文档库 最新最全的文档下载
当前位置:文档库 › KKT最优化条件

KKT最优化条件

KKT最优化条件
KKT最优化条件

Karush-Kuhn-Tucker最优化条件(KKT条件)

一般地,一个最优化数学模型能够表示成下列标准形式:

所谓 Karush-Kuhn-Tucker 最优化条件,就是指上式的最小点x*必须满足下面的条件:

KKT最优化条件是Karush[1939]以及Kuhn和Tucker[1951]先后独立发表出來的。这组最优化条件在Kuhn和Tucker 发表之后才逐渐受到重视,因此许多书只记载成「Kuhn-Tucker 最优化条件 (Kuhn-Tucker conditions)」。

KKT条件第一项是说最优点必须满足所有等式及不等式限制条件,也就是说最优点必须是一个可行解,这一点自然是毋庸置疑的。第二项表明在最优点 x*,?f必須是?h j和?g k

的线性組合,和都叫作拉格朗日乘子。所不同的是不等式限制条件有方向性,所以每

一个kμ都必须大於或等於零,而等式限制条件没有方向性,所

以 jλ没有符号的限制,其符号要视等式限制条件的写法而定

备注:该条件是SVM中需要到,处理不等式约束,把它变换成一组等式约束

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

醋酸菌发酵条件优化的研究

龙源期刊网 https://www.wendangku.net/doc/747836779.html, 醋酸菌发酵条件优化的研究 作者:徐佳等 来源:《安徽农业科学》2014年第06期 摘要[目的]优化苹果醋发酵的工艺条件。[方法]以新鲜苹果汁为原料,采用液态发酵法,通过单因素试验和正交试验研究了温度、接种量、转速、发酵周期、碳源、氮源、pH、初始 酒精浓度对K8醋酸菌发酵产酸量的影响。[结果]试验确定了K8醋酸菌发酵的最佳工艺条件,即:蔗糖1.0%,酵母膏1.6%、起始pH为4.5,初始酒精浓度为4%、接种量为6%,于 30 ℃、175 r/min的恒温摇床上振荡培养4 d。经优化后,K8醋酸菌发酵的产量可达到50.251 g/L。[结论] 研究可为苹果醋的工业化生产提供参考依据。 关键词K8醋酸菌;发酵条件;优化 中图分类号S188+.4文献标识码A文章编号0517-6611(2014)06-01792-03 Abstract[Objective] To optimize the technique conditions of fermentation of apple vinegar. [Method] The basis and reference for the industrialization of apple vinegar were provided through the research on the technical condition of its fermentation. The fresh apple juice was used as raw material to study the effect of fermentation temperature, inoculation amount, rotary velocity, fermentation period, carbon source, nitrogen source, initial medium pH, the amount of ethanol on acetic acid fermentation by the single factor test and orthogonal test. [Result] We identified the optimum fermentation condition of K8 Acetic acid bacteria that was as fallows: 1% sucrose as carbon source, 1.6% yeast extract as nitrogen source, the initial pH of the acid medium at 4.5, alcohol degree 4%, 6% of inoculation under the condition of temperature at 30 ℃ and the speed train at 175 r/min. In that fermentation condition, after 4 days of fermentation, the acid yield of K8 Acetic acid bacteria could reach 50.251 g/L. [Conclusion] The study can provide reference basis for industrialization production of apple vinegar. Key wordsK8 Acetic acid bacteria; Fermentation condition; Optimization 果醋与粮食醋相比,含有丰富的有机酸、维生素,具有更好的营养与保健价值和风味质量。苹果醋是选用优质的苹果汁为主要原料,经发酵调制而成。苹果醋味道香美、营养丰富,而且兼有水果和食醋的营养保健功能[1]。苹果醋含有丰富的氨基酸及有机酸,能够为人体提 供能量;苹果醋在体内代谢后呈碱性,营养学家建议人们在合理膳食的同时,多饮果醋,能够防止血液和体液的酸化;苹果醋具有美容护肤作用,它含有丰富的醋酸、氨基酸、甘油和醛类化合物,能促进血管扩张,增加血液循环,令皮肤更加光滑柔润;苹果醋可抑制和减少过氧化物的形成,从而延缓衰老;此外,苹果醋还具有软化血管、降压、杀菌、防癌、抗癌、促进肠胃消化、减轻疲劳、促进钙吸收的功效。

约束最优化问题

约束最优化问题 一实习目的 1.熟练掌握科学与工程计算中常用的基本算法; 2.掌握分析问题,设计算法的能力; 3.掌握模块化程序设计的基本思想,注重模块的“高内聚,低耦合”; 4.采用自顶向下,逐步细化的编程思想完成程序书写; 5.牢固建立“清晰第一,效率第二”的软件设计观念; 6.掌握软件调试,测试的基本技能和方法; 7.提高科技报告的书写质量; 8.在掌握无约束最优化问题求解方法的前提下,对一般情形下的约束最优化问题进行研究,通过实习掌握外点罚函数法、内点罚函数法、乘子法、线性近似规划法和序列二次规划法在求解一般情形下的约束最优化问题的应用。 二问题定义及题目分析 问题1: 要求用外点罚函数法和内点罚函数法解决约束问题: Min f(x)=错误!未找到引用源。 s.t. 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 问题2: 要求用乘子法解决约束问题: Min 错误!未找到引用源。 s.t. 错误!未找到引用源。 错误!未找到引用源。 (错误!未找到引用源。) 问题3: 要求用线性近似规划法和序列二次规划法解决约束问题: Min 错误!未找到引用源。 s.t. 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 三程序概要设计 1.外点罚函数法 Step1. 给定初始点错误!未找到引用源。,罚参数序列{错误!未找到引用源。}(常取错误!未找到引用源。),精度错误!未找到引用源。,并令k=0;

Step2. 构造增广目标函数错误!未找到引用源。; Step3. 求解无约束优化问题min 错误!未找到引用源。,x错误!未找到引用源。,其解记为错误!未找到引用源。; Step4. (终止准则:惩罚项充分小,或等价地错误!未找到引用源。近似可行)若错误!未找到引用源。,或者错误!未找到引用源。,错误! 未找到引用源。,则得解错误!未找到引用源。,否则令k=k+1,转 Step2. 2.内点罚函数法: Step1. 给定初始可行解错误!未找到引用源。,罚参数序列{错误!未找到引用源。}(常取错误!未找到引用源。),精度错误!未找到引用源。,并令 k=0; Step2. 构造增广目标函数错误!未找到引用源。; Step3. 求解无约束优化问题min 错误!未找到引用源。,x错误!未找到引用源。,其解记为错误!未找到引用源。; Step4. (终止准则)若错误!未找到引用源。,则得解错误!未找到引用源。,否则令k=k+1,转 Step2. 3.乘子法: Step1. 给定初始点错误!未找到引用源。,初始lagrange乘子错误!未找到引用源。,i错误!未找到引用源。罚参数序列{错误!未找到引用源。}, 精度错误!未找到引用源。,并令k=0; Step2. 构造增广目标函数错误!未找到引用源。 Step3. 求解无约束优化问题min 错误!未找到引用源。,x错误!未找到引用源。,其解记为错误!未找到引用源。; Step4. (终止准则)若错误!未找到引用源。,则得解错误!未找到引用源。,否则令 K=k+1,转Step2. 4.线性近似规划法: Step1. 给定初始点错误!未找到引用源。,步长限制错误!未找到引用源。,缩小系数错误!未找到引用源。。精度错误!未找到引用源。,并令k=0;Step2. 求解线性规划问题:min 错误!未找到引用源。

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

一株自养硝化细菌培养条件的优化

一株自养硝化细菌培养条件的优化 摘要:针对前期筛选的自养硝化杆菌(Nitrobacter)菌株y3-2,以实时荧光定量核酸扩增检测系统(qPCR)测定的菌液终浓度为指标,设计单因素试验和正交试验对其培养基和培养条件进行优化。结果表明,优化的硝化杆菌y3-2的培养基中CaCO3、Na2CO3、NaNO2浓度分别为0.5、1.0、0.5 g/L。最佳培养条件为培养温度28 ℃、pH 8.0、摇床转速200 r/min。优化后硝化杆菌y3-2的发酵周期由优化前的7 d缩短至4 d,菌液终浓度达到4.31×109 CFU/mL。 关键词:硝化杆菌(Nitrobacter);培养基;培养条件;优化 氮素是水体污染源的主要成分之一,水体的脱氮技术已经成为人们关注与研究的热点[1]。与传统的物理化学脱氮工艺相比,生物脱氮具有成本低、效率高、无二次污染等优势。现今采用最多的生物脱氮工艺为硝化—反硝化工艺,其中的硝化工艺由硝化细菌(Nitrifying bacteria)完成[2]。硝化细菌分为自养型硝化细菌和异养型硝化细菌2类,异养型硝化细菌仅占很少一部分,自养型硝化细菌是生物脱氮过程中起硝化作用的主要菌群,其硝化速率直接影响污水处理系统的硝化效果和生物脱氮效率[3]。硝化过程通常由氨氧化细菌(Ammonia-oxidizing Bacteria,AOB)先将氨氮转化为亚硝酸盐,然后由亚硝酸氧化细菌(Nitrite-oxidizing Bacteria,NOB)将亚硝酸盐转化为硝酸盐[4]。与自养型AOB 一样,自养型NOB具有生长速度慢、自然条件下数量低等特点,这一方面使NOB 的研究较为困难,另一方面也制约了其工业化生产和应用。因此,研究加快NOB 生长速度的培养方法显得尤为重要[5,6]。本研究以一株亚硝酸氧化细菌y3-2[7]为出发菌株,对其培养基和培养条件进行了优化,并采用实时荧光定量核酸扩增检测系统(Real-time quantitative PCR detecting system,qPCR)计数的方法对其菌液浓度进行计数,以期获得能快速培养硝化杆菌y3-2的方法。 1 材料与方法 1.1 材料 1.1.1 菌种试验用菌种硝化杆菌y3-2由农业微生物学国家重点实验室发酵工程分室分离纯化保藏,经16 S rDNA鉴定为硝化杆菌属(Nitrobacter)细菌。 1.1.2 优化前培养基及培养条件优化前初始培养基:MgSO4·7H2O 0.12 g/L、NaH2PO4·2H2O 1.16 g/L、K2HPO4·3H2O 0.33 g/L、MnSO4·H2O 0.007 6 g/L、(NH4)6Mo7O24·4H2O 50 μg/L、无水NaCO3 0.5 g/L、NaNO2 1.0 g/L、pH 7.5,121 ℃、30 min灭菌。优化前的培养条件为250 mL三角瓶加入50 mL培养基,200 r/min、30 ℃恒温培养。 1.1.3 试剂亚硝酸盐和硝酸盐定性检测试剂[8]:Griess试剂、盐酸溶液、氨基磺酸铵溶液、二苯胺—硫酸试剂,细菌基因组DNA提取试剂盒和Real Master

酿酒酵母S_cerevisiae高密度培养条件优化研究

第37卷第1期 2007年2月 工业微生物 Industrial Microbiology  Vol.37No.1  Feb.2007 基金项目:厦门市科技计划资助项目(编号:3502Z20031079);作者简介:王颖(1983~),女,硕士研究生; 3通讯作者。Tel :86-592-2183088;Fax :86-592-2184822;E 2mail :ylu @https://www.wendangku.net/doc/747836779.html, 酿酒酵母S.cerevisiae 高密度培养条件优化研究 王 颖, 何 宁, 李清彪, 邓 旭, 卢英华3 (厦门大学化学工程与生物工程系,厦门361005) 摘 要 考察了培养基组成和培养条件对酿酒酵母S accharom yces cerevisiae 发酵的影响。以TB 培养基为初始培养基,通过正交实验设计优化培养基组成,确定了影响酵母细胞产量最主要的 因素是葡萄糖,最适培养基组成为:酪蛋白胨15g/L ,酵母粉25g/L ,葡萄糖30g/L ,KH 2PO 42.4g/L ,K 2HPO 4?3H 2O 16.34g/L 。并确定了最佳培养条件:温度30℃,转速150r/min 。采用优化 培养基及培养条件下进行发酵,菌液最高OD 600值和细胞密度分别达15.82和2.03×108/mL ,比优化前分别提高24.2%和22.0%。 关键词:酿酒酵母; 培养基; 培养条件; 正交实验 近代基因技术的进步使人们可以利用微生物大量生产高价值的生物药物及其它重组蛋白。发酵产物的多少通常与细胞密度的高低关联,因此发酵过程的首要任务通常是研究如何尽可能地达到高的细胞密度,以便提高生产率、简化下游加工、减少废水排放量、降低培养容积、生产成本及设备投资,使目的产物产生良好的成本效益[1]。 优化培养基是一种提高细胞密度的有效方法。培养基分复合培养基、半合成培养基和合成培养基三种[2]。合成培养基成分和浓度已知且可以控制,常用来获得高细胞密度;复合培养基含有提取物(如蛋白胨,酵母提取物),营养物的成分和质量可能不同,故复合培养基进行发酵过程的重复性较差。然而,复合培养基和半合成培基对促进产物生成是必要的,而且在复合培养基和半合成培基中,细胞生长往往比在合成培基中快[3]。为使细胞生长达到高密度,有必要设计一种含必需成分的平衡性营养培养基,以维持细胞生长,同时避免生长的抑制。 酿酒酵母(S accharom yces cerevisiae )作为人类利用最早的微生物,其营养成分十分丰富,含有菌体蛋白质、多种氨基酸、维生素、脂肪、食物纤维、矿物元素、微量元素及生理活性物质等[4]。由于其具有 安全、生长繁殖快、代谢周期短、容易进行大规模培养、菌体蛋白质丰富等优点,一直是基础和应用研究的主要对象,并被广泛应用于酿造、食品、医药、饲料工业等领域[5]。近年来,世界各国均在积极采用微生物发酵技术开发酵母菌市场。此外,酿酒酵母还是外源基因理想的真核生物表达系统,并与盘基网柄菌 D.discoi deum 一起,于2000年被N IH 选为 标准微生物模型系统(http ://https://www.wendangku.net/doc/747836779.html,/sci 2ence/)。 国内外对酿酒酵母菌培养的实验研究已有了较多的报道。Raj 等采用合成培养基,可获得140g/L 的细胞干重[6]。Park 等在内置膜过滤反应器内连续培养酿酒酵母,得到13g/(L ?h )的细胞干重[7]。赵宝华等探讨了外加Ca 2+、La 3+对酿酒酵母生长的影响[8]。梅乐和等研究了酿酒酵母微囊化培养过程[9]。此外,也有不少研究集中在基因工程和固定化技术于酿酒酵母生产中的应用[10~12]。本文以TB 培养基(一种培养大肠杆菌的简单复合培养基)为基础,考察了培养基成分和浓度,以及培养条件等对酿酒酵母发酵培养的影响,并利用正交实验对培养基进行了优化,开发出了一个适合高密度培养酿酒酵母菌的简单复合培养基。

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的 严格局部最优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍

属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法 A 为下降算法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。 14 凸规划的全体极小点组成的集合是凸集。 √ 15 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式

光合细菌海水培养的条件优化研究

光合细菌海水培养的条件优化研究 摘要 [目的]为光合细菌的海水培养提供科学的理论依据。[方法]对海水培养光合细菌进行培养基选择和培养条件优化研究。[结果]结果表明:矢木修身培养基是海水培养光合细菌的最佳培养基;最适宜光合细菌生长的条件是温度在30~35e,光照强度在2 000~3 000 lx,接种量在20% ~25%,空气体积分数为5%,初始pH值在7.0~7.5。[结论]光合细菌在最适宜的条件下5~6d 即可培养成熟。 关键词光合细菌;海水培养;培养基;培养条件 Study on theOptim ization ofCulture Conditions ofPhotosynthetic Bacteria with Seawater Abstract [Objective] The research ami ed toprovide scientific theorybasis for the culture ofphotosynthetic bacteriawith seawater. [Method] The optmi al culture conditions andmedium ofphotosynthetic bacteriawith seawaterwere studied. [Result] The results showed thatthe optmi al medium was Shmi uxiushenmedium.The optmi algrowth conditions ofphotosynthetic bacteria was temperature 30-35e, the light2 000- 3 000 lx, the inoculum 20% -25%, the air cubagemark 5% and the originalpH value 7.0-7.5. [Conclusion] Underoptmi algrowth con- ditions, photosynthetic bacteria could be cultured tomature in 5-6 days. Key words Photosynthetic bacteria; Culturewith seawater; Medium; Culture condition 光合细菌(Photosynthetic Bacteria,简称PSB)是一群能在 厌氧光照或好氧黑暗条件下利用有机物作供氧体兼碳源,进 行不放氧光合作用的细菌,广泛分布于水田、湖沼、江河、海 洋、活性污泥和土壤中,其中在生产上有意义的红螺菌科包 括红螺菌属、红假单胞菌属和红微菌属[1]。很多资料表明, PSB具有许多独特的生理功能,在养殖业、种植业、环境治 理、新能源开发利用等应用领域具有十分广阔的前景[2],尤 其在水产养殖中,其能够降解水体中的亚硝酸盐、硫化物等 有毒物质,实现充当饵料、净化水质、预防疾病、作为饲料添 加剂等功能,它的诸多特性,使其在无公害水产养殖中具有 巨大的应用价值。所以,有关PSB的研究已受到广泛重视。 但是,目前对PSB最适培养条件的研究,特别是海水培养 PSB,国内外的相关报道众说不一,因此该试验采用海水培 养,针对不同培养基、不同培养条件(温度、光照、接种量、氧 需求程度、pH值)等进行系统研究,为PSB的海水培养提供 科学的理论依据。 1 材料与方法 1.1 材料 1.1.1 菌种。菌种由对虾养殖池底泥选择培养得到,主要

最优化方法试卷与答案5套

《最优化方法》1 一、填空题: 1.最优化问题的数学模型一般为:____________________________,其中 ___________称为目标函数,___________称为约束函数,可行域D 可以表示 为_____________________________,若______________________________, 称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。 2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶 方向导数为___________________,几何意义为_________________________ ___________________________________。 3.设严格凸二次规划形式为: 012. .222)(min 21212 12 221≥≥≤+--+=x x x x t s x x x x x f 则其对偶规划为___________________________________________。

4.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则: 用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =_______________ ____________________________________________________________。 二.(10分)简答题:试设计求解无约束优化问题的一般下降算法。 三.(25分)计算题 1. (10分)用一阶必要和充分条件求解如下无约束优化问题的最优解: )1(632)(m in 21212131----=x x x x x x x f . 2. (15分)用约束问题局部解的一阶必要条件和二阶充分条件求约束问题: 1)(. .)(min 22 2 1 2 1=-+==x x x c t s x x x f 的最优解和相应的乘子。 四. 证明题(共33分) 1.(10分)设δ++=x r Gx x x f T T 2 1 )(是正定二次函数,证明一维问题

五种最优化方法

精心整理 五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3 4 1.2 2. 2.1 1 2 3 2.2 3. 3.1 1 2 3 3.2 4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降

方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤 5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min(f_1(x),f_2(x),...,f_k(x)) s.t.g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。 6.1遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。 种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 6.2遗传算法基本流程 遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤 步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;

五种最优化方法

五种最优化方法 1. 最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2 原理和步骤

3. 最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2 最速下降法算法原理和步骤

4. 模式搜索法(步长加速法) 4.1 简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1 简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

无约束最优化直接方法和间接方

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最

无约束最优化方法可变单纯形算法(simplex)Nelder-Mead

无约束最优化方法可变单纯形法(simplex)Nelder-Mead 可爱的馒头 本程序是用C++编写的,从编写的算例来看,应该是没有问题的。所采用的原理和步骤是参考华南理工大学出版社蒋金山等编写的最 优化计算方法第8章第三节可变单纯形法。欢迎各位批评指正。 #include #include #include int i,j; double d[3][100]={{0,1,0,0},{0,0,1,0},{0,0,0,1}},f[100];//d[][]为单纯形的顶点,本算例中未知数个数为3,则顶点个数为4 double g,h,l,q,s=1,t=2,u=0.5,v=0.0001,y=0;//s为反射系数,t为扩展系数,u为压缩系数,v为允许误差 int o,F,r,D,e,lj=0,N=4;//N为顶点的个数,o为最大值点的位置,F为最小值点的位置,r为次大值点的位置 void function1(int e)//求解函数f[e] { f[e]=(d[0][e]-3)*(d[0][e]-3)+2*(d[1][e]+2)*(d[1][e]+2)+(d[2][e]-4)*(d[2][e]-4);//函数为f=(x1-3)^2+2(x2+2)^2+(x3-4)^2,求其最小值 } void function2() { while((++lj)<100)//最大迭代次数 { for(i=0,g=f[i];if[i+1]) { h=f[i+1];F=i+1; } else if(i==0) F=i; } for(i=0,l=f[i];i

无约束优化方法(最速下降法_牛顿法)

第四章 无约束优化方法 ——最速下降法,牛顿型方法 概述 在求解目标函数的极小值的过程中,若对设计变量的取值范围不加限制,则称这 种最优化问题为无约束优化问题。尽管对于机械的优化设计问题,多数是有约束的, 无约束最优化方法仍然是最优化设计的基本组成部分。因为约束最优化问题可以通过 对约束条件的处理,转化为无约束最优化问题来求解。 为什么要研究无约束优化问题? (1)有些实际问题,其数学模型本身就是一个无约束优化问题。 (2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。 (3)约束优化问题的求解可以通过一系列无约束优化方法来达到。 所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。 根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。 一:间接法——要使用导数的无约束优化方法,如梯度法、(阻尼)牛顿法、变尺度 法、共轭梯度法等。 二:直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯 形法等。 无约束优化问题的一般形式可描述为: 求n 维设计变量 []12T n n X x x x R =∈L 使目标函数 ()min f X ? 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 无约束优化问题的求解: 1、解析法 可以利用无约束优化问题的极值条件求得。即将求目标函数的极值问题变成求方 程 0)(min *=X f

的解。也就是求X*使其满足 解上述方程组,求得驻点后,再根据极值点所需满足的充分条件来判定是否为极小值 点。但上式是一个含有n个未知量,n个方程的方程组,在实际问题中一般是非线性 的,很难用解析法求解,要用数值计算的方法。由第二章的讲述我们知道,优化问题 的一般解法是数值迭代的方法。因此,与其用数值方法求解非线性方程组,还不如用 数值迭代的方法直接求解无约束极值问题。 2、数值方法 数值迭代法的基本思想是从一个初始点) 0(X 出发,按照一个可行的搜索方向)0(d ρ搜索,确定最佳的步长0α使函数值沿)0(d ρ方向下降最大,得到)1(X 点。依此一步一步地重复数值计算,最终达到最优点。优化计算所采用的基本迭代公式为 ),2,1,0()()()1(Λρ=+=+k d X X K K K K α (4.2) 在上式中, ()K d r 是第是 k+1 次搜索或迭代方向,称为搜索方向(迭代方向)。 由上面的迭代公式可以看出,采用数值法进行迭代求优时,需要确定初始点)(k X 、搜索方向)(k d ρ和迭代步长K α,称为优化方法迭代算法的三要素。第三章我们已经讨论了如何在搜索方向)(k d ρ上确定最优步长K α的方法,本章我们将讨论如何确定搜索方向)(k d ρ。 最常用的数值方法是搜索方法,其基本思想如下图所示: 0)(0)(0)(*2*1*=??=??=??n x X f x X f x X f M

相关文档
相关文档 最新文档