,M 为BC 上一个动点,则AM 的最小值为 . 3. 如图4,⊙O 直径为10,弦AB 长为8,M 为AB 上一点,则OM 的最小值为 . 4. 如图5,在直角坐标系中,点C 坐标为(-4,-3),⊙C 半径为1,P 为x 轴上一个动点,PQ 切⊙C 于Q , 则当PQ 最小时,P 点坐标为 . 5. 如图6,在平面直角坐标系中,△ABC 三个顶点的坐标分别为()6,0A -,()6,0B ,()0,43C ,延长AC 到点D,使CD=12 AC,过点D 作DE ∥AB 交BC 的延长线于点E. (1)求D 点的坐标; (2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分 成周长相等的两个四边形,确定此直线的解析式; (3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到 达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短.(要求:简述确定G 点位置的方法,但不要求证明)

轴对称中几何动点最值问题总结

轴对称中几何动点最值问题 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

轴对称中几何动点最值问题总结 轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。 利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个: (1)两点之间线段最短; (2)三角形两边之和大于第三边; (3)垂线段最短。 初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。下面对三类线段和的最值问题进行分析、讨论。 (1)两点一线的最值问题:(两个定点+ 一个动点) 问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。 核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。 方法:1.定点过动点所在直线做对称。 2.连结对称点与另一个定点,则直线段长度就是我们所求。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。

(2) 一点两线的最值问题: (两个动点+一个定点) 问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。 核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。 变异类型: 1.如图,点P 是∠MON 内的一点,分别在OM ,ON 上作点A ,B 。使△PAB 的周长最小。 2.如图,点A 是∠MON 外的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小。 (3) 两点两线的最值问题: (两个动点+两个定点) 问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。 核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。

轴对称最值问题

轴对称最值问题(线段和最小或差最大) 1.已知A和B两地在一条河的两岸,现要在河上建造一座桥MN,使从A到B的路径AM-MN-NB最短(假定河的两岸是平行直线,桥要与河岸垂直) 2.如图,已知A(1,3),B(5,1),长度为2的线段PQ在x轴上平行移动,当AP+PQ+QB的值最小时,点P的坐标为( ) 3.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A,B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E,F为边OA上的两个动点,且EF=2,则当四边形CDEF的周长最小时,点F的坐标为( ) 4.如图,当四边形PABN的周长最小时,a的值为( ) 5.如图,两点A,B在直线MN的同侧,A到MN的距离AC=8,B到MN的距离BD=6,CD=4,P在直线MN上运动,则的最大值为( ) 6.已知两点A,B在直线的异侧,A到直线的距离AC=6,B到直线的距离BD=2,CD=3,点P在直线上运动,则的最大值为( ) 7.在平面直角坐标系中,已知A(0,1),B(3,-4),在x轴上有一点P,当的值最大时,点P的坐标是( )

利用展开图求立体图形表面上小虫的最短路线问题。通过展开立体图形的表面或侧面,化立体为平面,化曲线或折线为直线,利用两点之间线段最短解决问题。 1.台阶问题 (1)如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少? 析:展开图如图所示, AB=1312522=+cm (2)如图,在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方 体的木块,它的棱长和场地宽AD 平行且>AD ,木块的正视图是边长为0.2 米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是 米.(精 确到0.01米) 分析:解答此题要将木块展开,然后根据两点之间线段最短解答. 解:由题意可知,将木块展开,相当于是AB+2个正方形的宽, ∴长为2+0.2×2=2.4米;宽为1米. 于是最短路径为: =2.60米. 2.圆柱问题 、点在圆柱中可将其侧面展开求出最短路程 将圆柱侧面展成长方形,圆柱体展开的底面周长是长方形的长,圆柱的高是长方形的宽.可求出最短路程 (1)如图所示,是一个圆柱体,ABCD 是它的一个横截面,AB= ,BC=3,一只 蚂蚁,要从A 点爬行到C 点,那么,最近的路程长为( ) A .7 B . C . D .5 分析:要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果. 解:将圆柱体展开,连接A 、C , ∵==?π?=4,BC=3, 根据两点之间线段最短,AC= =5. 故选D . (2)有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为多少?

相关文档
相关文档 最新文档