文档库 最新最全的文档下载
当前位置:文档库 › 海涅定理在极限判别及运算中的应用

海涅定理在极限判别及运算中的应用

海涅定理在极限判别及运算中的应用
海涅定理在极限判别及运算中的应用

2017中考射影定理及其运用

相似三角形------射影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论,而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1):Rt△ABC中,若CD为高, 则有CD2=BD?AD、 BC2=BD?AB或 AC2=AD?AB。 二、变式推广 1.逆用如图(1):若△ABC中,CD为高,且有DC2=BD? AD或AC2=AD?AB或BC2=BD?AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。 2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。(后文简称:射影定理变式(2)) 如图(2):△ABC中,D为AB上一点,若∠CDB=∠ACB,或∠DC B=∠A,则有△CDB∽△ACB,可得BC2=BD?AB;反之,若△ABC中, D为AB上一点,且有BC2=BD?AB,则有△CDB∽△ACB,可得到∠CD B=∠ACB,或∠DCB=∠A。 三、应用 例1如图(3),已知:等腰三角形ABC中,AB=AC,高AD、BE交于点H, 求证:4DH?DA=BC2 分析:易证∠BAD=∠CAD=900-∠C=∠HBD,联想到射影定理变式(2),可得 BD2=DH?DA,又BC=2BD,故有结论成立。 (证明略)

海涅定理在函数极限证明中的应用

海涅定理在函数极限证明中的应用 摘要:函数极限理论是数学分析中的重要组成部分。关于证明函数极限存在的方法探讨具有十分重要的意义。本文给出了一些利用海涅定理证明函数极限存在性的应用,将函数极限归结为数列极限问题来处理。不仅给出了一类证明函数极限存在的方法,同时也加深了对函数极限和数列极限两者间的关系的理解。 关键词:海涅定理;函数极限;数列极限 Abstract: The limit theory of functions plays an important role in mathematical analysis. Study on the method proving existence of function limit is very meaningful. In this paper, we gave some applications for existence of function limit by using Heine theorem and dealt with the function limit problems to the sequence limit problems. These not only gave a kind of the method for existence of function limit, but also deepen the comprehension about the relationship between the function limit and the sequence limit. Key words: Heine theorem; function limit; sequence limit 数列极限与函数极限是分别独立定义的,但是两者是有联系的。而海涅定理就是沟通函数极限与数列极限之间的桥梁。也是证明函数极限性质和极限存在的判定定理的一个重要的理论指导,而且在关于函数的极限证明中也有应用。除此之外还可以运用海涅定理优化极限的运算。其意义在于把函数极限归结为数列极限问题来处理。 海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系。数列极限与函数极限其变量不管是离散地变化还是连续地变化,只要它们的变化趋势相同,从极限的意义上来说,效果都是一样的。因此,数列极限和函数极限在一定条件下能相互转化,而能够建立起这种联系的就是海涅定理。 近几年,一些学者对海涅定理的应用及推广进行了一系列的研究。此外,一些学者利用海涅定理来证明一些函数的性质、优化极限的运算等,见参考文献[1-6]。还有一些学者对海涅定理进行进一步推广,见参考文献[7-10]。根据文献[6,8,10] 对海涅定理进行归类整理的。

相似三角形---射影定理的运用

相似三角形--- 射影定理的运用

相似三角形 - 射- 影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论(这里暂且称之为射影定理的推广),而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路” 时,“柳暗花明又一村” 地迎刃而解。下面结合例子从它的变式推广上谈谈其应用。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1):Rt △ABC中,若CD为高,2则有CD2=BD?AD、BC2=BD?AB或AC2=AD?AB。(证明略) 二、变式推广 1.逆用如图(1):若△ABC中,CD为高,且有DC2=BD?AD或AC2=AD?AB或BC2=BD?AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。 (证明略) 2.一般化,若△ABC不为直角三角形满足一定条件时,类似地仍有部分结论成立。射影定理变式(2)) 如图(2):△ABC中,D 为AB上一点,若∠CDB=∠ACB,或∠DCB=∠A,则有△CDB∽△ACB,可,当点D后文简称: 中,D为AB上一点,且有BC2=BD?AB,则有△

得BC2=BD?AB;反之,若△ABC

CDB∽△ACB,可得到∠CDB=∠ACB,或∠ DCB=∠A。 (证明略) 三、应用 例1如图(3),已知:等腰三角形ABC 中,AB=AC,高AD、BE交于点H,求 证:4DH?DA=BC2 分析:易证∠BAD=∠CAD=900- ∠C = ∠ HBD,联想到射影定理变式(2),可得BD 2=DH?DA,又BC=2BD,故有结论成 立。 (证明略) 例2如图(4):已知⊙O中,D为弧AC中点,过点D的弦BD被弦AC分为4和12两部分,求DC。 分析:易得到∠DBC=∠ABD=∠ D CE,满足射影定理变式(2)的条件,故 有CD2=DE?DB,易求得DC=8 (解略) 例3 已知:如图(5),△ABC中, AD平分∠BAC,AD的垂直平分线交A B于点E,交AD于点H,交AC于点G,交BC的延长线于点F, 求证:DF2=CF?B 证明:连AF,∵F垂直平分AD, ∴FA=FD,FAD=∠FDA, ∵AD平分∠BF H ∠ A

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

2017中考射影定理及其运用

相似三角形----射影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论,而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1) : R t^ABC中,若CD为高, 贝U有C D 2=BD? AD、 BC 2=BD ?AB或 AC 2 =AD ?AB。 二、变式推广 1 ?逆用如图(1):若AABC中,CD为高,且有DC 2 =BD? AD或AC 2 =AD ?AB或BC 2 = BD ?AB,则有ZDCB = ZA或/ACD = /B,均可等到AABC为 直角三角形。 2 ?—般化,若AABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。(后文简称:射影定理变式(2)) 如图(2) : △ABC中,D 为AB上一点,若ZCDB = ZACB,或/DC B = ZA,则有△CDBs^ACB,可得B C 2 =BD?AB ;反之,若AABC 中, D为AB上一点,且有BC 2 =BD ?AB,则有△CDBs^ACB,可得到/CD B=/ACB,或/DCB=/Ao 三、应用 例1 如图(3),已知:等腰三角形ABC中,AB = AC,高AD、BE交于点H, 求证:4DH ?DA=BC 2 分析:易证/BAD = /CAD =90°-/C = /HBD,联想到射影定理变式(2),可得BD 2 =DH ?DA,又BC=2BD,故有结论成立。 (证明略) 例2 如图(4):已知OO中,D为弧AC中点,过点D的弦BD被弦AC分为4和12 两部分,求DC。 分析:易得到/DBC = /ABD = /DCE, 满足射影定理变式(2)的条件,故有CD 2 =DE ?DB,

数学分析之函数极限

第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和 ,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:14学时 § 1 函数极限概念 (2学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的δε-定义的清晰概念。会应用函数极限的δε-定义证明函数的有关命题,并能运用δε-语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的δε-定义及其应用。 一、 复习:数列极限的概念、性质等 二、 讲授新课: (一) 时函数的极限:

以时和为例引入. 的直观意义. 介绍符号: 的意义, 定义 ( 和 . ) 几何意义介绍邻域 其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1 验证 例2 验证 例3 验证 证…… 时函数的极限: (二) 由考虑时的极限引入. 定义函数极限的“”定义. 几何意义. 用定义验证函数极限的基本思路.

例4 验证 例5验证 例6 验证 证由= 为使需有 为使需有 于是, 倘限制 , 就有 例7 验证 例8 验证 ( 类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域

然后介绍等的几何意义. 例9 验证 证考虑使的 2.单侧极限与双侧极限的关系: Th 类似有: 例10 证明: 极限不存在. 例11 设函数 在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(2学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。 教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。 一、组织教学:

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

浅谈数学分析中的数学思想

浅谈数学分析中的数学思想 李静 赤峰学院 10级 数学与统计学院 数学与应用数学2班 10041100332 摘要: 在学习数学分析中,首先接触到的就是关于数学名词的概念问题,那么毫无疑问,深入了解概念是学习掌握数学分析的第一要务;在掌握了概念之后,接下来就是运算能力以及对数学符号的熟识程度;然后就是在学习过程中及做题中学习实践的做题技巧,这就逐渐形成了数学思想方法。 数学知识中蕴含的思想方法是极其丰富的,尤其是隐藏于数学知识背后的数学思想的价值不可忽视.本文对数学分析内容中的函数思想、极限思想、连续思想、数形结合思想、化归思想进行初步的分析. 关键词: 数学分析; 数学思想; 分析 一、函数思想 函数概念和函数思想的提出和运用,使得变量数学诞生了,常量数学发展到变量数学,函数思想起了决定性作用.函数是数学分析的研究对象.函数思想就是运用函数的观点,把常量视作变量、化静为动、化离散为连续,将待解决的问题转化为函数问题,运用函数的性质加以解决的一种思想方法.在数学分析中,我们通常用来解决不等式的证明、方程根的存在性与个数、级数问题、数列极限等. 例1 证明 当0x >时,()2 ln 12 x x x -<+. 分析 这是一个不等式证明问题,直接证明有一定难度,但是将此问题转化为函数问题的单调性,即可解决问题. 证明 构造辅助函数()f x =()2ln 12x x x +-+,则()f x '=111x x -++,可证当0x > 时,()0f x '>,因此单调递增.又因为()00f =,所以当0x >时, ()()00f x f >=,即原不等式成立. 例2 判断() ()1ln 111 n n n n ∞=+-+∑的敛散性. 分析 这是一个级数问题,该级数为交错级数.从函数的观点出发,化离散为连续,转化为函数问题,运用函数的性质,从而解决问题. 解 该级数为交错级数,由莱布尼兹判别法知,要判断其敛散性,只需判断通项的绝对值

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

2021年.中考射影定理及其运用

*欧阳光明*创编 2021.03.07 相似三角形------射影定理的推广及应用 欧阳光明(2021.03.07) 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论,而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1):Rt△ABC中,若CD为高, 则有CD2=BD?AD、 BC2=BD?AB或 AC2=AD?AB。 二、变式推广 1.逆用如图(1):若△ABC中,CD为 高,且有DC2=BD?AD或AC2=AD?AB或BC2=BD?AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。 2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。(后文简称:射影定理变式(2)) 如图(2):△ABC中,D为AB上一点,若 ∠CDB=∠ACB,或∠DCB=∠A,则有△CD B∽△ACB,可得BC2=BD?AB;反之,若△A BC中,D为AB上一点,且有BC2=BD?AB, 则有△CDB∽△ACB,可得到∠CDB=∠ACB,或∠DC

B=∠A。 三、应用 例1 如图(3),已知:等腰三角形ABC中,AB=AC,高AD、BE交于点H,求证:4DH?DA=BC 2 分析: 易证∠BAD=∠CAD=900-∠C =∠HBD ,联想到射影定理变式(2),可得BD2=DH?DA,又BC= 2BD,故有结论成立。 (证明略) 例2 如图(4):已知⊙O中,D为弧AC中点,过点D的弦BD被弦AC分为4和12两部分, 求DC。 分析:易得到∠DBC=∠ABD=∠DCE,满足射影定理变式(2)的条件,故有CD2 =DE?DB,易求得DC=8 (解略) 例3 已知:如图(5),△ABC中,AD平分∠BA C,AD的垂直平分线交AB于点E,交AD于点H,交AC于点G,交BC的延长线于点F, 求证:DF2=CF?BF。 证明:连AF, ∵FH垂直平分 AD, ∴FA=FD, ∠FAD=∠FDA, ∵AD平分∠BAC,∴∠CAD=∠BA D, ∴∠FAD-∠CAD=∠FDA-∠BA D, ∵∠B=∠FDA-∠BAD, ∴∠FAC=∠B,又∠AFC 公共, ∴△AFC∽△BFA,∴BFAF=AFC F , ∴AF2=CF?BF,∴DF2 =CF?BF。

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

数列的极限及运算法则

数列的极限及其运算法则 学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n c b a c b a ∞ →∞→∞→∞→++=++lim lim lim )(lim

中考射影定理及其运用

2017中考射影定理及 其运用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

相似三角形------射影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论,而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1):Rt△ABC中,若CD为高, 则有CD2=BD?AD、 BC2=BD?AB或 AC2=AD?AB。 二、变式推广 1.逆用如图(1):若△ABC中,CD为高,且有D C2=BD?AD或AC2=AD?AB或BC2=BD?AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。 2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。(后文简称:射影定理变式(2)) 如图(2):△ABC中,D为AB上一点,若∠CDB=∠AC B,或∠DCB=∠A,则有△CDB∽△ACB,可得BC2=BD? AB;反之,若△ABC中,D为AB上一点,且有BC2=BD?A B,则有△CDB∽△ACB,可得到∠CDB=∠ACB,或∠DCB= ∠A。 三、应用 例1如图(3),已知:等腰三角形ABC中,AB=AC,高AD、 BE交于点H,求证:4DH?DA=BC2 分析:易证∠BAD=∠CAD=900-∠C=∠HBD,联想到射影定理变式 (2),可得BD2=DH?DA,又BC=2BD,故有结论成立。

大数定理与中心极限定理的关系及应用

本科生毕业论文(设计) 题目大数定律与中心极限定理的 关系及应用 姓名学号 院系数学科学学院 专业数学与应用数学 指导教师职称 2013年4 月16 日 曲阜师范大学教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Key words (3) 引言 (3) 1 大数定律与中心极限定理的关系 (4) 1.1预备知识 (4) 1.1.1大数定律 (4) 1.1.2中心极限定理 (5) 1.2大数定律与中心极限定理的关系 (6) 1.2.1服从大数定律不服从中心极限定理的例子 (7) 1.2.2服从中心极限定理不服从大数定律的例子 (8) 1.2.3大数定律与中心极限定理均不服从的例子 (9) 2 大数定律与中心极限定理在实际生活中的应用 (10) 2.1 在误差分析中的应用 (10) 2.2 在数学分析中的应用 (11) 2.3 在近似计算中的应用 (13) 2.4 在保险业中的应用 (14) 2.5 在企业管理方面的应用 (15) 结论 (16) 致谢 (16) 参考文献 (17)

大数定律与中心极限定理的 关系及应用 摘要:本文通过对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据。另外,叙述了大数定律与中心极限定理之间的关系,同时通过举出很多相关的反例说明二者的关系。最后给出了一些简便的大数定律与中心极限定理在误差分析、数学分析、近似计算、保险业及企业管理等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。 关键词:大数定律中心极限定理随机变量应用 Relationship and Applications between the Law of Large Number and Central Limit Theorem Student majoring in mathematics and applied mathematics Bai Yanfei Tutor Liu Li Abstract: Based on the law of large numbers and central limit theorem in the independent distribution with the different distribution of both cases, it makes more systematic exposition, and reveals the phenomenon of the random nature of the most fundamental an average of the results of the Stability. Through the central limit theorem discussion, it gives out the random variables and the distribution of the normal distribution. At the same time, it demonstrates the relationship between the two aspects through lots of anti-related examples. Finally, it gives out several aspects of applications of a number of simple law of large numbers and the central limit theorem in error analysis, mathematical analysis, the approximate calculation, the insurance industry and business management to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value. Key words: Laws of large number; Central-limit theorem; Random variables; Applications 引言概率论与数理统计是研究随机现象的统计规律的一门学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带。大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。在现实生活中经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然。 而中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分

数学与应用数学专业专升本专业综合课考纲

乐山师范学院2013年专升本数学与应用数学专业 综合课考试大纲 一、考试方式及时间:闭卷笔试、120分钟 二、考试科目及各科目分值 考试总分100分,其中课程一:《数学分析》(50分)、课程二:高等代数(50分)。 三、试题类型(各题型可明确分值) 选择题20%,填空题20%,解答题40%,证明题20%. 四、各科目参考书目及复习范围: 课程一:数学分析 一、总体要求: 考生应该理解或了解《数学分析》中实数集与函数、数列与函数的极限、函数的连续性、导数与微分、微分中值定理及其应用、实数完备性、不定积分、定积分及其应用、反常积分、数项级数、函数列级函数项级数、幂级数、傅里叶级数、多元函数极限与连续、多元函数的微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分的基本概念与基本理论。本课程的内容按照基本要求的高低用不同的词汇加以区分。对概念、理论从高到低用“理解”、“了解”二级区分,对运算、方法从高到底用“熟练掌握”、“掌握”、“会”或“能”三级区分。 二、参考书目: 华东师大编《数学分析》,高等教育出版社. 三、复习范围及要求 实数集与函数 1、内容 实数,数集,确界原理,函数概念,具有某些特征的函数。 2、要求 了解实数的小数表示形式,理解实数的有序性、稠密性与封闭性,实数集确

界原理,函数的定义及复合函数、有界函数、反函数、单调函数和初等函数的定义,掌握邻域的概念,实数绝对值的有关性质,基本初等函数的定义、性质及其图象。 数列极限 1、内容 数列极限的概念,收剑数列的性质,数列极限存在的条件。 2、要求 理解数列发散、单调、有界和无穷小数列等有关概念和收敛数列性质,掌握数列极限的N -ε定义及收敛数列的四则运算定理、迫敛性定理、单调有界定理和柯西准则。 函数的极限 1、内容 函数极限的概念,函数极限的性质,函数极限存在的条件,两个重要极限, 无穷小量与无穷大量,阶的比较。 2、要求 了解函数极限的几何意义,理解函数极限的定义,掌握函数极限的基本性质、海涅定理与柯西准则、两个重要极限、无穷小(大)量及其阶的比较。 函数的连续性 1、内容 函数连续的概念,连续函数的性质,初等函数的连续性。 2、要求 了解函数的间断点及其种类、初等函数的连续性,理解函数在一点连续和在某区间上一致连续的概念,掌握连续函数的局部性质、运算性质、复合函数和反函数的连续性、闭区间上连续函数的性质。 导数与微分 1、内容 导数概念,求导法则,微分,高阶导数与高阶微分。 2、要求 了解导数的物理意义和导数、微分的几何意义,理解导数、微分的定义和一

相关文档
相关文档 最新文档